Math 554 Homework Set 2

Reading Continue your review of linear algebra, including determinants in H-J.

- (1) Define subspaces $W_1, W_2 \subset C[0, 1]$ by $W_1 = \{f : \int_0^1 f(x)dx = 0\}$ and $W_2 = \{f : f(x) = c \text{ for some } c \in \mathbb{C} \text{ and all } x \in [0, 1]\}$. Show that $C[0, 1] = W_1 \oplus W_2$, and derive explicit formulas for the projection operators P_1, P_2 onto W_1, W_2 .
- (2) Let V, W be finite-dimensional vector spaces of dimension n, m, respectively. Let $L \in \mathcal{B}(V, W)$, and suppose rank (L) = 1. Show that for any choice of bases for $V \land a_1 \land b_1 \land$

and W, the matrix of L is of the form ab^T where $a = \begin{pmatrix} a_1 \\ \vdots \\ a_m \end{pmatrix}$, $b = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}$. (This

matrix is called the *outer product* of the vectors a and b.)

- (3) Let \mathcal{P}_n be the space of polynomials of degree n or less, and consider the differential operator D as a mapping from \mathcal{P}_n to \mathcal{P}_n ($D : \mathcal{P}_n \mapsto \mathcal{P}_n$).
 - (a) Show that D is nilpotent.
 - (b) Provide at least two different bases in which the matrix representation for D in these bases is a direct product of shift operators.
- (4) (In this problem, take $\mathbb{F} = \mathbb{R}$.) Let $A \in \mathbb{R}^{n \times n}$. One can regard the entries a_{ij} as independent variables, and det A as a function of these n^2 variables.
 - (a) Show that $\frac{\partial}{\partial a_{ij}}(\det A) = \widehat{A}_{ij}$, where \widehat{A}_{ij} is the (i, j) cofactor of A, i.e., $\widehat{A}_{ij} = (-1)^{i+j} \det (A[i|j])$, where A[i|j] is the $(n-1) \times (n-1)$ submatrix of A obtained by removing the i^{th} row and j^{th} column of A.
 - (b) Suppose A(t) is an $\mathbb{R}^{n \times n}$ -valued function of $t \in \mathbb{R}$ whose entries $a_{ij}(t)$ are differentiable functions of t. Show that $\frac{d}{dt}(\det A(t)) = \sum_{i=1}^{n} \sum_{j=1}^{n} \widehat{A}_{ij}(t) \frac{d}{dt}(a_{ij}(t))$.
 - (c) Suppose in addition A(0) = I. Show that $\frac{d}{dt}(\det A(t))\Big|_{t=0} = \operatorname{tr}\left(\frac{dA}{dt}(0)\right)$. (d) Suppose A(t) is as in part (b), and suppose $\det A(t) \neq 0$ for all $t \in \mathbb{R}$. Show
 - (d) Suppose A(t) is as in part (b), and suppose det $A(t) \neq 0$ for all $t \in \mathbb{R}$. Show $\frac{d}{dt} \log(\det A(t)) = \sum_{i=1}^{n} \sum_{j=1}^{n} (A^{-1})_{ji} \frac{d}{dt} (a_{ij}(t))$, where $(A^{-1})_{ji}$ is the ji^{th} entry of $A(t)^{-1}$.
- (5) This problem continues and extends problem 2 on Problem Set 1.
 - (a) (extension of 2(b) on P.S.1) Let $\{a_0, a_1, \ldots, a_n\}$ be distinct real numbers. Show that the linear functionals f_0, \ldots, f_n on \mathcal{P}_n defined by $f_k(p) = p(a_k)$ form a basis of \mathcal{P}_n^* .
 - (b) Define polynomials $\ell_0, \ldots, \ell_n \in \mathcal{P}_n$ by $\ell_k(x) = \prod_{0 \le i \le n, i \ne k} \left(\frac{x-a_i}{a_k-a_i}\right)$. Show that ℓ_0, \ldots, ℓ_n are linearly independent, and thus form a basis of \mathcal{P}_n . (Hint: first show $\ell_k(a_i) = \delta_{ik}$.) The ℓ_k 's are called the *Lagrange polynomials* (associated with the set $\{a_0, \ldots, a_n\}$).
 - (c) Show that $\{f_0, \ldots, f_n\}$ in part (a) form the basis of \mathcal{P}_n^* which is dual to the basis $\{\ell_0, \ldots, \ell_n\}$ of \mathcal{P}_n .
 - (d) Show that if $c_0, \ldots, c_n \in \mathbb{C}$, then $p(x) = \sum_{k=0}^n c_k \ell_k(x)$ is the unique element of \mathcal{P}_n satisfying the interpolation conditions $p(a_k) = c_k$, $0 \le k \le n$. This result is called the Lagrange interpolation formula. It provides an explicit formula for

a polynomial p of degree at most n having prescribed values c_0, \ldots, c_n at the prescribed distinct points a_0, \ldots, a_n .

(6) Formulate and prove a precise statement of the following fact:

If $\{v_1, \ldots, v_k\}$ is a linearly independent set of vectors in \mathbb{R}^n (clearly $k \leq n$), and each of v_1, \ldots, v_k is perturbed slightly, then the resulting set of vectors is also linearly independent.