Reading Continue your review of linear algebra, including determinants in H-J.
(1) Define subspaces $W_{1}, W_{2} \subset C[0,1]$ by $W_{1}=\left\{f: \int_{0}^{1} f(x) d x=0\right\}$ and $W_{2}=\{f$: $f(x)=c$ for some $c \in \mathbb{C}$ and all $x \in[0,1]\}$. Show that $C[0,1]=W_{1} \oplus W_{2}$, and derive explicit formulas for the projection operators P_{1}, P_{2} onto W_{1}, W_{2}.
(2) Let V, W be finite-dimensional vector spaces of dimension n, m, respectively. Let $L \in \mathcal{B}(V, W)$, and suppose $\operatorname{rank}(L)=1$. Show that for any choice of bases for V and W, the matrix of L is of the form $a b^{T}$ where $a=\left(\begin{array}{c}a_{1} \\ \vdots \\ a_{m}\end{array}\right), b=\left(\begin{array}{c}b_{1} \\ \vdots \\ b_{n}\end{array}\right)$. matrix is called the outer product of the vectors a and b.)
(3) Let \mathcal{P}_{n} be the space of polynomials of degree n or less, and consider the differential operator D as a mapping from \mathcal{P}_{n} to $\mathcal{P}_{n}\left(D: \mathcal{P}_{n} \mapsto \mathcal{P}_{n}\right)$.
(a) Show that D is nilpotent.
(b) Provide at least two different bases in which the matrix representation for D in these bases is a direct product of shift operators.
(4) (In this problem, take $\mathbb{F}=\mathbb{R}$.) Let $A \in \mathbb{R}^{n \times n}$. One can regard the entries $a_{i j}$ as independent variables, and $\operatorname{det} A$ as a function of these n^{2} variables.
(a) Show that $\frac{\partial}{\partial a_{i j}}(\operatorname{det} A)=\widehat{A}_{i j}$, where $\widehat{A}_{i j}$ is the (i, j) cofactor of A, i.e., $\widehat{A}_{i j}=$ $(-1)^{i+j} \operatorname{det}(A[i \mid j])$, where $A[i \mid j]$ is the $(n-1) \times(n-1)$ submatrix of A obtained by removing the $i^{\text {th }}$ row and $j^{\text {th }}$ column of A.
(b) Suppose $A(t)$ is an $\mathbb{R}^{n \times n}$-valued function of $t \in \mathbb{R}$ whose entries $a_{i j}(t)$ are differentiable functions of t. Show that $\frac{d}{d t}(\operatorname{det} A(t))=\sum_{i=1}^{n} \sum_{j=1}^{n} \widehat{A}_{i j}(t) \frac{d}{d t}\left(a_{i j}(t)\right)$.
(c) Suppose in addition $A(0)=I$. Show that $\left.\frac{d}{d t}(\operatorname{det} A(t))\right|_{t=0}=\operatorname{tr}\left(\frac{d A}{d t}(0)\right)$.
(d) Suppose $A(t)$ is as in part (b), and suppose $\operatorname{det} A(t) \neq 0$ for all $t \in \mathbb{R}$. Show $\frac{d}{d t} \log (\operatorname{det} A(t))=\sum_{i=1}^{n} \sum_{j=1}^{n}\left(A^{-1}\right)_{j i} \frac{d}{d t}\left(a_{i j}(t)\right)$, where $\left(A^{-1}\right)_{j i}$ is the $j i^{\text {th }}$ entry of $A(t)^{-1}$.
(5) This problem continues and extends problem 2 on Problem Set 1.
(a) (extension of $2(\mathrm{~b})$ on P.S.1) Let $\left\{a_{0}, a_{1}, \ldots, a_{n}\right\}$ be distinct real numbers. Show that the linear functionals f_{0}, \ldots, f_{n} on \mathcal{P}_{n} defined by $f_{k}(p)=p\left(a_{k}\right)$ form a basis of \mathcal{P}_{n}^{*}.
(b) Define polynomials $\ell_{0}, \ldots, \ell_{n} \in \mathcal{P}_{n}$ by $\ell_{k}(x)=\prod_{0 \leq i \leq n, i \neq k}\left(\frac{x-a_{i}}{a_{k}-a_{i}}\right)$. Show that $\ell_{0}, \ldots, \ell_{n}$ are linearly independent, and thus form a basis of \mathcal{P}_{n}. (Hint: first show $\ell_{k}\left(a_{i}\right)=\delta_{i k}$.) The ℓ_{k} 's are called the Lagrange polynomials (associated with the set $\left.\left\{a_{0}, \ldots, a_{n}\right\}\right)$.
(c) Show that $\left\{f_{0}, \ldots, f_{n}\right\}$ in part (a) form the basis of \mathcal{P}_{n}^{*} which is dual to the basis $\left\{\ell_{0}, \ldots, \ell_{n}\right\}$ of \mathcal{P}_{n}.
(d) Show that if $c_{0}, \ldots, c_{n} \in \mathbb{C}$, then $p(x)=\sum_{k=0}^{n} c_{k} \ell_{k}(x)$ is the unique element of \mathcal{P}_{n} satisfying the interpolation conditions $p\left(a_{k}\right)=c_{k}, 0 \leq k \leq n$. This result is called the Lagrange interpolation formula. It provides an explicit formula for
a polynomial p of degree at most n having prescribed values c_{0}, \ldots, c_{n} at the prescribed distinct points a_{0}, \ldots, a_{n}.
(6) Formulate and prove a precise statement of the following fact:

If $\left\{v_{1}, \ldots, v_{k}\right\}$ is a linearly independent set of vectors in \mathbb{R}^{n} (clearly $k \leq n$), and each of v_{1}, \ldots, v_{k} is perturbed slightly, then the resulting set of vectors is also linearly independent.

