Math 554 Autumn 2014
Homework Set 8 Due Monday November 24

(1) (a) Let f : R x C* — C be continuous. Suppose z : R — C is a solution of the
n*-order equation

(%) 2 = f(t,x, o, f,ac("_l)),

i.e., for each t € R, 2(™(t) exists and 2™ (¢) = f(t,z(t),...,z™ D (t)). Show that
z € C"(R).

(b) Define F' : R x C* — C™ by F(t,y) = [Y2, Y3, Yn, f(t, U1, -, yn)]* (s0 F is
continuous). Suppose y : R — C" is a solution of the first-order system

(%) y = F(t,y),

ie., for each t € R, y/(t) exists and y/(t) = F(¢,y(t)). Show that y € C*(R), and
moreover for 1 < j <n, y; € C" I (R).

(c) Show that if z € C™(R) is a solution of (%), then y = [z,2/,..., 2" V] is a C*
solution of (xx). Moreover, if x satisfies the initial conditions

¥ (to) = ak 0<k<n-1),
then y satisfies the initial conditions y(ty) = [29,..., 2017,

(d) Show that if y is a C! solution of (xx), then x = 1 is a C™ solution of ().
Moreover, if y satisfies the initial conditions y(tg) = yo, then x satisfies the initial
conditions 2 (¢9) = (yo)xs1 (0 <k <n —1).

(e) Show that the first-order system corresponding to the linear n**-order equation
2™ 4 a1 ()2 4 - 4 a,(t)zr = b(t) is of the form v = A(t)y + B(t) where
A(t) € C™ and B(t) € C*, and identify A(t) and B(t).

(2) Let A € C™™ have p(A) < 1.

(a) Show by example that A need not be a contraction with respect to the Euclidean
metric.

(b) Show that there is an inner product on C" so that A is a contraction with respect
to the norm induced by the inner product.

(c) Show that for any z € C*, A*x — 0 as k — oo.

(3) For each of th following IVP’s, compute the Picard iterates and identify the solution
to which they converge.

(a) o' = tx, z(0) =1 (x scalar)

(b) o’ = Ax, z(0) = xg where A € C™" is a constant matrix (x € C").

(4) (Gronwall’s Inequality — integral forms) Let ¢, ¢, a be real-valued continuous func-
tions on the interval I = [a,b]. Suppose a > 0 on I, and that

o(t) < (t) + /toz(s)go(s)ds Vtel.

(a) Show that

o(t) < (t) + /at exp </Stoz(r)dr) a(s)b(s)ds Vtel.

t

Hint: Let u(t) = [, a(s)p(s)ds and show that v’ — au < ai).
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(b) Supposed that 1(t) = ¢ (a constant). Show that

(1) < cexp (/:a(s)ds) Viel.

(5) (Iterative Methods for Linear Systems)

(a) Fix M € C*™ and g € C". Given any x, € C", define the sequence {zj}
iteratively by xpy1 = Mz + g. Show that if p(M) < 1, then [ — M is invertible,
and for any choice of zy € C", x;, — z,, the unique solution of (I — M)z = g.

(b) Suppose A € C™*™ is invertible, b € C™ is given, and we want to solve the linear
system Az = b for x € C". A splitting method writes A as A =S — T where S
is invertible (and linear systems Sz = y are easily solved), and given z, € C",
define {zx} by Sxpy1 = Txy + b. Show that if p(S™'T) < 1, then for any choice
of zg € C", x, — z,, the unique solution of Ax = b.

(¢) Suppose A € C™™ with nonzero diagonal entries. Write A = L+ D+ U, where L
is strictly lower triangular, D is diagonal, and U is strictly upper triangular. The
Jacobi iteration is the splitting method where S = D, T = —(L+U). The Gauss-
Seidel iteration is the splitting method where S = D+ L, T = —U. Show that if A
is strictly (row) diagonally dominant (i.e., for 1 <i <, [au| > 37 <, iz lais]),
then A is invertible, and for any given x, the Jacobi iteration generates a sequence
{1} which converges to the unique solution x, of Az =b.

(Hint: Show [|[|[D™'(L+U)|||c < 1 in the operator norm ||| ||| on C™" induced
by the ¢>*-norm || - || on C™.)

[Remark: It can be shown that if A is strictly (row) diagonally dominant, then the

Gauss-Seidel iteration converges. As one would expect from the proof of the Con-

traction Mapping Fixed Point Theorem, the rate of convergence depends on p(S~!T).

For some classes of matrices A, it can be shown that pg = p?%, where pg and p;

are p(S™IT) for Gauss-Seidel an Jacobi, respectively, so Gauss-Seidel takes roughly

half the number of iterations as Jacobi to achieve the same accuracy. With the goal
of further decreasing p(S~—'T), Gauss-Seidel has been generalized to the successive
over-relazation method (SOR): the iteration takes the form

(D +wl)xpiy = Dy, +wlb— (D + U)xy
where w (fixed) is called the relaxation parameter (w < 1 is called under-relaxation,
w > 1 is called over-relaxation); the method was originally developed for matrices
arising from discretizing elliptic PDE’s where values of w > 1 tend to give faster
convergence, so the name SOR has stuck; Gauss-Seidel is SOR with w = 1. Dividing
through by w, SOR is seen to be a splitting method

Sw$k+l = wak + ba
where . )
So=—(D+wL) and T,=—((1—-w)D —wU).

w w

The iteration matrix M (as in (a)) is
M, = ST, = (D+wL) ' ((1 —w)D — wl).

It can be shown that if A € R™*" is symmetric positive-definite, then p(M,) < 1 (and
thus the SOR iteration converges) iff 0 < w < 2 (the Ostrowski-Reich Theorem). One
direction (that 0 < w < 2 is necessary) is shown easily.]



(d) Suppose A € C™*" with nonzero diagonal elements, w € R, and
M, = (D +wL) (1 —w)D —wlU).

Show that p(M,,) > |w — 1| (and thus p(M,,) > 1 for w < 0 and for w > 2).
(Hint: Use
det (D +wL) ' =det D' and det((1 —w)D —wU) =det ((1 —w)D)

to show that det (M,,) = (1 —w)™.)

(e) Let A € C™". A matrix C' € C"*" is called an approximate inverse for A if
p(I—CA) < 1. Show that if C' is an approximate inverse for A, then A is invertible,
C' is invertible, and for any given zq € C", the iteration xx,1 = xp + C(b — Axy)
generates a sequence {xy} which converges to the unique solution x, of Az = b.

[Remark: r, = b — Axy, is called the residual at the k'™ iteration.]

(6) One-sided uniqueness theorem (n =1, F = R)

(a) A real-valued function f(¢,u) is said to satisfy a one-sided Lipschitz condition in

w if
Uy > Uy = f(t,ul) — f(t,UQ) < L(UQ — Ul) ViteR.

Show that if f is continuous in ¢ and u and satisfies a one-sided Lipschitz condition
in u, then there is at most one solution to the IVP v’ = f(t,u), u(ty) = 0, for
t> 1.

(b) Let f(t,u) be a real-valued continuous function in ¢ and u, and suppose that f is
decreasing in u for all ¢, i.e., uy > uy implies that f(t,us) < f(t,u;). Show that
if u(t) and v(t) are both solutions to u’ = f(t,u), then

lu(t) —v(t)] < |u(s) —v(s)] whenever ¢>s.

Deduce uniqueness for the IVP v’ = f(t,u), u(ty) = 0, for t > to,. Show, however,
that uniqueness may fail for ¢ < t,.



