Math 554 Final Exam

December 1, 2014

You are to work on these problems individually, no collaboration. You may use the course notes and Horn and Johnson as your only resources, i.e., no other source materials can be used, especially, the web.

Due Friday, December 5, 4pm.
(1) Consider the finite dimensional vector space X over \mathbb{C} given as

$$
X=\operatorname{Span}\left\{1, \mathrm{e}^{x}, x \mathrm{e}^{x}, \frac{x^{2}}{2} \mathrm{e}^{x}\right\}
$$

(a) (5 points) Show that $\left\{1, \mathrm{e}^{x}, x \mathrm{e}^{x}, \frac{x^{2}}{2} \mathrm{e}^{x}\right\}$ is a basis for X.
(b) (5 points) The differential operator D maps X to X. Give the matrix representation M of D in the basis of part (a).
(c) (5 points) What are the eigenvalues and eigenvectors of M and D ?
(2) Let $A \in \mathbb{R}^{m \times n}, W \in \mathbb{R}^{m \times m}$, and $V \in \mathbb{R}^{n \times n}$ with W and V symmetric.
(a) (5 points) Show that V is positive definite on $\operatorname{ker} A$, i.e.,

$$
u^{T} V u>0 \quad \text { whenever } \quad u \neq 0 \text { and } u \in \operatorname{ker} A,
$$

if and only if there is a $\kappa>0$ such that the matrix $V+\kappa A^{T} A$ is positive definite.
(b) (5 points) Suppose V is positive semidefinite on $\operatorname{ker} A$, i.e.,

$$
u^{T} V u \geq 0 \quad \text { whenever } \quad u \in \operatorname{ker} A .
$$

Show that the matrix $M:=\left[\begin{array}{cc}V & A^{T} \\ A & 0\end{array}\right]$ is nonsingular if and only if V is positive definite on $\operatorname{ker} A$ and the rank of A is m.
(c) (5 points) Show that the matrix

$$
T:=\left[\begin{array}{ll}
V & A^{T} \\
A & W
\end{array}\right]
$$

is positive definite if and only if the matrices V and $W-A V^{-1} A^{T}$ are positive definite.
(3) (10 points) Given $A \in \mathbb{C}^{n \times n}$ let $\lambda(A) \in \mathbb{C}^{n}$ be the vector of eigenvalues of A including multiplicities with the components lexicographically ordered largest to smallest, i.e. for $\lambda, \zeta \in \mathbb{C}, \lambda \geq \zeta$ if and only if either $\mathcal{R} e \lambda \geq \mathcal{R} e \zeta$, or $\mathcal{R} e \lambda=\mathcal{R} e \zeta$ and $\mathcal{I} m \lambda \geq \mathcal{I} m \zeta$. Show that $A \in \mathbb{C}^{n \times n}$ is normal if and only if $\|A\|_{F}=\|\lambda(A)\|_{2}$.
(4) Consider the monic polynomial

$$
p(\lambda)=a_{0}+a_{1} \lambda+a_{2} \lambda^{2}+\cdots+a_{n-1} \lambda^{n-1}+\lambda^{n}
$$

where $a_{j} \in \mathbb{C}, j=0,1, \ldots, n-1$. The companion matrix associated with p is the $n \times n$ matrix

$$
A=\left[\begin{array}{llllll}
0 & 0 & 0 & \ldots & 0 & -a_{0} \\
1 & 0 & 0 & \ldots & 0 & -a_{1} \\
0 & 1 & 0 & \ldots & 0 & -a_{2} \\
0 & 0 & 1 & \ldots & 0 & -a_{3} \\
\vdots & & & \ddots & & \vdots \\
0 & 0 & 0 & \ldots & 1 & -a_{n-1}
\end{array}\right]
$$

Let e_{j} denote the j th standard basis vector in \mathbb{C}^{n}, i.e. the j th component of e_{j} is 1 and all others are zero.
(a) (5 points) Show that p is the characteristic polynomial of A.
(Hint: Expand on the last column.)
(b) (5 points) Show that

$$
\begin{array}{ll}
A \mathrm{e}_{k}=\mathrm{e}_{k+1} & =A^{k} e_{1} \quad k=1, \ldots, n-1, \\
A \mathrm{e}_{n}=\left(A^{n}-p(A)\right) e_{1}=A^{n} e_{1} .
\end{array}
$$

(c) (5 points) Show that p is the minimal polynomial of A (hence A is nonderogatory).
(5) (15 points) Let $A \in \mathbb{C}^{n \times n}$ and $\epsilon>0$. Show that the three sets $\mathcal{A}, \mathcal{B}, \mathcal{C}$ defined below are equal.

$$
\begin{aligned}
\mathcal{A} & =\{\lambda \in \mathbb{C} \mid \lambda \in \Lambda(X),\|A-X\| \leq \epsilon\} \\
\mathcal{B} & =\left\{\lambda \in \mathbb{C} \mid\left\|(A-\lambda I)^{-1}\right\| \geq \epsilon^{-1} \text { or }(A-\lambda I) \text { is singular. }\right\} \\
\mathcal{C} & =\left\{\lambda \in \mathbb{C} \mid \sigma_{\min }(A-\lambda I) \leq \epsilon\right\}
\end{aligned}
$$

where the we have used the operator 2-norm and $\sigma_{\min }(A-\lambda I)$ is the smallest singular value of $(A-\lambda I)$.
Hint: To show that $\mathcal{A} \subset \mathcal{C}$, use a unit eigenvector associated with $\lambda \in \mathcal{A}$ and the fact that

$$
v^{*} T^{*} T v \geq \sigma_{\min }^{2}(T) \quad \forall T \in \mathbb{C}^{n \times n} \text { and } v \in \mathbb{C}^{n} \text { with }\|v\|=1 .
$$

To show that $\mathcal{C} \subset \mathcal{A}$, let $\lambda \in \mathcal{C}$ and let u and v be unit left and right singular vectors for $(A-\lambda I)$ associated with the singular value $\sigma_{\min }(A-\lambda I)$, respectively. Then use the SVD to construct a matrix X for which

$$
A-X=\sigma_{\min }(A-\lambda I) u v^{*}
$$

(6) (10 points) Let $f:[0, a] \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be continuous and satisfy the generalized Lipschitz condition

$$
|f(t, x)-f(t, y)| \leq \kappa(t)|x-y| \quad \forall t \in[0, a] \text { and } x, y \in \mathbb{R}^{n},
$$

where $\kappa(t)$ is non-negative and continuous on ($0, a]$, but possibly unbounded at $t=0$. Show that if $\int_{0}^{a} \kappa(t) d t<\infty$, then the IVP $x^{\prime}=f(t, x), x(0)=x_{0}$, has at most one solution on $[0, a]$.

