
Math 554 Autumn 2014
Homework Set 8 Due Monday November 24

(1) (a) Let f : R × Cn → C be continuous. Suppose x : R → C is a solution of the
nth-order equation

(∗) x(n) = f(t, x, x′,
..., x(n−1)),

i.e., for each t ∈ R, x(n)(t) exists and x(n)(t) = f(t, x(t), . . . , x(n−1)(t)). Show that
x ∈ Cn(R).

(b) Define F : R × Cn → Cn by F (t, y) = [y2, y3, . . . , yn, f(t, y1, . . . , yn)]T (so F is
continuous). Suppose y : R→ Cn is a solution of the first-order system

(∗∗) y′ = F (t, y),

i.e., for each t ∈ R, y′(t) exists and y′(t) = F (t, y(t)). Show that y ∈ C1(R), and
moreover for 1 ≤ j ≤ n, yj ∈ Cn−j+1(R).

(c) Show that if x ∈ Cn(R) is a solution of (∗), then y = [x, x′, . . . , x(n−1)]T is a C1

solution of (∗∗). Moreover, if x satisfies the initial conditions

x(k)(t0) = xk0 (0 ≤ k ≤ n− 1),

then y satisfies the initial conditions y(t0) = [x00, . . . , x
n−1
0 ]T .

(d) Show that if y is a C1 solution of (∗∗), then x = y1 is a Cn solution of (∗).
Moreover, if y satisfies the initial conditions y(t0) = y0, then x satisfies the initial
conditions x(k)(t0) = (y0)k+1 (0 ≤ k ≤ n− 1).

(e) Show that the first-order system corresponding to the linear nth-order equation
x(n) + a1(t)x

(n−1) + · · · + an(t)x = b(t) is of the form y′ = A(t)y + B(t) where
A(t) ∈ Cn×n and B(t) ∈ Cn, and identify A(t) and B(t).

(2) Let A ∈ Cn×n have ρ(A) < 1.
(a) Show by example that A need not be a contraction with respect to the Euclidean

metric.
(b) Show that there is an inner product on Cn so that A is a contraction with respect

to the norm induced by the inner product.
(c) Show that for any x ∈ Cn, Akx→ 0 as k →∞.

(3) For each of th following IVP’s, compute the Picard iterates and identify the solution
to which they converge.
(a) x′ = tx, x(0) = 1 (x scalar)
(b) x′ = Ax, x(0) = x0 where A ∈ Cn×n is a constant matrix (x ∈ Cn).

(4) (Gronwall’s Inequality — integral forms) Let ϕ, ψ, α be real-valued continuous func-
tions on the interval I = [a, b]. Suppose α ≥ 0 on I, and that

ϕ(t) ≤ ψ(t) +

∫ t

a

α(s)ϕ(s)ds ∀ t ∈ I.

(a) Show that

ϕ(t) ≤ ψ(t) +

∫ t

a

exp

(∫ t

s

α(r)dr

)
α(s)ψ(s)ds ∀ t ∈ I .

Hint: Let u(t) =
∫ t

a
α(s)ϕ(s)ds and show that u′ − αu ≤ αψ.
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(b) Supposed that ψ(t) ≡ c (a constant). Show that

ϕ(t) ≤ c exp

(∫ t

a

α(s)ds

)
∀ t ∈ I .

(5) (Iterative Methods for Linear Systems)
(a) Fix M ∈ Cn×n and g ∈ Cn. Given any x0 ∈ Cn, define the sequence {xk}

iteratively by xk+1 = Mxk + g. Show that if ρ(M) < 1, then I −M is invertible,
and for any choice of x0 ∈ Cn, xk → x∗, the unique solution of (I −M)x = g.

(b) Suppose A ∈ Cn×n is invertible, b ∈ Cn is given, and we want to solve the linear
system Ax = b for x ∈ Cn. A splitting method writes A as A = S − T where S
is invertible (and linear systems Sx = y are easily solved), and given x0 ∈ Cn,
define {xk} by Sxk+1 = Txk + b. Show that if ρ(S−1T ) < 1, then for any choice
of x0 ∈ Cn, xk → x∗, the unique solution of Ax = b.

(c) Suppose A ∈ Cn×n with nonzero diagonal entries. Write A = L+D+U , where L
is strictly lower triangular, D is diagonal, and U is strictly upper triangular. The
Jacobi iteration is the splitting method where S = D, T = −(L+U). The Gauss-
Seidel iteration is the splitting method where S = D+L, T = −U . Show that if A
is strictly (row) diagonally dominant (i.e., for 1 ≤ i ≤ n, |aii| >

∑
1≤j≤n,j 6=i |aij|),

then A is invertible, and for any given x0, the Jacobi iteration generates a sequence
{xk} which converges to the unique solution x∗ of Ax = b.
(Hint: Show ‖|D−1(L+U)|‖∞ < 1 in the operator norm ‖| · |‖∞ on Cn×n induced
by the `∞-norm ‖ · ‖∞ on Cn.)

[Remark : It can be shown that if A is strictly (row) diagonally dominant, then the
Gauss-Seidel iteration converges. As one would expect from the proof of the Con-
traction Mapping Fixed Point Theorem, the rate of convergence depends on ρ(S−1T ).
For some classes of matrices A, it can be shown that ρG = ρ2J , where ρG and ρJ
are ρ(S−1T ) for Gauss-Seidel an Jacobi, respectively, so Gauss-Seidel takes roughly
half the number of iterations as Jacobi to achieve the same accuracy. With the goal
of further decreasing ρ(S−1T ), Gauss-Seidel has been generalized to the successive
over-relaxation method (SOR): the iteration takes the form

(D + ωL)xk+1 = Dxk
+ ω[b− (D + U)xk]

where ω (fixed) is called the relaxation parameter (ω < 1 is called under-relaxation,
ω > 1 is called over-relaxation); the method was originally developed for matrices
arising from discretizing elliptic PDE’s where values of ω > 1 tend to give faster
convergence, so the name SOR has stuck; Gauss-Seidel is SOR with ω = 1. Dividing
through by ω, SOR is seen to be a splitting method

Sωxk+1 = Tωxk + b,

where

Sω =
1

ω
(D + ωL) and Tω =

1

ω
((1− ω)D − ωU).

The iteration matrix M (as in (a)) is

Mω = S−1ω Tω = (D + ωL)−1((1− ω)D − ωU).

It can be shown that if A ∈ Rn×n is symmetric positive-definite, then ρ(Mω) < 1 (and
thus the SOR iteration converges) iff 0 < ω < 2 (the Ostrowski-Reich Theorem). One
direction (that 0 < ω < 2 is necessary) is shown easily.]
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(d) Suppose A ∈ Cn×n with nonzero diagonal elements, ω ∈ R, and

Mω = (D + ωL)−1((1− ω)D − ωU).

Show that ρ(Mω) ≥ |ω − 1| (and thus ρ(Mω) ≥ 1 for ω ≤ 0 and for ω ≥ 2).
(Hint: Use

det (D + ωL)−1 = detD−1 and det ((1− ω)D − ωU) = det ((1− ω)D)

to show that det (Mω) = (1− ω)n.)
(e) Let A ∈ Cn×n. A matrix C ∈ Cn×n is called an approximate inverse for A if

ρ(I−CA) < 1. Show that if C is an approximate inverse forA, thenA is invertible,
C is invertible, and for any given x0 ∈ Cn, the iteration xk+1 = xk + C(b− Axk)
generates a sequence {xk} which converges to the unique solution x∗ of Ax = b.

[Remark : rk = b− Axk is called the residual at the kth iteration.]
(6) One-sided uniqueness theorem (n = 1, F = R)

(a) A real-valued function f(t, u) is said to satisfy a one-sided Lipschitz condition in
u if

u1 > u2 ⇒ f(t, u1)− f(t, u2) ≤ L(u2 − u1) ∀ t ∈ R.
Show that if f is continuous in t and u and satisfies a one-sided Lipschitz condition
in u, then there is at most one solution to the IVP u′ = f(t, u), u(t0) = 0, for
t ≥ t0.

(b) Let f(t, u) be a real-valued continuous function in t and u, and suppose that f is
decreasing in u for all t, i.e., u2 > u1 implies that f(t, u2) ≤ f(t, u1). Show that
if u(t) and v(t) are both solutions to u′ = f(t, u), then

|u(t)− v(t)| ≤ |u(s)− v(s)| whenever t ≥ s .

Deduce uniqueness for the IVP u′ = f(t, u), u(t0) = 0, for t ≥ t0. Show, however,
that uniqueness may fail for t < t0.


