Reading Horn \& Johnson, Chapter 5

Continue your review of linear algebra
(1) (The parallelogram law is a necessary and sufficient condition for a norm to be induced by an inner product.)
(a) Show that if a norm $\|\cdot\|$ on a vector space V comes from an inner product, then $\|\cdot\|$ satisfies the parallelogram law: $\|x+y\|^{2}+\|x-y\|^{2}=2\left(\|x\|^{2}+\|y\|^{2}\right)$.
(b) Let $\|\cdot\|$ be the norm induced by an inner product $\langle\cdot, \cdot\rangle$ on a vector space V. Show the polarization identity
(i) if $\mathbb{F}=\mathbb{R},\langle x, y\rangle=\frac{1}{4}\left(\|x+y\|^{2}-\|x-y\|^{2}\right)$
(ii) if $\mathbb{F}=\mathbb{C},\langle x, y\rangle=\frac{1}{4}\left(\|x+y\|^{2}-\|x-y\|^{2}+i\|x+i y\|^{2}-i\|x-i y\|^{2}\right)$
(Remark: The polarization identity expresses an inner product in terms of the norm that it induces. The converse of part (a) is true as well: if $\|\cdot\|$ is a norm satisfying the parallelogram law, then it is 8induced by an inner product. If you want a challenge, try to prove this. Start by using the polarization identity to define $\langle x, y\rangle$, and then use the parallelogram law to show that this really defines an inner product which induces $\|\cdot\|$.)
(c) Is $C[a, b]$ with norm $\|u\|=\sup _{[a, b]}|u(x)|$ an inner product space?
(d) Show that ℓ^{2} is the only inner product space among the ℓ^{p} spaces, $1 \leq p \leq \infty$.
(2) A sequence $\left\{v_{n}\right\}$ in an inner product space $(V,\langle\cdot, \cdot\rangle)$ is said to converge weakly to v if $(\forall w \in V)\left\langle v_{n}, w\right\rangle \rightarrow\langle v, w\rangle$, and is said to converge strongly to v if $\left\|v_{n}-v\right\| \rightarrow 0$.
(a) Show that if $\operatorname{dim} V<\infty$ and $v_{n} \rightarrow v$ weakly, then $v_{n} \rightarrow v$ strongly.
(b) Show that part (a) fails for $V=\ell^{2}$.
(c) Show that for any $(V,\langle\cdot, \cdot\rangle)$, if $v_{n} \rightarrow v$ strongly, then $v_{n} \rightarrow v$ weakly.
(3) (a) Show that $\|x\|_{\infty}=\lim _{p \rightarrow \infty}\|x\|_{p}$, where $\|x\|_{p}$ denotes the ℓ^{p}-norm of $x \in \mathbb{C}^{n}$.
(b) Show that $\|u\|_{\infty}=\lim _{p \rightarrow \infty}\|u\|_{p}$, where $\|u\|_{p}$ denotes the L^{p}-norm of $u \in C[a, b]$.
(4) Let $\|\cdot\|_{1}$ and $\|\cdot\|_{2}$ be two norms on a vector space V. Suppose that all sequences $\left\{v_{n}\right\} \subset V$ which satisfy $\left\|v_{n}\right\|_{1} \rightarrow 0$ also satisfy $\left\|v_{n}\right\|_{2} \rightarrow 0$, and vice-versa. Show that $\|\cdot\|_{1}$ and $\|\cdot\|_{2}$ are equivalent norms.
(5) Let $C^{1}[a, b]$ be the space of continuous functions on $[a, b]$ whose derivative exists at each point of $[a, b]$ (one-sided derivative at the endpoints) and defines a continuous function on $[a, b]$.
(a) Suppose $u \in C([a, b]) \cap C^{1}((a, b))$ and u^{\prime} extends continuously to $[a, b]$. Show that $u \in C^{1}([a, b])$.
(b) Show that $\|u\|=\sup _{[a, b]}|u(x)|+\sup _{[a, b]}\left|u^{\prime}(x)\right|$ is a norm on $C^{1}[a, b]$ which makes $C^{1}[a, b]$ into a Banach space. (Hint for completeness: if $u_{n} \in C^{1}[a, b]$ satisfies $u_{n} \rightarrow u$ uniformly and $u_{n}^{\prime} \rightarrow v$ uniformly, take limits in the equation $u_{n}(x)-$ $u_{n}(a)=\int_{a}^{x} u_{n}^{\prime}(s) d s$ to show $u \in C^{1}[a, b]$ and $u^{\prime}=v$.)
(c) Sketch how the arguments in parts (a) and (b) extend to $C^{k}[a, b]:\|u\|=\sup |u|+$ $\sup \left|u^{\prime}\right|+\cdots+\sup \left|u^{(k)}\right|$ makes $C^{k}[a, b]$ into a Banach space (where k is an integer, $k \geq 1)$.
(6) If $0<\alpha \leq 1$, a function $u \in C[a, b]$ is said to satisfy a Hölder condition of order α (or to be Hölder continuous of order α) if $\sup _{x \neq y} \frac{|u(x)-u(y)|}{|x-y|^{\alpha}}<\infty$. Denote by $\Lambda^{\alpha}([a, b])$ this set of functions.
(a) Show that $\|u\|_{\alpha}=\sup |u|+\sup _{x \neq y} \frac{|u(x)-u(y)|}{|x-y|^{\alpha}}$ is a norm which makes $\Lambda^{\alpha}([a, b])$ into a Banach space.
(b) Show that $C^{1}([a, b]) \subset \Lambda^{\alpha}([a, b])$, and the inclusion map is continuous with respect to the norms defined above.
(Remark: A function $f \in \Lambda^{\alpha}([a, b])$ for $\alpha=1$ is called Lipschitz continuous.)
(7) Consider the linear operator $T: L^{2}((0,1)) \rightarrow L^{2}((0,1))$ defined by

$$
T f(y)=\int_{0}^{1}(y-x) f(x) d x
$$

(a) Describe the range and null space of T.
(b) Derive an explicit expression for T^{T} as a mapping from $L^{2}((0,1))$ to itself.
(c) Show that T is normal, i.e. $T^{T} T=T T^{T}$.

