Reading Horn \& Johnson, Chapter 1-3

(1) (a) Let $A \in \mathbb{C}^{n \times n}$ be invertible and set $|\lambda|_{\max }=\max \{|\lambda|: \lambda \in \Sigma(A)\},|\lambda|_{\min }=$ $\min \{|\lambda|: \lambda \in \Sigma(A)\}$. Show that the condition number of A relative to any submultiplicative norm satisfies $k(A) \geq|\lambda|_{\max } /|\lambda|_{\text {min }}$. (So if this ratio is large, A is ill-conditioned.)
(b) Let $A, B \in \mathbb{C}^{n \times n}$ with A invertible and B singular. Show that the condition number of A relative to any submultiplicative norm $\|\cdot\|$ satisfies $k(A) \geq \frac{\|A\|}{\|A-B\|}$.
(c) Use part (b) to show that if $A \in \mathbb{C}^{n \times n}$ is upper triangular and invertible, then the condition number of A relative to $\|\|\cdot\|\|_{\infty}$ satisfies $k(A) \geq \frac{\|A A\| \|_{\infty}}{\min _{1 \leq i \leq n}\left|a_{i i}\right|}$.
(2) Let $A \in \mathbb{C}^{n \times n}$ and suppose that λ is an eigenvalue of A of algebraic multiplicity 1 . Show that $\operatorname{rank}(A-\lambda I)=n-1$, but not conversely.
(3) (a) Let $A \in \mathbb{C}^{n \times n}$ be normal and suppose all eigenvalues of A are real. Show that A is Hermitian.
(b) Let $A \in \mathbb{C}^{n \times n}$ be normal and suppose all eigenvalues of A satisfy $|\lambda|=1$. Show that A is unitary.
(c) Show by examples that (a) and (b) both fail if the normality assumption is reduced to assuming just that A is diagonalizable.
(4) (a) Let $A, B \in \mathbb{C}^{n \times n}$ and suppose A is invertible. Show that $A B$ and $B A$ are similar. Show by example that this need not be true if A and B are both allowed to be singular.
(b) Let $A, B \in \mathbb{C}^{n \times n}$ show that $A+\epsilon I$ is invertible for all sufficiently small $\epsilon>0$. Use part (a) and take limits to show that for any $A, B \in \mathbb{C}^{n \times n}, A B$ and $B A$ have the same characteristic polynomials. Deduce that $A B$ and $B A$ have the same eigenvalues, including algebraic multiplicities.
(5) If $A, B \in \mathbb{C}^{n \times n}$ are Hermitian, we say that $A \geq B$ if $A-B \in \mathcal{H}_{+}^{n}$, where \mathcal{H}_{+}^{n} is the set of Hermitian positive semi-definite matrices.
(a) Let $A \in \mathbb{C}^{n \times n}$ be Hermitian and $\alpha \geq 0$. Show that $\|A\| \leq \alpha$ iff $-\alpha I \leq A \leq \alpha I$ (where $\|\cdot\|$ is the operator 2-norm).
(b) If A is Hermitian and $\alpha I \leq A \leq \beta I$, and if p is a polynomial for which $p \geq 0$ on $[\alpha, \beta]$, show that $p(A) \geq 0$.
(c) If A is Hermitian and $\alpha I \leq A \leq \beta I$, and if p is a polynomial such that $p \neq 0$ on $[\alpha, \beta]$, show that $p(A)$ is invertible.
(6) The following describes an iterative procedure, called the power method, for (usually) finding the largest eigenvalue (in magnitude) and an associated eigenvector for $A \in$ $\mathbb{C}^{n \times n}$. Although the method applies in a more general setting, assume for simplicity that the eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ of $A \in \mathbb{C}^{n \times n}$ satisfy $\left|\lambda_{1}\right|>\left|\lambda_{2}\right| \geq\left|\lambda_{3}\right| \geq \cdots \geq\left|\lambda_{n}\right|$ and that A is diagonalizable. Given $x_{0} \in \mathbb{C}^{n}$, define a sequence $\left\{x_{k}\right\}$ in \mathbb{C}^{n} inductively by $x_{k+1}=\frac{1}{\left\|x_{k}\right\|_{2}} A x_{k}$. Show that for x_{0} in a dense open subset in \mathbb{C}^{n} (actually, the complement of a hyperplane - identify this set explicitly), the generated sequence $\left\{x_{k}\right\}$ converges to an eigenvector of A corresponding to λ_{1}. Show also that for $1 \leq i \leq n$, if the $i^{\text {th }}$ component of this eigenvector is nonzero, then $\lim _{k \rightarrow \infty}\left(A x_{k}\right)_{i} /\left(x_{k}\right)_{i}=\lambda_{1}$.

