Math 554 Homework Set 6

Reading Horn & Johnson, Chapter 4 - 5

- (1) Show that $U \in \mathbb{C}^{n \times n}$ is unitary iff \exists a Hermitian $H \in \mathbb{C}^{n \times n}$ for which $U = e^{iH}$.
- (2) Use the Schur Triangularization Theorem to show that every matrix $A \in \mathbb{C}^{n \times n}$ is "almost" diagonalizable in the following two senses.
 - (a) Given $\epsilon > 0$, there is a matrix $\widetilde{A} \in \mathbb{C}^{n \times n}$ with distinct eigenvalues for which $\|A - \widetilde{A}\|_F < \epsilon.$
 - (b) Given $\epsilon > 0$, there is an upper triangular T similar to A for which $|t_{ij}| < \epsilon$ for all i < j.
- (3) Let $A, B \in \mathbb{C}^{n \times n}$ be diagonalizable. Show that A and B are simultaneously diagonal*izable* (i.e., \exists one invertible $S \in \mathbb{C}^{n \times n}$ for which both $S^{-1}AS$ and $S^{-1}BS$ are diagonal) iff AB = BA, as follows:
 - (a) Show that if A, B are simultaneously diagonalizable, then AB = BA.
 - (b) Suppose AB = BA. Let $\lambda_1, \ldots, \lambda_k$ be the distinct eigenvalues of A, with eigenspaces E_1, \ldots, E_k and associated projections P_1, \ldots, P_k . Show that $BE_i \subset E_i$ for each i and deduce that $BP_i = P_i B$ for each *i*.
 - (c) Suppose AB = BA. Let $\{v_1, \ldots, v_n\}$ be a basis of \mathbb{C}^n consisting of eigenvectors of B. Show that for each $i, 1 \leq i \leq i$, the vectors $\{P_i v_1, \ldots, P_i v_n\}$ span the subspace E_i (where E_i, P_i are as in part (b)). Also show that each nonzero $P_i v_j$ is an eigenvector of B.
 - (d) Suppose AB = BA. Deduce that there is a basis for \mathbb{C}^n consisting of vectors which are eigenvectors for both A and B. Conclude that A and B are simultaneously diagonalizable.

(4) Prove the real version of the Schur Theorem: If $A \in \mathbb{R}^{n \times n}$, there is an orthogonal

matrix $V \in \mathbb{R}^{n \times n}$ so that $V^T A V = \begin{bmatrix} A_1 & * \\ & \ddots & \\ 0 & & A_k \end{bmatrix} \equiv B$ is block upper triangular,

where each A_i is either a real 1×1 matrix or a real 2×2 matrix with eigenvalues a complex conjugate pair $\lambda \neq \overline{\lambda}$. (The matrix $B \in \mathbb{R}^{n \times n}$ is often called *quasi-upper*triangular.)

(5) (a) What are the possible Jordan canonical forms for A if $p_A(t) = (t+3)^4(t-4)^2$? (b) Find the Jordan canonical form for $A = \begin{pmatrix} 0 & -1 & -1 \\ 1 & -2 & 0 \\ 0 & 0 & -2 \end{pmatrix}$.

- (6) Let \mathbb{H} be a real Hilbert space with inner product $\langle \cdot, \cdot \rangle$ and inner product norm $\|\cdot\|$. A set $K \subset \mathbb{H}$ is said to be a cone if $\alpha K \subset K$ for all $\alpha > 0$. Given a set $C \subset \mathbb{H}$, define the *polar* of C to be the set $C^{\circ} := \{ y \in \mathbb{H} \mid \langle y, x \rangle \leq 1 \ \forall x \in C \}.$
 - (a) Show that $K \subset \mathbb{H}$ is a convex cone if and only if (i) $\alpha K \subset K$ for all $\alpha > 0$ and (ii) $K + K \subset K$.
 - (b) Let \mathbb{B} be the closed unit ball in \mathbb{H} . Show that $\mathbb{B}^{\circ} = \mathbb{B}$.
 - (c) Given $C \subset \mathbb{H}$, show that C° is always a closed convex set.
 - (d) Given $C \subset \mathbb{H}$, show that $(C^{\circ})^{\circ}$ is the closed convex hull of C, i.e., the intersection of all closed convex sets containing C.

(e) Given a non-empty closed convex cone $K \subset \mathbb{H}$ show that

$$K^{\circ} := \left\{ y \in \mathbb{H} \mid \langle y, x \rangle \le 0 \ \forall x \in K \right\}.$$

- (f) Let $S \subset \mathbb{H}$ be a closed subspace. Observe that S is a closed convex cone. Show that $S^{\circ} = S^{\perp}$.
- (g) Let $K \subset \mathbb{H}$ be a non-empty closed convex cone. Given $z, x, y \in \mathbb{H}$, show that the following statements are equivalent:
 - (i) z = x + y with $x \in K$, $y \in K^{\circ}$ and $\langle x, y \rangle = 0$.
 - (ii) $x = P_K z$ and $y = P_{K^{\circ}} z$, where P_K and $P_{K^{\circ}}$ are the projections onto K and K° , respectively.