Math 554 Homework Set 1

Reading Horn & Johnson, Chapter 0

Review linear algebra from Halmos, Schaum's Outline, Hoffman and Kunze, or your choice of similar linear algebra text.

- (1) Let $\mathcal{P}_n(\mathbb{C})$ denote the vector space of polynomials of degree $\leq n$ over the field \mathbb{C} .
 - (a) For any $x_0 \in \mathbb{C}$ show that the polynomials $(x x_0)^k$, k = 0, 1, ..., n form a basis for $\mathcal{P}_n(\mathbb{C})$.
 - (b) Given $x_1, x_2 \in \mathbb{C}$ with $x_1 \neq x_2$, compute the entries a_{st} (as functions of x_1 and x_2) for the change of basis matrix A associated with passing from coordinates in the basis $(x-x_1)^k$, $k = 0, 1, \ldots, n$ to coordinates in the basis $(x-x_2)^k$, $k = 0, 1, \ldots, n$. (*Hint*: Think Taylor series.)
 - (c) Given $x_0 \in \mathbb{C}$, use the differential operator to represent the basis for $\mathcal{P}_n(\mathbb{C})^*$ that is dual to the basis $(x x_0)^k$, k = 0, 1, ..., n.
- (2) Let $V = \left\{ u \in C^4(\mathbb{R}) : \left(\frac{d}{dx}\right)^4 u = \left(\frac{d}{dx}\right)^2 u \right\}$ and let $W \subset V$ be the subspace of functions satisfying u(0) = 0 in addition.
 - (a) Find bases for V and W.
 - (b) Show that $u \mapsto \frac{d}{dx}u$ defines a linear transformation: $V \to V$. Hence we can restrict the domain to W to obtain a linear transformation $L: W \to V$.
 - (c) Find the matrix of L with respect to your bases in part (a).
- (3) Let \mathcal{P}_n denote the vector space of polynomials of degree $\leq n$. For $0 \leq k \leq n$, define a linear functional $f_k \in \mathcal{P}_n^*$ by $f_k(p) = p(k)$ for $p \in \mathcal{P}_n$. Let $\{e_0, \ldots, e_n\}$ be the basis for \mathcal{P}_n^* dual to the basis $\{1, x, \ldots, x^n\}$ of \mathcal{P}_n .
 - (a) Express f_k as a linear combination of the e_i 's.
 - (b) Show that $\{f_0, \ldots, f_n\}$ is a basis for \mathcal{P}_n^* . (Hint: Vandermonde matrix)
- (4) Show that if $1 \le p < q \le \infty$, then $\ell^p \subsetneq \ell^q$.
- (5) Let $[a, b] \subset \mathbb{R}$ be a closed bounded interval, and let $\Omega_n = \{x_0, \ldots, x_n\}$ be a fixed partition of [a, b], i.e., $a = x_0 < x_1 < \cdots < x_n = b$. Let $m \ge 1$ be an integer. A function $s : [a, b] \to \mathbb{R}$ satisfying (i) $s \in C^{m-1}[a, b]$ and (ii) for $0 \le k \le n - 1$, $s \in \mathcal{P}_m$ for $x \in [x_k, x_{k+1}]$ (where \mathcal{P}_m = polynomials of degree $\le m$ with real coefficients) is called a (polynomial) *spline* of degree m. Splines are used to approximate general functions. Let $S_m(\Omega_n)$ be the set of all splines of degree m with partition Ω_n .
 - (a) Show that $S_m(\Omega_n)$ is a subspace of $C^{m-1}([a, b])$.
 - (b) For k = 0, 1, ..., m, let $p_k(x) = x^k$. For $1 \le \ell \le n 1$, let $q_\ell(x) = [(x x_\ell)_+]^m$ (where $(y)_+ = y$ if $y \ge 0$, $(y)_+ = 0$ if y < 0). Show that $\{p_0, ..., p_m, q_1, ..., q_{n-1}\}$ is a basis of $S_m(\Omega_n)$, and conclude that $\dim(S_m(\Omega_n)) = m + n$.
 - (c) Fix h > 0, let n = 4, m = 3, and set $x_k = x_0 + \ell h$ for $0 \le \ell \le 4$. Show that there exists a unique $s \in S_3(\Omega_4)$ satisfying (I) $\left(\frac{d}{dx}\right)^k s(x_0) = \left(\frac{d}{dx}\right)^k s(x_4) = 0$ for k = 0, 1, 2, and (II) $\int_{x_0}^{x_4} s(x) dx = 1$. (s is called a cubic *B*-spline). Express s in terms of the basis in part (b).
- (6) Let W_1, W_2 be subspaces of a vector space V and suppose that W_2 is finite dimensional and $V = W_1 \oplus W_2$. Show that

$$\dim W_2 = \operatorname{codim} W_1.$$