Math 554 Homework Set 4 Autumn 2014 Due Friday October 24

Reading Horn & Johnson, Chapter 1

- (1) (a) Find the best constants m, M so that $m \|x\|_1 \leq \|x\|_2 \leq M \|x\|_1$ for $x \in \mathbb{C}^n$.
 - (b) Find the best constants m, M so that $m ||A|||_1 \le ||A|||_2 \le M ||A|||_1$ for $A \in \mathbb{C}^{n \times n}$.
 - (c) For $A \in \mathbb{C}^{n \times n}$, find the best constants m, M so that $m ||A||_1 \le ||A||_F \le M ||A||_1$,

where
$$||A||_F = \left(\sum_{i,j=1}^n |a_{ij}|^2\right)^{\frac{1}{2}}$$
 is the Frobenius (Hilbert-Schmidt) norm.

- (2) It is shown in the notes that a linear functional $f \in \mathbb{F}^{n^*} \setminus \{0\}$ is in the closed unit ball of the dual space \mathbb{F}_n^* with respect to the dual norm of a norm $\|\cdot\|$ on \mathbb{F}^n if and only if the real hyperplane $\{x : \mathcal{R}ef(x) = 1\}$ corresponding to f lies completely outside the open unit ball $\{x : \|x\| < 1\}$ of $\|\cdot\|$. Use this criterion to give a proof that the dual norm to the ℓ^{∞} -norm on \mathbb{R}^2 is the ℓ^1 -norm by explicitly identifying the dual unit ball.
- (3) Let $(V, \|\cdot\|)$ be a Banach space.
 - (a) Show that if $L \in \mathcal{B}(V)$ and the operator norm ||L|| satisfies ||L|| < 1, then I L is invertible and $\frac{1}{1+||L||} \le ||(I-L)^{-1}|| \le \frac{1}{1-||L||}$.
 - (b) An operator $L \in \mathcal{B}(V)$ is called *invertible* if L is bijective and $L^{-1} \in \mathcal{B}(V)$. Show that if L is invertible, then the open ball in $\mathcal{B}(V)$ about L of radius $\frac{1}{\|L^{-1}\|}$ consists entirely of invertible operators. (So the set of invertible operators in $\mathcal{B}(V)$ is *open*.)
- (4) Let $\|\cdot\|$ be a norm on \mathbb{R}^n . Identify \mathbb{R}^n with its dual using the usual Euclidean inner product, so the dual norm is $\|x\|^* = \sup_{\|y\|\leq 1} |\langle x, y\rangle|$ for $x \in \mathbb{R}^n$. Show that $(\sup_{\|x\|=1} \|x\|_2)^2 = \sup_{\|x\|=1} \|x\|^*$ and $(\inf_{\|x\|=1} \|x\|_2)^2 = \inf_{\|x\|=1} \|x\|^*$. Conclude that $\|\cdot\| = \|\cdot\|^* \Leftrightarrow \|\cdot\| = \|\cdot\|_2$.
- (5) If $A \in \mathbb{C}^{n \times n}$, recall that λ is an eigenvalue for A if there is a nonzero $x \in \mathbb{C}^n$ with $Ax = \lambda x$.
 - (a) If $\|\cdot\|$ is any submultiplicative norm on $\mathbb{C}^{n \times n}$ and λ is an eigenvalue of A, show that $\|\lambda\| \le \|A\|$.
 - (b) If $p(z) = z^n + a_{n-1}z^{n-1} + \cdots + a_1z + a_0$ is a monic polynomial with coefficients $a_i \in \mathbb{C}$, define the *companion matrix* of p to be

$$C(p) = \begin{bmatrix} 0 & 1 & \bigcirc \\ & \ddots & \ddots & \\ \bigcirc & & & \\ & & 0 & 1 \\ -a_0 & -a_1 & \cdots & -a_{n-1} \end{bmatrix}$$

Show that the eigenvalues of C(p) are precisely the zeroes of p.

- (c) Take $\|\cdot\| = \||\cdot\|\|_1$ and A = C(p) in part (a) to deduce *Cauchy's bound*: all roots z of p satisfy $|z| \le 1 + \max\{|a_0|, \ldots, |a_{n-1}|\}$.
- (d) Use $\|\cdot\| = \||\cdot\|\|_{\infty}$ and deduce *Montel's bound*: $|z| \le \max\{1, |a_0|+|a_1|+\cdots+|a_{n-1}|\}$ for roots z of p.
- (e) Apply (d) to the polynomial (z-1)p(z) to deduce another bound of Montel: $|z| \le |a_0| + |a_1 - a_0| + \dots + |a_{n-1} - 1|.$

(f) Use (3) to prove Kakeya's Theorem: if $f(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0$ is a polynomial with real nonnegative coefficients satisfying $a_n \ge a_{n-1} \ge \dots \ge a_1 \ge a_0 \ge 0$, then all roots of f lie in the closed unit disk in \mathbb{C} .