Reading Horn & Johnson, Chapter 0
Review linear algebra from Halmos, Schaum’s Outline, Hoffman and Kunze, or your choice of similar linear algebra text.

(1) Let \(P_\mathbb{C}^n \) denote the vector space of polynomials of degree \(\leq n \) over the field \(\mathbb{C} \).
 (a) For any \(x_0 \in \mathbb{C} \) show that the polynomials \((x-x_0)^k, \ k=0,1,\ldots,n \) form a basis for \(P_\mathbb{C}^n \).
 (b) Given \(x_1, x_2 \in \mathbb{C} \) with \(x_1 \neq x_2 \), compute the entries \(a_{st} \) (as functions of \(x_1 \) and \(x_2 \)) for the change of basis matrix \(A \) associated with passing from coordinates in the basis \((x-x_i)^k, \ k=0,1,\ldots,n \) to coordinates in the basis \((x-x_j)^k, \ k=0,1,\ldots,n \).
 \(\text{(Hint: Think Taylor series.)} \)
 (c) Given \(x_0 \in \mathbb{C} \), use the differential operator to represent the basis for \(P_\mathbb{C}^n \) that is dual to the basis \((x-x_0)^k, \ k=0,1,\ldots,n \).

(2) Let \(V = \left\{ u \in C^4(\mathbb{R}) : (\frac{d}{dx})^4 u = (\frac{d}{dx})^2 u \right\} \) and let \(W \subset V \) be the subspace of functions satisfying \(u(0) = 0 \) in addition.
 (a) Find bases for \(V \) and \(W \).
 (b) Show that \(u \mapsto \frac{d}{dx} u \) defines a linear transformation: \(V \to V \). Hence we can restrict the domain to \(W \) to obtain a linear transformation \(L : W \to V \).
 (c) Find the matrix of \(L \) with respect to your bases in part (a).

(3) Let \(P_n \) denote the vector space of polynomials of degree \(\leq n \). For \(0 \leq k \leq n \), define a linear functional \(f_k \in P^*_n \) by \(f_k(p) = p(k) \) for \(p \in P_n \). Let \(\{e_0, \ldots, e_n\} \) be the basis for \(P^*_n \) dual to the basis \(\{1, x, \ldots, x^n\} \) of \(P_n \).
 (a) Express \(f_k \) as a linear combination of the \(e_i \)'s.
 (b) Show that \(\{f_0, \ldots, f_n\} \) is a basis for \(P^*_n \). \(\text{(Hint: Vandermonde matrix)} \)

(4) Show that if \(1 \leq p < q \leq \infty \), then \(\ell^p \subseteq \ell^q \).

(5) Let \([a, b] \subset \mathbb{R} \) be a closed bounded interval, and let \(\Omega_n = \{x_0, \ldots, x_n\} \) be a fixed partition of \([a, b] \), i.e., \(a = x_0 < x_1 < \cdots < x_n = b \). Let \(m \geq 1 \) be an integer. A function \(s : [a, b] \to \mathbb{R} \) satisfying (i) \(s \in C^{m-1}[a,b] \) and (ii) for \(0 \leq k \leq n-1 \), \(s \in P_m \) for \(x \in [x_k, x_{k+1}] \) (where \(P_m \) = polynomials of degree \(\leq m \) with real coefficients) is called a (polynomial) \textit{spline} of degree \(m \). Splines are used to approximate general functions. Let \(S_m(\Omega_n) \) be the set of all splines of degree \(m \) with partition \(\Omega_n \).
 (a) Show that \(S_m(\Omega_n) \) is a subspace of \(C^{m-1}[a,b] \).
 (b) For \(k = 0, 1, \ldots, m \), let \(p_k(x) = x^k \). For \(1 \leq \ell \leq n-1 \), let \(q_{\ell}(x) = [(x-x_\ell)^+]^m \) (where \((y)_+ = y \) if \(y \geq 0 \), \((y)_+ = 0 \) if \(y < 0 \)). Show that \(\{p_0, \ldots, p_m, q_1, \ldots, q_{n-1}\} \) is a basis of \(S_m(\Omega_n) \), and conclude that \(\dim(S_m(\Omega_n)) = m+n \).
 (c) Fix \(h > 0 \), let \(n = 4, m = 3 \), and set \(x_k = x_0 + \ell h \) for \(0 \leq \ell \leq 4 \). Show that there exists a unique \(s \in S_3(\Omega_4) \) satisfying (I) \((\frac{d}{dx})^k s(x_0) = (\frac{d}{dx})^k s(x_4) = 0 \) for \(k = 0, 1, 2, \) and (II) \(\int_{x_0}^{x_4} s(x)dx = 1 \). \(\text{(s is called a cubic B-spline). Express s in terms of the basis in part (b).} \)

(6) Let \(W_1, W_2 \) be subspaces of a vector space \(V \) and suppose that \(W_2 \) is finite dimensional and \(V = W_1 \oplus W_2 \). Show that
\[
\dim V = \text{codim} W_1.
\]