Autumn 2014

Homework Set 1

Reading Horn \& Johnson, Chapter 0
Review linear algebra from Halmos, Schaum's Outline, Hoffman and Kunze, or your choice of similar linear algebra text.
(1) Let $\mathcal{P}_{n}(\mathbb{C})$ denote the vector space of polynomials of degree $\leq n$ over the field \mathbb{C}.
(a) For any $x_{0} \in \mathbb{C}$ show that the polynomials $\left(x-x_{0}\right)^{k}, k=0,1, \ldots, n$ form a basis for $\mathcal{P}_{n}(\mathbb{C})$.
(b) Given $x_{1}, x_{2} \in \mathbb{C}$ with $x_{1} \neq x_{2}$, compute the entries $a_{s t}$ (as functions of x_{1} and x_{2}) for the change of basis matrix A associated with passing from coordinates in the basis $\left(x-x_{1}\right)^{k}, k=0,1, \ldots, n$ to coordinates in the basis $\left(x-x_{2}\right)^{k}, k=0,1, \ldots, n$. (Hint: Think Taylor series.)
(c) Given $x_{0} \in \mathbb{C}$, use the differential operator to represent the basis for $\mathcal{P}_{n}(\mathbb{C})^{*}$ that is dual to the basis $\left(x-x_{0}\right)^{k}, k=0,1, \ldots, n$.
(2) Let $V=\left\{u \in C^{4}(\mathbb{R}):\left(\frac{d}{d x}\right)^{4} u=\left(\frac{d}{d x}\right)^{2} u\right\}$ and let $W \subset V$ be the subspace of functions satisfying $u(0)=0$ in addition.
(a) Find bases for V and W.
(b) Show that $u \mapsto \frac{d}{d x} u$ defines a linear transformation: $V \rightarrow V$. Hence we can restrict the domain to W to obtain a linear transformation $L: W \rightarrow V$.
(c) Find the matrix of L with respect to your bases in part (a).
(3) Let \mathcal{P}_{n} denote the vector space of polynomials of degree $\leq n$. For $0 \leq k \leq n$, define a linear functional $f_{k} \in \mathcal{P}_{n}^{*}$ by $f_{k}(p)=p(k)$ for $p \in \mathcal{P}_{n}$. Let $\left\{e_{0}, \ldots, e_{n}\right\}$ be the basis for \mathcal{P}_{n}^{*} dual to the basis $\left\{1, x, \ldots, x^{n}\right\}$ of \mathcal{P}_{n}.
(a) Express f_{k} as a linear combination of the e_{i} 's.
(b) Show that $\left\{f_{0}, \ldots, f_{n}\right\}$ is a basis for \mathcal{P}_{n}^{*}. (Hint: Vandermonde matrix)
(4) Show that if $1 \leq p<q \leq \infty$, then $\ell^{p} \subsetneq \ell^{q}$.
(5) Let $[a, b] \subset \mathbb{R}$ be a closed bounded interval, and let $\Omega_{n}=\left\{x_{0}, \ldots, x_{n}\right\}$ be a fixed partition of $[a, b]$, i.e., $a=x_{0}<x_{1}<\cdots<x_{n}=b$. Let $m \geq 1$ be an integer. A function $s:[a, b] \rightarrow \mathbb{R}$ satisfying (i) $s \in C^{m-1}[a, b]$ and (ii) for $0 \leq k \leq n-1, s \in \mathcal{P}_{m}$ for $x \in\left[x_{k}, x_{k+1}\right]$ (where $\mathcal{P}_{m}=$ polynomials of degree $\leq m$ with real coefficients) is called a (polynomial) spline of degree m. Splines are used to approximate general functions. Let $S_{m}\left(\Omega_{n}\right)$ be the set of all splines of degree m with partition Ω_{n}.
(a) Show that $S_{m}\left(\Omega_{n}\right)$ is a subspace of $C^{m-1}([a, b])$.
(b) For $k=0,1, \ldots, m$, let $p_{k}(x)=x^{k}$. For $1 \leq \ell \leq n-1$, let $q_{\ell}(x)=\left[\left(x-x_{\ell}\right)_{+}\right]^{m}$ (where $(y)_{+}=y$ if $y \geq 0,(y)_{+}=0$ if $y<0$). Show that $\left\{p_{0}, \ldots, p_{m}, q_{1}, \ldots, q_{n-1}\right\}$ is a basis of $S_{m}\left(\Omega_{n}\right)$, and conclude that $\operatorname{dim}\left(S_{m}\left(\Omega_{n}\right)\right)=m+n$.
(c) Fix $h>0$, let $n=4, m=3$, and set $x_{k}=x_{0}+\ell h$ for $0 \leq \ell \leq 4$. Show that there exists a unique $s \in S_{3}\left(\Omega_{4}\right)$ satisfying (I) $\left(\frac{d}{d x}\right)^{k} s\left(x_{0}\right)=\left(\frac{d}{d x}\right)^{k} s\left(x_{4}\right)=0$ for $k=0,1,2$, and (II) $\int_{x_{0}}^{x_{4}} s(x) d x=1$. (s is called a cubic B-spline). Express s in terms of the basis in part (b).
(6) Let W_{1}, W_{2} be subspaces of a vector space V and suppose that W_{2} is finite dimensional and $V=W_{1} \oplus W_{2}$. Show that

$$
\operatorname{dim} W_{2}=\operatorname{codim} W_{1}
$$

