(1) (a) Let $f: \mathbb{R} \times \mathbb{C}^{n} \rightarrow \mathbb{C}$ be continuous. Suppose $x: \mathbb{R} \rightarrow \mathbb{C}$ is a solution of the $n^{\text {th }}$-order equation
$(*) \quad x^{(n)}=f\left(t, x, x^{\prime},:, x^{(n-1)}\right)$,
i.e., for each $t \in \mathbb{R}, x^{(n)}(t)$ exists and $x^{(n)}(t)=f\left(t, x(t), \ldots, x^{(n-1)}(t)\right)$. Show that $x \in C^{n}(\mathbb{R})$.
(b) Define $F: \mathbb{R} \times \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ by $F(t, y)=\left[y_{2}, y_{3}, \ldots, y_{n}, f\left(t, y_{1}, \ldots, y_{n}\right)\right]^{T}$ (so F is continuous). Suppose $y: \mathbb{R} \rightarrow \mathbb{C}^{n}$ is a solution of the first-order system

$$
(* *) \quad y^{\prime}=F(t, y)
$$

i.e., for each $t \in \mathbb{R}, y^{\prime}(t)$ exists and $y^{\prime}(t)=F(t, y(t))$. Show that $y \in C^{1}(\mathbb{R})$, and moreover for $1 \leq j \leq n, y_{j} \in C^{n-j+1}(\mathbb{R})$.
(c) Show that if $x \in C^{n}(\mathbb{R})$ is a solution of $(*)$, then $y=\left[x, x^{\prime}, \ldots, x^{(n-1)}\right]^{T}$ is a C^{1} solution of $(* *)$. Moreover, if x satisfies the initial conditions

$$
x^{(k)}\left(t_{0}\right)=x_{0}^{k} \quad(0 \leq k \leq n-1)
$$

then y satisfies the initial conditions $y\left(t_{0}\right)=\left[x_{0}^{0}, \ldots, x_{0}^{n-1}\right]^{T}$.
(d) Show that if y is a C^{1} solution of $(* *)$, then $x=y_{1}$ is a C^{n} solution of $(*)$. Moreover, if y satisfies the initial conditions $y\left(t_{0}\right)=y_{0}$, then x satisfies the initial conditions $x^{(k)}\left(t_{0}\right)=\left(y_{0}\right)_{k+1}(0 \leq k \leq n-1)$.
(e) Show that the first-order system corresponding to the linear $n^{\text {th }}$-order equation $x^{(n)}+a_{1}(t) x^{(n-1)}+\cdots+a_{n}(t) x=b(t)$ is of the form $y^{\prime}=A(t) y+B(t)$ where $A(t) \in \mathbb{C}^{n \times n}$ and $B(t) \in \mathbb{C}^{n}$, and identify $A(t)$ and $B(t)$.
(2) Let $A \in \mathbb{C}^{n \times n}$ have $\rho(A)<1$.
(a) Show by example that A need not be a contraction with respect to the Euclidean metric.
(b) Show that there is an inner product on \mathbb{C}^{n} so that A is a contraction with respect to the norm induced by the inner product.
(c) Show that for any $x \in \mathbb{C}^{n}, A^{k} x \rightarrow 0$ as $k \rightarrow \infty$.
(3) For each of th following IVP's, compute the Picard iterates and identify the solution to which they converge.
(a) $x^{\prime}=t x, \quad x(0)=1 \quad(x$ scalar $)$
(b) $x^{\prime}=A x, \quad x(0)=x_{0} \quad$ where $A \in \mathbb{C}^{n \times n}$ is a constant matrix $\left(x \in \mathbb{C}^{n}\right)$.
(4) (Gronwall's Inequality - integral forms) Let φ, ψ, α be real-valued continuous functions on the interval $I=[a, b]$. Suppose $\alpha \geq 0$ on I, and that

$$
\varphi(t) \leq \psi(t)+\int_{a}^{t} \alpha(s) \varphi(s) d s \quad \forall t \in I
$$

(a) Show that

$$
\varphi(t) \leq \psi(t)+\int_{a}^{t} \exp \left(\int_{s}^{t} \alpha(r) d r\right) \alpha(s) \psi(s) d s \quad \forall t \in I
$$

Hint: Let $u(t)=\int_{a}^{t} \alpha(s) \varphi(s) d s$ and show that $u^{\prime}-\alpha u \leq \alpha \psi$.
(b) Supposed that $\psi(t) \equiv c$ (a constant). Show that

$$
\varphi(t) \leq c \exp \left(\int_{a}^{t} \alpha(s) d s\right) \quad \forall t \in I
$$

(5) (Iterative Methods for Linear Systems)
(a) Fix $M \in \mathbb{C}^{n \times n}$ and $g \in \mathbb{C}^{n}$. Given any $x_{0} \in \mathbb{C}^{n}$, define the sequence $\left\{x_{k}\right\}$ iteratively by $x_{k+1}=M x_{k}+g$. Show that if $\rho(M)<1$, then $I-M$ is invertible, and for any choice of $x_{0} \in \mathbb{C}^{n}, x_{k} \rightarrow x_{*}$, the unique solution of $(I-M) x=g$.
(b) Suppose $A \in \mathbb{C}^{n \times n}$ is invertible, $b \in \mathbb{C}^{n}$ is given, and we want to solve the linear system $A x=b$ for $x \in \mathbb{C}^{n}$. A splitting method writes A as $A=S-T$ where S is invertible (and linear systems $S x=y$ are easily solved), and given $x_{0} \in \mathbb{C}^{n}$, define $\left\{x_{k}\right\}$ by $S x_{k+1}=T x_{k}+b$. Show that if $\rho\left(S^{-1} T\right)<1$, then for any choice of $x_{0} \in \mathbb{C}^{n}, x_{k} \rightarrow x_{*}$, the unique solution of $A x=b$.
(c) Suppose $A \in \mathbb{C}^{n \times n}$ with nonzero diagonal entries. Write $A=L+D+U$, where L is strictly lower triangular, D is diagonal, and U is strictly upper triangular. The Jacobi iteration is the splitting method where $S=D, T=-(L+U)$. The GaussSeidel iteration is the splitting method where $S=D+L, T=-U$. Show that if A is strictly (row) diagonally dominant (i.e., for $1 \leq i \leq n,\left|a_{i i}\right|>\sum_{1 \leq j \leq n, j \neq i}\left|a_{i j}\right|$), then A is invertible, and for any given x_{0}, the Jacobi iteration generates a sequence $\left\{x_{k}\right\}$ which converges to the unique solution x_{*} of $A x=b$.
(Hint: Show $\left\|\left|D^{-1}(L+U)\right|\right\|_{\infty}<1$ in the operator norm $\||\cdot|\|_{\infty}$ on $\mathbb{C}^{n \times n}$ induced by the ℓ^{∞}-norm $\|\cdot\|_{\infty}$ on \mathbb{C}^{n}.)
[Remark: It can be shown that if A is strictly (row) diagonally dominant, then the Gauss-Seidel iteration converges. As one would expect from the proof of the Contraction Mapping Fixed Point Theorem, the rate of convergence depends on $\rho\left(S^{-1} T\right)$. For some classes of matrices A, it can be shown that $\rho_{G}=\rho_{J}^{2}$, where ρ_{G} and ρ_{J} are $\rho\left(S^{-1} T\right)$ for Gauss-Seidel an Jacobi, respectively, so Gauss-Seidel takes roughly half the number of iterations as Jacobi to achieve the same accuracy. With the goal of further decreasing $\rho\left(S^{-1} T\right)$, Gauss-Seidel has been generalized to the successive over-relaxation method (SOR): the iteration takes the form

$$
(D+\omega L) x_{k+1}=D_{x_{k}}+\omega\left[b-(D+U) x_{k}\right]
$$

where ω (fixed) is called the relaxation parameter ($\omega<1$ is called under-relaxation, $\omega>1$ is called over-relaxation); the method was originally developed for matrices arising from discretizing elliptic PDE's where values of $\omega>1$ tend to give faster convergence, so the name SOR has stuck; Gauss-Seidel is SOR with $\omega=1$. Dividing through by ω, SOR is seen to be a splitting method

$$
S_{\omega} x_{k+1}=T_{\omega} x_{k}+b,
$$

where

$$
S_{\omega}=\frac{1}{\omega}(D+\omega L) \quad \text { and } \quad T_{\omega}=\frac{1}{\omega}((1-\omega) D-\omega U) .
$$

The iteration matrix M (as in (a)) is

$$
M_{\omega}=S_{\omega}^{-1} T_{\omega}=(D+\omega L)^{-1}((1-\omega) D-\omega U)
$$

It can be shown that if $A \in \mathbb{R}^{n \times n}$ is symmetric positive-definite, then $\rho\left(M_{\omega}\right)<1$ (and thus the SOR iteration converges) iff $0<\omega<2$ (the Ostrowski-Reich Theorem). One direction (that $0<\omega<2$ is necessary) is shown easily.]
(d) Suppose $A \in \mathbb{C}^{n \times n}$ with nonzero diagonal elements, $\omega \in \mathbb{R}$, and

$$
M_{\omega}=(D+\omega L)^{-1}((1-\omega) D-\omega U)
$$

Show that $\rho\left(M_{\omega}\right) \geq|\omega-1|$ (and thus $\rho\left(M_{\omega}\right) \geq 1$ for $\omega \leq 0$ and for $\omega \geq 2$). (Hint: Use
$\operatorname{det}(D+\omega L)^{-1}=\operatorname{det} D^{-1}$ and $\quad \operatorname{det}((1-\omega) D-\omega U)=\operatorname{det}((1-\omega) D)$ to show that $\operatorname{det}\left(M_{\omega}\right)=(1-\omega)^{n}$.)
(e) Let $A \in \mathbb{C}^{n \times n}$. A matrix $C \in \mathbb{C}^{n \times n}$ is called an approximate inverse for A if $\rho(I-C A)<1$. Show that if C is an approximate inverse for A, then A is invertible, C is invertible, and for any given $x_{0} \in \mathbb{C}^{n}$, the iteration $x_{k+1}=x_{k}+C\left(b-A x_{k}\right)$ generates a sequence $\left\{x_{k}\right\}$ which converges to the unique solution x_{*} of $A x=b$.
[Remark: $r_{k}=b-A x_{k}$ is called the residual at the $k^{\text {th }}$ iteration.]
(6) One-sided uniqueness theorem $(n=1, \mathbb{F}=\mathbb{R})$
(a) A real-valued function $f(t, u)$ is said to satisfy a one-sided Lipschitz condition in u if

$$
u_{1}>u_{2} \quad \Rightarrow \quad f\left(t, u_{1}\right)-f\left(t, u_{2}\right) \leq L\left(u_{2}-u_{1}\right) \quad \forall t \in \mathbb{R}
$$

Show that if f is continuous in t and u and satisfies a one-sided Lipschitz condition in u, then there is at most one solution to the IVP $u^{\prime}=f(t, u), u\left(t_{0}\right)=0$, for $t \geq t_{0}$.
(b) Let $f(t, u)$ be a real-valued continuous function in t and u, and suppose that f is decreasing in u for all t, i.e., $u_{2}>u_{1}$ implies that $f\left(t, u_{2}\right) \leq f\left(t, u_{1}\right)$. Show that if $u(t)$ and $v(t)$ are both solutions to $u^{\prime}=f(t, u)$, then

$$
|u(t)-v(t)| \leq|u(s)-v(s)| \quad \text { whenever } \quad t \geq s
$$

Deduce uniqueness for the IVP $u^{\prime}=f(t, u), u\left(t_{0}\right)=0$, for $t \geq t_{0}$. Show, however, that uniqueness may fail for $t<t_{0}$.

