
1. Convex Optimization, Saddle Point Theory, and Lagrangian Duality

In this section we extend the duality theory for linear programming to general problmes
of convex optimization. This is accomplished using the saddle point properties of the La-
grangian in convex optimization. Again, consider the problem

P minimize f0(x)
subject to fi ≤ 0, i = 1, 2, . . . , s

fi(x) = 0, i = s + 1, . . . ,m,

where it is assumed that the functions f0, f1, . . . , fs are convex functions mapping Rn to R̄,
and fs+1, . . . , fm are affine mappings from Rn to R. We denote the constraint region for P
by Ω.

The Lagrangian for P is the function

L(x, y) = f0(x) + y1f1(x) + y2f2(x) + · · ·+ ymfm(x),

where it is always assumed that 0 ≤ yi, i = 1, 2, . . . , s. Set K = Rs
+ × Rm−s ⊂ Rm. A pair

(x̄, ȳ) ∈ Rn ×K is said to be a saddle point for L if

L(x̄, y) ≤ L(x̄, ȳ) ≤ L(x, y) ∀ (x, y) ∈ Rn ×K.

We have the following basic saddle point theorem for L.

Theorem 1.1 (Saddle Point Theorem). Let x̄ ∈ Rn. If there exists ȳ ∈ K such that
(x̄, ȳ) is a saddle point for the Lagrangian L, then x̄ solves P. Conversely, if x̄ is a solution
to P at which the Slater C.Q. is satisfied, then there is a ȳ ∈ K such that (x̄, ȳ) is a saddle
point for L.

Proof. If (x̄, ȳ) ∈ Rn ×K is a saddle point for P then

sup
y∈K

L(x̄, y) = sup
y∈K

f0(x̄) + y1f1(x̄) + y2f2(x̄) + · · ·+ ymfm(x̄) ≤ L(x̄, ȳ).

If for some i ∈ {1, . . . , s} such that fi(x̄) > 0, then we could send yi ↑ +∞ to find that the
supremum on the left is +∞ which is a contradiction, so we must have fi(x̄) ≤ 0, i = 1, . . . , s.
Moreover, if fi(x̄) 6= 0 for some i ∈ {s + 1, . . . ,m}, then we could send yi ↑ −sign(fi(x̄))∞
to again find that the supremum on the left is +∞ again a contradiction, so we must have
fi(x̄) = 0, i = s+1, . . . ,m. That is, we must have x̄ ∈ Ω. Since L(x̄, ȳ) = supy∈K L(x̄, y), we
must have

∑m
i=1 ȳifi(x̄) = 0. Therefore the right half of the saddle point condition implies

that

f0(x̄) = L(x̄, ȳ) ≤ inf
x
L(x, ȳ) ≤ inf

x∈Ω
L(x, ȳ) ≤ inf

x∈Ω
f0(x) ≤ f0(x̄),

and so x̄ solves P .
Conversely, if x̄ is a solution to P at which the Slater C.Q. is satisfied, then there is a

vector ȳ such that (x̄, ȳ) is a KKT pair for P . Primal feasibility (x̄ ∈ Ω), dual feaasibility
(ȳ ∈ K), and complementarity (ȳifi(x̄), i = 1, . . . , s) imply that

L(x̄, y) ≤ f0(x̄) = L(x̄, ȳ) ∀ y ∈ K.
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On the other hand, dual feasibility and convexity imply the convexity of the function L(x, ȳ)
in x. Hence the condition 0 = ∇xL(x̄, ȳ) implies that x̄ is a global minimizer for the function
x→ L(x, ȳ), that is

L(x̄, ȳ) ≤ L(x, ȳ) ∀ x ∈ Rn.

Therefore, (x̄, ȳ) is a saddle point for L. �

Note that it is always the case that

sup
y∈K

inf
x∈Rn

L(x, y) ≤ inf
x∈Rn

sup
y∈K

L(x, y)

since the largest minimum is always smaller that the smallest maximum. On the other hand,
if (x̄, ȳ) is a saddle point for L, then

inf
x∈Rn

sup
y∈K

L(x, y) ≤ sup
y∈K

L(x̄, y) ≤ L(x̄, ȳ) ≤ inf
x∈Rn

L(x, ȳ) ≤ sup
y∈K

inf
x∈Rn

L(x, y).

Hence, if a saddle point for L exists on Rn ×K, then

sup
y∈K

inf
x∈Rn

L(x, y) = inf
x∈Rn

sup
y∈K

L(x, y).

Such a result is called a mini-max theorem and provides conditions under which one can
exchange and inf-sup for a sup-inf. This mini-max result can be used as a basis for convex
duality theory.

Observe that we have already shown that

sup
y∈K

L(x, y) =

{
+∞ if x /∈ Ω,
f0(x) if x ∈ Ω.

Therefore,
inf
x∈Rn

sup
y∈K

L(x, y) = inf
x∈Ω

f0(x) .

We will call this the primal problem. This is the inf-sup side of the saddle point problem. The
other side, the sup-inf problem, we will call the dual problem with dual objective function

g(y) = inf
x∈Rn

L(x, y) .

The Saddle Point Theorem says that if (x̄, ȳ) is a saddle point for L, then x̄ solves the primal
problem, ȳ solves the dual problem, and the optimal values in the primal and dual problems
coincide. This is a Weak Duality Theorem. The Strong Duality Theorem follows from
the second half of the Saddle Point Theorem and requires the use of the Slater Constraint
Qualification.

1.1. Linear Programming Duality. We now show how the Lagrangian Duality Theory
described above gives linear programming duality as a special case. Consider the following
LP:

P minimize bTx
subject to ATx ≥ c, 0 ≤ x .

The Lagrangian is

L(x, y, v) = bTx + yT (c− ATx)− vTx, where 0 ≤ y, 0 ≤ v .
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The dual objective function is

g(y, u) = min
x∈Rn

L(x, y, v) = min
x∈Rn

bTx + yT (c− ATx)− vTx .

Our first goal is to obtain a closed form expression for g(y, u). This is accomplished by
using the optimality conditions for minimizing L(x, y, u) to eliminate x from the definition
of L. Since L(x, y, v) is a convex function in x, the global solution to minx∈Rn L(x, y, v) is
obtained by solving the equation 0 = ∇xL(x, y, u) = b − Ay − v with 0 ≤ y, 0 ≤ v. Using
this condition in the definition of L we get

L(x, y, u) = bTx + yT (c− ATx)− vTx = (b− Ay − v)Tx + cTy = cTy,

subject to b− ATy = v and 0 ≤ y, 0 ≤ v. Hence the Lagrangian dual problem

maximize g(y, v)
subject to 0 ≤ y, 0 ≤ v

can be written as
D maximize cTy

subject to b− Ay = v, 0 ≤ y, 0 ≤ v .

Note that we can treat the variable v as a slack variable in this LP and write

D maximize cTy
subject to Ay ≤ b, 0 ≤ y .

The linear program D is the dual to the linear program P .

1.2. Convex Quadratic Programming Duality. One can also apply the Lagrangian
Duality Theory in the context of Convex Quadratic Programming. To see how this is done
let Q ∈ Rn×n be symmetric and positive definite, and let c ∈ Rn. Consider the convex
quadratic program

D minimize 1
2
xTQx + cTx

subject to Ax ≤ b, 0 ≤ x .

The Lagrangian is given by

L(x, y, v) =
1

2
xTQx + cTx + yT (ATx− b)− vTx where 0 ≤ y, 0 ≤ v.

The dual objective function is

g(y, v) = min
x∈Rn

L(x, y, v) .

The goal is to obtain a closed form expression for g with the variable x removed by using
the first-order optimality condition 0 = ∇xL(x, y, v). This optimality condition completely
identifies the solution since L is convex in x. We have

0 = ∇xL(x, y, v) = Qx + c + ATy − v.

Since Q is invertible, we have

x = Q−1(v − ATy − c).
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Plugging this expression for x into L(x, y, v) gives

g(y, v) = L(Q−1(v − ATy − c), y, v)

=
1

2
(v − ATy − c)TQ−1(v − ATy − c)

+cTQ−1(v − ATy − c) + yT (AQ−1(v − ATy − c)− b)− vTQ−1(v − ATy − c)

=
1

2
(v − ATy − c)TQ−1(v − ATy − c)− (v − ATy − c)TQ−1(v − ATy − c)− bTy

= −1

2
(v − ATy − c)TQ−1(v − ATy − c)− bTy .

Hence the dual problem is

maximize −1
2
(v − ATy − c)TQ−1(v − ATy − c)− bTy

subject to 0 ≤ y, 0 ≤ v .

Moreover, (ȳ, v̄) solve the dual problem if an only if x̄ = Q−1(v̄−AT ȳ− c) solves the primal
problem with the primal and dual optimal values coinciding.


