Math 554 Homework Set 3

Autumn 2014 Due Friday October 17

Reading Horn & Johnson, Chapter 5

Continue your review of linear algebra

- (1) (The parallelogram law is a necessary and sufficient condition for a norm to be induced by an inner product.)
 - (a) Show that if a norm $\|\cdot\|$ on a vector space V comes from an inner product, then $\|\cdot\|$ satisfies the parallelogram law: $\|x+y\|^2 + \|x-y\|^2 = 2(\|x\|^2 + \|y\|^2).$
 - (b) Let $\|\cdot\|$ be the norm induced by an inner product $\langle \cdot, \cdot \rangle$ on a vector space V. Show the polarization identity

 - (i) if $\mathbb{F} = \mathbb{R}$, $\langle x, y \rangle = \frac{1}{4} (\|x + y\|^2 \|x y\|^2)$ (ii) if $\mathbb{F} = \mathbb{C}$, $\langle x, y \rangle = \frac{1}{4} (\|x + y\|^2 \|x y\|^2 + i\|x + iy\|^2 i\|x iy\|^2)$

(Remark: The polarization identity expresses an inner product in terms of the norm that it induces. The converse of part (a) is true as well: if $\|\cdot\|$ is a norm satisfying the parallelogram law, then it is 8 induced by an inner product. If you want a challenge, try to prove this. Start by using the polarization identity to define $\langle x, y \rangle$, and then use the parallelogram law to show that this really defines an inner product which induces $\|\cdot\|$.)

- (c) Is C[a, b] with norm $||u|| = \sup_{[a,b]} |u(x)|$ an inner product space?
- (d) Show that ℓ^2 is the only inner product space among the ℓ^p spaces, $1 \le p \le \infty$.
- (2) A sequence $\{v_n\}$ in an inner product space $(V, \langle \cdot, \cdot \rangle)$ is said to converge weakly to v if $(\forall w \in V) \langle v_n, w \rangle \to \langle v, w \rangle$, and is said to converge strongly to v if $||v_n - v|| \to 0$. (a) Show that if dim $V < \infty$ and $v_n \to v$ weakly, then $v_n \to v$ strongly.
 - (b) Show that part (a) fails for $V = \ell^2$.
 - (c) Show that for any $(V, \langle \cdot, \cdot \rangle)$, if $v_n \to v$ strongly, then $v_n \to v$ weakly.
- (3) (a) Show that $||x||_{\infty} = \lim_{p \to \infty} ||x||_p$, where $||x||_p$ denotes the ℓ^p -norm of $x \in \mathbb{C}^n$.
- (b) Show that $||u||_{\infty} = \lim_{p \to \infty} ||u||_p$, where $||u||_p$ denotes the L^p -norm of $u \in C[a, b]$. (4) Let $\|\cdot\|_1$ and $\|\cdot\|_2$ be two norms on a vector space V. Suppose that all sequences $\{v_n\} \subset V$ which satisfy $||v_n||_1 \to 0$ also satisfy $||v_n||_2 \to 0$, and vice-versa. Show that $\|\cdot\|_1$ and $\|\cdot\|_2$ are equivalent norms.
- (5) Let $C^{1}[a, b]$ be the space of continuous functions on [a, b] whose derivative exists at each point of [a, b] (one-sided derivative at the endpoints) and defines a continuous function on [a, b].
 - (a) Suppose $u \in C([a, b]) \cap C^1((a, b))$ and u' extends continuously to [a, b]. Show that $u \in C^1([a,b]).$
 - (b) Show that $||u|| = \sup_{[a,b]} |u(x)| + \sup_{[a,b]} |u'(x)|$ is a norm on $C^1[a,b]$ which makes $C^{1}[a,b]$ into a Banach space. (Hint for completeness: if $u_{n} \in C^{1}[a,b]$ satisfies $u_n \to u$ uniformly and $u'_n \to v$ uniformly, take limits in the equation $u_n(x) - u_n(a) = \int_a^x u'_n(s) ds$ to show $u \in C^1[a, b]$ and u' = v.)
 - (c) Sketch how the arguments in parts (a) and (b) extend to $C^k[a, b] : ||u|| = \sup |u| +$ $\sup |u'| + \cdots + \sup |u^{(k)}|$ makes $C^k[a, b]$ into a Banach space (where k is an integer, $k \geq 1$).
- (6) If $0 < \alpha < 1$, a function $u \in C[a, b]$ is said to satisfy a Hölder condition of order α (or to be Hölder continuous of order α) if $\sup_{x \neq y} \frac{|u(x) - u(y)|}{|x - y|^{\alpha}} < \infty$. Denote by $\Lambda^{\alpha}([a, b])$ this set of functions.

- (a) Show that $||u||_{\alpha} = \sup |u| + \sup_{x \neq y} \frac{|u(x) u(y)|}{|x y|^{\alpha}}$ is a norm which makes $\Lambda^{\alpha}([a, b])$ into a Banach space.
- (b) Show that $C^1([a, b]) \subset \Lambda^{\alpha}([a, b])$, and the inclusion map is continuous with respect to the norms defined above.

(Remark: A function $f \in \Lambda^{\alpha}([a, b])$ for $\alpha = 1$ is called Lipschitz continuous.)

(7) Consider the linear operator $T: L^2((0,1)) \to L^2((0,1))$ defined by

$$Tf(y) = \int_0^1 (y-x)f(x)dx$$

(a) Describe the range and null space of T.

 $\mathbf{2}$

- (b) Derive an explicit expression for T^T as a mapping from $L^2((0,1))$ to itself. (c) Show that T is normal, i.e. $T^TT = TT^T$.