Autumn 2014
Homework Set 4
Due Friday October 24

Reading Horn \& Johnson, Chapter 1

(1) (a) Find the best constants m, M so that $m\|x\|_{1} \leq\|x\|_{2} \leq M\|x\|_{1}$ for $x \in \mathbb{C}^{n}$.
(b) Find the best constants m, M so that $m\||A|\|_{1} \leq\||A|\|_{2} \leq M\||A|\|_{1}$ for $A \in \mathbb{C}^{n \times n}$.
(c) For $A \in \mathbb{C}^{n \times n}$, find the best constants m, M so that $m\||A|\|_{1} \leq\|A\|_{F} \leq M\| \| A \|_{1}$, where $\|A\|_{F}=\left(\sum_{i, j=1}^{n}\left|a_{i j}\right|^{2}\right)^{\frac{1}{2}}$ is the Frobenius (Hilbert-Schmidt) norm.
(2) It is shown in the notes that a linear functional $f \in \mathbb{F}^{n^{*}} \backslash\{0\}$ is in the closed unit ball of the dual space \mathbb{F}_{n}^{*} with respect to the dual norm of a norm $\|\cdot\|$ on \mathbb{F}^{n} if and only if the real hyperplane $\{x: \mathcal{R} e f(x)=1\}$ corresponding to f lies completely outside the open unit ball $\{x:\|x\|<1\}$ of $\|\cdot\|$. Use this criterion to give a proof that the dual norm to the ℓ^{∞}-norm on \mathbb{R}^{2} is the ℓ^{1}-norm by explicitly identifying the dual unit ball.
(3) Let $(V,\|\cdot\|)$ be a Banach space.
(a) Show that if $L \in \mathcal{B}(V)$ and the operator norm $\|L\|$ satisfies $\|L\|<1$, then $I-L$ is invertible and $\frac{1}{1+\|L\|} \leq\left\|(I-L)^{-1}\right\| \leq \frac{1}{1-\|L\|}$.
(b) An operator $L \in \mathcal{B}(V)$ is called invertible if L is bijective and $L^{-1} \in \mathcal{B}(V)$. Show that if L is invertible, then the open ball in $\mathcal{B}(V)$ about L of radius $\frac{1}{\left\|L^{-1}\right\|}$ consists entirely of invertible operators. (So the set of invertible operators in $\mathcal{B}(V)$ is open.)
(4) Let $\|\cdot\|$ be a norm on \mathbb{R}^{n}. Identify \mathbb{R}^{n} with its dual using the usual Euclidean inner product, so the dual norm is $\|x\|^{*}=\sup _{\|y\| \leq 1}|\langle x, y\rangle|$ for $x \in \mathbb{R}^{n}$. Show that $\left(\sup _{\|x\|=1}\|x\|_{2}\right)^{2}=\sup _{\|x\|=1}\|x\|^{*}$ and $\left(\inf _{\|x\|=1}\|x\|_{2}\right)^{2}=\inf _{\|x\|=1}\|x\|^{*}$. Conclude that $\|\cdot\|=\|\cdot\|^{*} \Leftrightarrow\|\cdot\|=\|\cdot\|_{2}$.
(5) If $A \in \mathbb{C}^{n \times n}$, recall that λ is an eigenvalue for A if there is a nonzero $x \in \mathbb{C}^{n}$ with $A x=\lambda x$.
(a) If $\|\cdot\|$ is any submultiplicative norm on $\mathbb{C}^{n \times n}$ and λ is an eigenvalue of A, show that $\|\lambda\| \leq\|A\|$.
(b) If $p(z)=z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0}$ is a monic polynomial with coefficients $a_{i} \in \mathbb{C}$, define the companion matrix of p to be

$$
C(p)=\left[\begin{array}{cccc}
0 & 1 & & \bigcirc \\
& \ddots & \ddots & \\
\bigcirc & & 0 & 1 \\
-a_{0} & -a_{1} & \cdots & -a_{n-1}
\end{array}\right]
$$

Show that the eigenvalues of $C(p)$ are precisely the zeroes of p.
(c) Take $\|\cdot\|=\| \| \cdot \mid \|_{1}$ and $A=C(p)$ in part (a) to deduce Cauchy's bound: all roots z of p satisfy $|z| \leq 1+\max \left\{\left|a_{0}\right|, \ldots,\left|a_{n-1}\right|\right\}$.
(d) Use $\|\cdot\|=\||\cdot|\|_{\infty}$ and deduce Montel's bound: $|z| \leq \max \left\{1,\left|a_{0}\right|+\left|a_{1}\right|+\cdots+\left|a_{n-1}\right|\right\}$ for roots z of p.
(e) Apply (d) to the polynomial $(z-1) p(z)$ to deduce another bound of Montel: $|z| \leq\left|a_{0}\right|+\left|a_{1}-a_{0}\right|+\cdots+\left|a_{n-1}-1\right|$.
(f) Use (3) to prove Kakeya's Theorem: if $f(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0}$ is a polynomial with real nonnegative coefficients satisfying $a_{n} \geq a_{n-1} \geq \cdots \geq$ $a_{1} \geq a_{0} \geq 0$, then all roots of f lie in the closed unit disk in \mathbb{C}.

