Math 554 Homework Set 8 Autumn 2014 Due Monday November 24

(1) (a) Let $f : \mathbb{R} \times \mathbb{C}^n \to \mathbb{C}$ be continuous. Suppose $x : \mathbb{R} \to \mathbb{C}$ is a solution of the n^{th} -order equation

(*)
$$x^{(n)} = f(t, x, x', \vdots, x^{(n-1)}),$$

i.e., for each $t \in \mathbb{R}$, $x^{(n)}(t)$ exists and $x^{(n)}(t) = f(t, x(t), \dots, x^{(n-1)}(t))$. Show that $x \in C^n(\mathbb{R})$.

(b) Define $F : \mathbb{R} \times \mathbb{C}^n \to \mathbb{C}^n$ by $F(t, y) = [y_2, y_3, \dots, y_n, f(t, y_1, \dots, y_n)]^T$ (so F is continuous). Suppose $y : \mathbb{R} \to \mathbb{C}^n$ is a solution of the first-order system

$$(**)$$
 $y' = F(t, y),$

i.e., for each $t \in \mathbb{R}$, y'(t) exists and y'(t) = F(t, y(t)). Show that $y \in C^1(\mathbb{R})$, and moreover for $1 \leq j \leq n, y_j \in C^{n-j+1}(\mathbb{R})$.

(c) Show that if $x \in C^n(\mathbb{R})$ is a solution of (*), then $y = [x, x', \dots, x^{(n-1)}]^T$ is a C^1 solution of (**). Moreover, if x satisfies the initial conditions

$$x^{(k)}(t_0) = x_0^k \qquad (0 \le k \le n-1),$$

then y satisfies the initial conditions $y(t_0) = [x_0^0, \dots, x_0^{n-1}]^T$.

- (d) Show that if y is a C^1 solution of (**), then $x = y_1$ is a C^n solution of (*). Moreover, if y satisfies the initial conditions $y(t_0) = y_0$, then x satisfies the initial conditions $x^{(k)}(t_0) = (y_0)_{k+1}$ $(0 \le k \le n-1)$.
- (e) Show that the first-order system corresponding to the linear n^{th} -order equation $x^{(n)} + a_1(t)x^{(n-1)} + \cdots + a_n(t)x = b(t)$ is of the form y' = A(t)y + B(t) where $A(t) \in \mathbb{C}^{n \times n}$ and $B(t) \in \mathbb{C}^n$, and identify A(t) and B(t).
- (2) Let $A \in \mathbb{C}^{n \times n}$ have $\rho(A) < 1$.
 - (a) Show by example that A need not be a contraction with respect to the Euclidean metric.
 - (b) Show that there is an inner product on \mathbb{C}^n so that A is a contraction with respect to the norm induced by the inner product.
 - (c) Show that for any $x \in \mathbb{C}^n$, $A^k x \to 0$ as $k \to \infty$.
- (3) For each of th following IVP's, compute the Picard iterates and identify the solution to which they converge.
 - (a) x' = tx, x(0) = 1 (x scalar)
 - (b) x' = Ax, $x(0) = x_0$ where $A \in \mathbb{C}^{n \times n}$ is a constant matrix $(x \in \mathbb{C}^n)$.
- (4) (Gronwall's Inequality integral forms) Let φ , ψ , α be real-valued continuous functions on the interval I = [a, b]. Suppose $\alpha \ge 0$ on I, and that

$$\varphi(t) \le \psi(t) + \int_a^t \alpha(s)\varphi(s)ds \quad \forall t \in I.$$

(a) Show that

$$\varphi(t) \le \psi(t) + \int_a^t \exp\left(\int_s^t \alpha(r)dr\right) \alpha(s)\psi(s)ds \quad \forall t \in I \;.$$

Hint: Let $u(t) = \int_a^t \alpha(s)\varphi(s)ds$ and show that $u' - \alpha u \le \alpha \psi$.

(b) Supposed that $\psi(t) \equiv c$ (a constant). Show that

$$\varphi(t) \le c \exp\left(\int_a^t \alpha(s) ds\right) \quad \forall t \in I .$$

- (5) (Iterative Methods for Linear Systems)
 - (a) Fix $M \in \mathbb{C}^{n \times n}$ and $g \in \mathbb{C}^n$. Given any $x_0 \in \mathbb{C}^n$, define the sequence $\{x_k\}$ iteratively by $x_{k+1} = Mx_k + g$. Show that if $\rho(M) < 1$, then I M is invertible, and for any choice of $x_0 \in \mathbb{C}^n$, $x_k \to x_*$, the unique solution of (I M)x = g.
 - (b) Suppose $A \in \mathbb{C}^{n \times n}$ is invertible, $b \in \mathbb{C}^n$ is given, and we want to solve the linear system Ax = b for $x \in \mathbb{C}^n$. A splitting method writes A as A = S T where S is invertible (and linear systems Sx = y are easily solved), and given $x_0 \in \mathbb{C}^n$, define $\{x_k\}$ by $Sx_{k+1} = Tx_k + b$. Show that if $\rho(S^{-1}T) < 1$, then for any choice of $x_0 \in \mathbb{C}^n$, $x_k \to x_*$, the unique solution of Ax = b.
 - (c) Suppose $A \in \mathbb{C}^{n \times n}$ with nonzero diagonal entries. Write A = L + D + U, where L is strictly lower triangular, D is diagonal, and U is strictly upper triangular. The Jacobi iteration is the splitting method where S = D, T = -(L+U). The Gauss-Seidel iteration is the splitting method where S = D+L, T = -U. Show that if A is strictly (row) diagonally dominant (i.e., for $1 \le i \le n$, $|a_{ii}| > \sum_{1 \le j \le n, j \ne i} |a_{ij}|$), then A is invertible, and for any given x_0 , the Jacobi iteration generates a sequence $\{x_k\}$ which converges to the unique solution x_* of Ax = b.

(Hint: Show $|||D^{-1}(L+U)|||_{\infty} < 1$ in the operator norm $||| \cdot |||_{\infty}$ on $\mathbb{C}^{n \times n}$ induced by the ℓ^{∞} -norm $|| \cdot ||_{\infty}$ on \mathbb{C}^{n} .)

[Remark: It can be shown that if A is strictly (row) diagonally dominant, then the Gauss-Seidel iteration converges. As one would expect from the proof of the Contraction Mapping Fixed Point Theorem, the rate of convergence depends on $\rho(S^{-1}T)$. For some classes of matrices A, it can be shown that $\rho_G = \rho_J^2$, where ρ_G and ρ_J are $\rho(S^{-1}T)$ for Gauss-Seidel an Jacobi, respectively, so Gauss-Seidel takes roughly half the number of iterations as Jacobi to achieve the same accuracy. With the goal of further decreasing $\rho(S^{-1}T)$, Gauss-Seidel has been generalized to the successive over-relaxation method (SOR): the iteration takes the form

$$(D+\omega L)x_{k+1} = D_{x_k} + \omega[b - (D+U)x_k]$$

where ω (fixed) is called the relaxation parameter ($\omega < 1$ is called under-relaxation, $\omega > 1$ is called over-relaxation); the method was originally developed for matrices arising from discretizing elliptic PDE's where values of $\omega > 1$ tend to give faster convergence, so the name SOR has stuck; Gauss-Seidel is SOR with $\omega = 1$. Dividing through by ω , SOR is seen to be a splitting method

$$S_{\omega}x_{k+1} = T_{\omega}x_k + b,$$

where

$$S_{\omega} = \frac{1}{\omega}(D + \omega L)$$
 and $T_{\omega} = \frac{1}{\omega}((1 - \omega)D - \omega U).$

The iteration matrix M (as in (a)) is

$$M_{\omega} = S_{\omega}^{-1} T_{\omega} = (D + \omega L)^{-1} ((1 - \omega)D - \omega U).$$

It can be shown that if $A \in \mathbb{R}^{n \times n}$ is symmetric positive-definite, then $\rho(M_{\omega}) < 1$ (and thus the SOR iteration converges) iff $0 < \omega < 2$ (the Ostrowski-Reich Theorem). One direction (that $0 < \omega < 2$ is necessary) is shown easily.]

(d) Suppose $A \in \mathbb{C}^{n \times n}$ with nonzero diagonal elements, $\omega \in \mathbb{R}$, and

$$M_{\omega} = (D + \omega L)^{-1} ((1 - \omega)D - \omega U).$$

Show that $\rho(M_{\omega}) \ge |\omega - 1|$ (and thus $\rho(M_{\omega}) \ge 1$ for $\omega \le 0$ and for $\omega \ge 2$). (Hint: Use

det
$$(D + \omega L)^{-1}$$
 = det D^{-1} and det $((1 - \omega)D - \omega U)$ = det $((1 - \omega)D)$

to show that det $(M_{\omega}) = (1 - \omega)^n$.)

- (e) Let $A \in \mathbb{C}^{n \times n}$. A matrix $C \in \mathbb{C}^{n \times n}$ is called an *approximate inverse* for A if $\rho(I-CA) < 1$. Show that if C is an approximate inverse for A, then A is invertible, C is invertible, and for any given $x_0 \in \mathbb{C}^n$, the iteration $x_{k+1} = x_k + C(b Ax_k)$ generates a sequence $\{x_k\}$ which converges to the unique solution x_* of Ax = b. [Remark: $r_k = b - Ax_k$ is called the residual at the k^{th} iteration.]
- (6) One-sided uniqueness theorem $(n = 1, \mathbb{F} = \mathbb{R})$
 - (a) A real-valued function f(t, u) is said to satisfy a one-sided Lipschitz condition in u if

$$u_1 > u_2 \quad \Rightarrow \quad f(t, u_1) - f(t, u_2) \le L(u_2 - u_1) \quad \forall \ t \in \mathbb{R}.$$

Show that if f is continuous in t and u and satisfies a one-sided Lipschitz condition in u, then there is at most one solution to the IVP u' = f(t, u), $u(t_0) = 0$, for $t \ge t_0$.

(b) Let f(t, u) be a real-valued continuous function in t and u, and suppose that f is decreasing in u for all t, i.e., $u_2 > u_1$ implies that $f(t, u_2) \le f(t, u_1)$. Show that if u(t) and v(t) are both solutions to u' = f(t, u), then

 $|u(t) - v(t)| \le |u(s) - v(s)|$ whenever $t \ge s$.

Deduce uniqueness for the IVP u' = f(t, u), $u(t_0) = 0$, for $t \ge t_0$. Show, however, that uniqueness may fail for $t < t_0$.