Chapter 0

Mathematical Preliminaries

0.1 Norms

Throughout this course we will be working with the vector space \(\mathbb{R}^n \). For this reason we begin with a brief review of its metric space properties.

Definition 0.1.1 (Vector Norm) A function \(\nu : \mathbb{R}^n \to \mathbb{R} \) is a vector norm on \(\mathbb{R}^n \) if

i. \(\nu(x) \geq 0 \) \(\forall \ x \in \mathbb{R}^n \) with equality iff \(x = 0 \).

ii. \(\nu(\alpha x) = |\alpha|\nu(x) \) \(\forall \ x \in \mathbb{R}^n \ \alpha \in \mathbb{R} \)

iii. \(\nu(x + y) \leq \nu(x) + \nu(y) \) \(\forall \ x, y \in \mathbb{R}^n \)

We usually denote \(\nu(x) \) by \(\|x\| \). Norms are convex functions.

Example: \(l_p \) norms

\[
\|x\|_p := \left(\sum_{i=1}^{n} |x_i|^p \right)^{\frac{1}{p}}, \quad 1 \leq p < \infty
\]

\[
\|x\|_\infty = \max_{i=1,...,n} |x_i|
\]

- \(p = 1, 2, \infty \) are most important cases

\(\|x\|_1 = 1 \quad \|x\|_2 = 1 \quad \|x\|_\infty = 1 \)

- The unit ball of a norm is a convex set.
0.1.1 Equivalence of Norms

\[\alpha(p, q) \|x\|_q \leq \|x\|_p \leq \beta(p, q) \|x\|_q \]

\[
\begin{array}{c|ccc}
\alpha(p, q) & 1 & 2 & 3 \\
\hline
1 & 1 & 1 & 1 \\
2 & n^{-\frac{1}{2}} & 1 & 1 \\
3 & n^{-1} & n^{-\frac{1}{2}} & 1 \\
\end{array}
\]

\[
\begin{array}{c|ccc}
\beta(p, q) & 1 & 2 & 3 \\
\hline
1 & 1 & n^{-\frac{1}{2}} & n \\
2 & 1 & 1 & n^{-\frac{1}{2}} \\
3 & 1 & 1 & 1 \\
\end{array}
\]

0.2 Open, Closed, and Compact Sets

- A subset \(D \subset \mathbb{R}^n \) is said to be **open** if for every \(x \in D \) there exists \(\epsilon > 0 \) such that \(x + \epsilon B \subset D \) where

 \[x + \epsilon B = \{ x + \epsilon u : u \in B \} \]

 and \(B \) is the unit ball of some given norm on \(\mathbb{R}^n \).

- A point \(x \) is said to be a cluster point (or accumulation point) of the set \(D \subset \mathbb{R}^n \) if

 \[(x + \epsilon B) \cap D \neq \emptyset \]

 for every \(\epsilon > 0 \).

- A subset \(D \subset \mathbb{R}^n \) is said to be closed if it contains all of its cluster points.

- A subset \(D \subset \mathbb{R}^n \) is said to be bounded if there exists \(m > 0 \) such that

 \[\|x\| \leq m \text{ for all } x \in D. \]

- A subset \(D \subset \mathbb{R}^n \) is said to be compact, if it is closed and bounded.

Fact: [Bolzano–Weierstrass Compactness Theorem] A set \(D \subset \mathbb{R}^n \) is compact if and only if every infinite subset of \(D \) has a cluster point and all such cluster points are in \(D \).
0.3 Continuity and the Existence of Extrema

The mapping $F \colon \mathbb{R}^n \to \mathbb{R}^n$ is said to be continuous at the point \bar{x} if

$$
\lim_{\|x - \bar{x}\| \to 0} \|F(x) - F(\bar{x})\| = 0,
$$

or equivalently, for every $\epsilon > 0$ there exists a $\delta > 0$ such that

$$
\|F(x) - F(\bar{x})\| < \epsilon
$$

whenever $\|x - \bar{x}\| < \delta$. The function F is said to be continuous on a set $D \subset \mathbb{R}^n$ if F is continuous at every point of D.

\textbf{Weierstrass Extreme Value Theorem} \hspace{0.5cm} Every continuous function on a compact set attains its extreme values on that set.

0.4 Dual Norms

Let $\| \cdot \|$ be a given norm on \mathbb{R}^n with associated closed unit ball B. For each $x \in \mathbb{R}^n$ define

$$
\|x\|_0 := \max\{x^T y : \|y\| \leq 1\}.
$$

Since the transformation $y \mapsto x^T y$ is continuous (in fact, linear) and B is compact, Weierstrass’s Theorem says that the maximum in the definition of $\|x\|_0$ is attained. Thus, in particular, the function $x \mapsto \|x\|_0$ is well defined and finite-valued. Indeed, the mapping defines a norm on \mathbb{R}^n. This norm is said to be the norm dual to the norm $\| \cdot \|$. Thus, every norm has a norm dual to it.

We now show that the mapping $x \mapsto \|x\|_0$ is a norm.

(a) It is easily seen that $\|x\|_0 = 0$ if and only if $x = 0$. If $x \neq 0$, then

$$
\|x\|_0 = \max\{x^T y : \|y\| \leq 1\} \geq x^T \left(\frac{x}{\|x\|}\right) = \frac{\|x\|_2}{\|x\|} > 0.
$$

(b) From (a), $\|0 \cdot x\|_0 = 0 = 0 \cdot \|x\|_0$. Next suppose $\alpha \in \mathbb{R}$ with $\alpha \neq 0$. Then

$$
\|\alpha x\|_0 = \max\{x^T(\alpha y) : \|y\| \leq 1\}, (z = \alpha y) = \max\{x^T z : 1 \geq \|\frac{z}{z} \| = \|\frac{x}{\|x\|z}\| \} \cdot (w = \frac{z}{z}) = \max\{x^T(\alpha |w| : 1 \geq \|w\|\} = \|\alpha\| \|x\|_0.
$$
In order to establish the triangle inequality, we make use of the following elementary, but very useful, fact.

FACT: If \(f : \mathbb{R}^n \to \mathbb{R} \) and \(C \subset D \subset \mathbb{R}^n \), then

\[
\sup_{x \in C} f(x) \leq \sup_{x \in D} f(x).
\]

That is, the supremum over a larger set must be larger. Similarly, the infimum over a larger set must be smaller.

\[
\begin{align*}
(c) \quad \|x + z\|_0 &= \max\{x^T y + z^T y : \|y\| \leq 1\} \\
&= \max\left\{x^T y_1 + z^T y_2 : \|y_1\| \leq 1, \|y_2\| \leq 1, y_1 = y_2 \right\} \\
&= \sup_{y_1, y_2} \{x^T y_1 + z^T y_2 : \|y_1\| \leq 1, \|y_2\| \leq 1\} \\
&\leq \max_{\|y_1\| \leq 1, \|y_2\| \leq 1} \{x^T y_1 + z^T y_2\} \\
&= \|x\|_0 + \|z\|_0
\end{align*}
\]

FACTS:

(i) \(x^T y \leq \|x\| \|y\|_0 \) (apply definition)

(ii) \(\|x\|_\infty = \|x\|_\square

(iii) \((\|x\|_p)_0 = \|x\|_q \) where \(\frac{1}{p} + \frac{1}{q} = 1 \), \(1 \leq p \leq \infty \)

(iv) Hölder’s Inequality: \(|x^T y| \leq \|x\|_p \|y\|_q \)

\[
\frac{1}{p} + \frac{1}{q} = 1
\]

(v) Cauchy-Schwarz Inequality:

\[
|x^T y| \leq \|x\|_2 \|y\|_2
\]

0.5 Operators

0.5.1 Operator Norms

\(A \in \mathbb{R}^{m \times n} \)

\[
\|A\|_{(a,b)} = \max\{\|Ax\|_{(a)} : \|x\|_{(b)} \leq 1\}
\]
0.5. OPERATORS

Example:
\[
\|A\|_2 = \max\{\|Ax\|_2 : \|x\|_2 \leq 1\}
\]
\[
\|A\|_\infty = \max\{\|Ax\|_\infty : \|x\|_\infty \leq 1\}
= \max_{1 \leq i \leq n} \sum_{j=1}^n |a_{ij}|, \text{ max row sum}
\]
\[
\|A\|_1 = \max\{\|Ax\|_1 : \|x\|_1 \leq 1\}
= \max_{1 \leq j \leq n} \sum_{i=1}^m |a_{ij}|, \text{ max column sum}
\]

Fact:
\[
\|Ax\|_{(a)} \leq \|A\|_{(a,b)} \|x\|_{(b)}.
\]

(a) \(\|A\| \geq 0\) with equality \(\iff \|Ax\| = 0 \forall x \text{ or } A \equiv 0\).

(b) \(\|\alpha A\| = \max\{\|\alpha Ax\| : \|x\| \leq 1\}
= \max\{\|\alpha\| \|Ax\| : \|\alpha\| \leq 1\} = |\alpha| \|A\|
\]

(c) \(\|A + B\| = \max\{\|Ax + Bx\| : \|x\| \leq 1\}
\leq \max\{\|Ax\| + \|Bx\| : A \leq 1\}
= \max\{\|Ax_1\| + \|Bx_2\| : x_1 = x_2, \|x_1\| \leq 1, \|x_2\| \leq 1\}
\leq \max\{\|Ax_1\| + \|Bx_2\| : \|x_1\| \leq 1, \|x_2\| \leq 1\}
= \|A\| + \|B\|
\]

0.5.2 Spectral Radius

\(A \in \mathbb{R}^{n \times n}\)

\[
\rho(A) := \max\{|\lambda| : \lambda \in \Sigma(A)\}
\]

\(\Sigma(A) = \{\lambda \in \mathbb{C} : Ax = \lambda x \text{ for some } x \neq 0\}.
\]

\(\rho(A) \sim \text{spectral radius of } A\)

\(\Sigma(A) \sim \text{spectrum of } A\)

Fact:

(i) \(\|A\|_2 = (\rho(A^T A))^{\frac{1}{2}}\)

(ii) \(\rho(A) < 1 \iff \lim_{k \to \infty} A^k = 0\)

(iii) \(\rho(A) < 1 \Rightarrow (I - A)^{-1} = \sum_{i=0}^{\infty} A^i\) (Neumann Lemma)
0.5.3 Condition number

\[\kappa(A) = \begin{cases} \|A\| \|A^{-1}\| & \text{if } A^{-1} \text{ exists} \\ \infty & \text{otherwise} \end{cases} \]

Fact: [Error estimates in the solution of linear equations] If \(Ax_1 = b \) and \(Ax_2 = b + e \), then

\[\frac{\|x_1 - x_2\|}{\|x_1\|} \leq \kappa(A) \frac{\|e\|}{\|b\|} \]

Proof:

\[\|b\| = \|Ax_1\| \leq \|A\| \|x_1\| \Rightarrow \frac{1}{\|x_1\|} \leq \frac{\|A\|}{\|b\|}, \] so

\[\frac{\|x_1 - x_2\|}{\|x_1\|} \leq \frac{\|A\|}{\|b\|} \|A^{-1}(A(x_1 - x_2))\| \leq \|A\| \|A^{-1}\| \frac{1}{\|b\|} \|Ax_1 - Ax_2\| \]

\[\blacksquare \]

0.5.4 The Frobenius Norm

There is one further norm for matrices that is very useful. It is called the Frobenius norm. Observe that we can identify \(\mathbb{R}^{m \times n} \) with \(\mathbb{R}^{mn} \) by simply stacking the columns of a matrix one on top of the other to create a very long vector in \(\mathbb{R}^{mn} \). The mapping from \(\mathbb{R}^{m \times n} \) to \(\mathbb{R}^{mn} \) defined in this way is denoted by \(\text{vec} \cdot \). The Frobenius norm of a matrix \(A \in \mathbb{R}^{m \times n} \) is then the 2-norm of \(\text{vec}(A) \). It can be verified that

\[\|A\|_F = \text{tr}(A^T A). \]

0.6 Review of Differentiation

1) Let \(F : \mathbb{R}^n \to \mathbb{R}^m \) and let \(x, d \in \mathbb{R}^n \). If the limit

\[\lim_{t \downarrow 0} \frac{F(x + td) - F(x)}{t} =: F'(x; d) \]

exists, it is called the directional derivative of \(F \) at \(x \) in the direction \(h \). If this limit exists for all \(d \in \mathbb{R}^n \) and is linear in the \(d \) argument,

\[F'(x; \alpha d_1 + \beta d_2) = \alpha F'(x; d_1) + \beta F'(x; d_2), \]

then \(F \) is said to be Gâteaux differentiable at \(x \).
2) Let \(F : \mathbb{R}^n \to \mathbb{R}^m \) and let \(x \in \mathbb{R}^n \). If there exists \(J \in \mathbb{R}^{m \times n} \) such that
\[
\lim_{\|y-x\| \to 0} \frac{\|F(y) - (F(x) + J(y-x))\|}{\|y-x\|} = 0,
\]
then \(F \) is said to be Fréchet differentiable at \(x \) and \(J \) is said to be its “Fréchet derivative”. We denote \(J \) by \(J = F'(x) \) and write
\[
F(y) = F(x) + F'(x)(y - x) + o(\|y - x\|),
\]
where the “little-o” notation signifies
\[
\lim_{t \to 0} \frac{o(t)}{t} = 0.
\]

Facts:

(i) If \(F'(x) \) exists, it is unique.

(ii) If \(F'(x) \) exists, then \(F'(x; d) \) exists for all \(d \) and
\[
F'(x; d) = F'(x)d.
\]

(iii) If \(F'(x) \) exists, then \(F \) is continuous at \(x \).

(iv) (Matrix Representation)
Suppose \(F'(x) \) exists for all \(x \) near \(\bar{x} \) and that the mapping \(x \mapsto F'(x) \) is continuous at \(\bar{x} \),
\[
\lim_{\|x-\bar{x}\| \to 0} \|F'(x) - F'(\bar{x})\| = 0,
\]
then \(\partial F_i / \partial x_j \) exist for each \(i = 1, \ldots, m \), \(j = 1, \ldots, n \) and with respect to the standard basis the linear operator \(F'(\bar{x}) \) has the representation
\[
\nabla F(\bar{x}) = \left[\begin{array}{ccccc} \frac{\partial F_1}{\partial x_1} & \frac{\partial F_1}{\partial x_2} & \cdots & \frac{\partial F_1}{\partial x_n} \\ \frac{\partial F_2}{\partial x_1} & \frac{\partial F_2}{\partial x_2} & \cdots & \frac{\partial F_2}{\partial x_n} \\ \vdots \\ \frac{\partial F_m}{\partial x_1} & \frac{\partial F_m}{\partial x_2} & \cdots & \frac{\partial F_m}{\partial x_n} \end{array} \right]^T = \left[\frac{\partial F_i}{\partial x_j} \right]^T
\]
where each partial derivative is evaluated at \(\bar{x} = (\bar{x}_1, \ldots, \bar{x}_n)^T \). This matrix is called the Jacobian matrix for \(F \) at \(\bar{x} \).

Notation: For \(f : \mathbb{R}^n \to \mathbb{R} \), \(f'(x) = \left[\frac{\partial f_1}{\partial x_1}, \ldots, \frac{\partial f_n}{\partial x_n} \right] \) we write \(\nabla f(x) = f'(x)^T \).
(v) If \(F : \mathbb{R}^n \to \mathbb{R}^m \) has continuous partials \(\partial F_i / \partial x_i \) on an open set \(D \subset \mathbb{R}^n \), then \(F \) is differentiable on \(D \). Moreover, in the standard basis the matrix representation for \(F'(x) \) is the Jacobian of \(F \) at \(x \).

(vi) (Chain Rule) Let \(F : A \subset \mathbb{R}^m \to \mathbb{R}^k \) be differentiable on the open set \(A \) and let \(G : B \subset \mathbb{R}^k \to \mathbb{R}^n \) be differentiable on the open set \(B \). If \(F(A) \subset B \), then the composite function \(G \circ F \) is differentiable on \(A \) and

\[
(G \circ F)'(x_0) = G'(F(x_0)) \circ F'(x_0).
\]

Remarks: Let \(F : \mathbb{R}^n \to \mathbb{R}^m \) be differentiable. If \(L(\mathbb{R}^n, \mathbb{R}^m) \) denotes the set of linear maps from \(\mathbb{R}^n \) to \(\mathbb{R}^m \), then

\[
F' : \mathbb{R}^n \to L(\mathbb{R}^n, \mathbb{R}^m).
\]

(In a standard basis we usually identify \(L(\mathbb{R}^n, \mathbb{R}^m) \) with \(\mathbb{R}^{m \times n} \).) Therefore hierarchy for higher derivatives:

\[
F : \mathbb{R}^n \to \mathbb{R}^m \\
F' : \mathbb{R}^n \to L(\mathbb{R}^n, \mathbb{R}^m) \approx \mathbb{R}^{m \times n} \\
F'' : \mathbb{R}^n \to L(\mathbb{R}^n, L(\mathbb{R}^n, \mathbb{R}^m)) \approx \mathbb{R}^{m \times n \times n} \\
F''' : \mathbb{R}^n \to L(\mathbb{R}^n, L(\mathbb{R}^n, L(\mathbb{R}^n, \mathbb{R}^m)))) \approx \mathbb{R}^{m \times n \times n \times n} \\
\vdots
\]

(v) The Mean Value Theorem:

(a) If \(f : \mathbb{R} \to \mathbb{R} \) is differentiable, then for every \(x, y \in \mathbb{R} \) there exists \(z \) between \(x \) and \(y \) such that

\[
f(y) = f(x) + f'(z)(y - x).
\]

(b) If \(f : \mathbb{R}^n \to \mathbb{R} \) is differentiable, then for every \(x, y \in \mathbb{R} \) there is a \(z \in [x, y] \) such that

\[
f(y) = f(x) + \nabla f(z)^T (y - x).
\]

(c) If \(F : \mathbb{R}^n \to \mathbb{R}^m \) continuously differentiable, then for every \(x, y \in \mathbb{R} \)

\[
\|F(y) - F(x)\| \leq \left[\sup_{z \in [x,y]} \|F'(z)\| \right] \|x - y\|.
\]

Proof of (b): Set \(\varphi(t) = f(x + t(y - x)) \). Then, by the chain rule, \(\varphi'(t) = \nabla f(x + t(y - x))^T (y - x) \) so that \(\varphi \) is differentiable. Moreover, \(\varphi : \mathbb{R} \to \mathbb{R} \). Thus, by (a), there exists \(\bar{t} \in (0, 1) \) such that

\[
\varphi(1) = \varphi(0) + \varphi'(\bar{t})(1 - 0),
\]

or equivalently,

\[
f(y) = f(x) + \nabla f(z)^T (y - x)
\]

where \(z = x + \bar{t}(y - x) \).
0.6.1 The Implicit Function Theorem

Let $F : \mathbb{R}^{n+m} \to \mathbb{R}^n$ be continuously differentiable on an open set $E \subset \mathbb{R}^{n+m}$. Further suppose that there is a point $(\bar{x}, \bar{y}) \in \mathbb{R}^{n+m}$ at which $F(\bar{x}, \bar{y}) = 0$. If $\nabla_x F(\bar{x}, \bar{y})$ is invertible, then there exist open sets $U \subset \mathbb{R}^{n+m}$ and $W \subset \mathbb{R}^m$, with $(\bar{x}, \bar{y}) \in U$ and $\bar{y} \in W$, having the following property:

To every $y \in W$ corresponds a unique $x \in \mathbb{R}^n$ such that $(x, y) \in U$ and $F(x, y) = 0$.

Moreover, if x is defined to be $G(y)$, then G is a continuously differentiable mapping of W into \mathbb{R}^n satisfying

$$G(\bar{y}) = \bar{x}, \quad F(G(y), x) = 0 \quad \forall \ y \in W, \quad \text{and} \quad G'(\bar{y}) = - (\nabla_x F(\bar{x}, \bar{y}))^{-1} \nabla_y F(\bar{x}, \bar{y}).$$

0.6.2 Some facts about the Second Derivative

Let $f : \mathbb{R}^n \to \mathbb{R}$ so that $f' : \mathbb{R}^n \to L(\mathbb{R}^n, \mathbb{R}) (\approx \mathbb{R}^{n \times 1} = \mathbb{R}^2)$ and $f'' : \mathbb{R}^n \to L(\mathbb{R}^n, L(\mathbb{R}^n, \mathbb{R})) (\approx \mathbb{R}^{n \times n \times 1} = \mathbb{R}^{n \times n}).$

(i) If f'' exists and is continuous at x_0, then in the standard basis

$$f''(x_0) \approx \nabla^2 f(x_0) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_i \partial x_j} \end{bmatrix}_{x=x_0}$$

Moreover, $\frac{\partial f}{\partial x_i \partial x_j} = \frac{\partial f}{\partial x_j \partial x_i}$ for all $i, j = 1, \ldots, n$. The matrix $\nabla^2 f(x_2)$ is called the Hessian of f at x_0. It is a symmetric matrix.

(ii) Second-Order Taylor Theorem:

If $f : \mathbb{R}^n \to \mathbb{R}$ is twice continuously differentiable on an open set containing $[x, y]$, then there is a $z \in [x, y]$ such that

$$f(y) = f(x) + \nabla f(x)^T (y - x) + \frac{1}{2} (y - x)^T \nabla^2 f(z)(y - x).$$

We also obtain

$$\|f(y) - (f(x) + f'(x)(y - x))\| \leq \frac{1}{2} \|y - x\|^2 \sup_{z \in [x, y]} \|f''(z)\|.$$
0.6.3 Integration
Let \(f : \mathbb{R}^n \to \mathbb{R} \) be differentiable and set \(\varphi(t) = f(x + t(y - x)) \) so that \(\varphi : \mathbb{R} \to \mathbb{R} \). Then
\[
\begin{align*}
 f(y) - f(x) &= \varphi(1) - \varphi(0) = \int_0^1 \varphi'(t) \, dt \\
 &= \int_0^1 \nabla f(x + t(y - x))^T (y - x) \, dt
\end{align*}
\]
Similarly, if \(F : \mathbb{R}^n \to \mathbb{R}^m \), then
\[
\begin{align*}
 F(y) - F(x) &= \begin{bmatrix}
 \int_0^1 \nabla F_1(x + t(y - x))^T (y - x) \, dt \\
 \vdots \\
 \int_0^1 \nabla F_m(x + t(y - x))^T (y - x) \, dt
 \end{bmatrix} \\
 &= \int_0^1 F'(x + t(y - x))(y - x) \, dt
\end{align*}
\]

0.6.4 More Facts about Continuity
Let \(F : \mathbb{R}^n \to \mathbb{R}^m \).

- We say that \(F \) is continuous on a set \(D \subset \mathbb{R}^n \) if for every \(x \in D \) and \(\epsilon > 0 \) there exists a \(\delta(x, \epsilon) > 0 \) such that
\[
 \|F(y) - F(x)\| \leq \epsilon \quad \text{whenever} \quad \|y - x\| \leq \delta(x, \epsilon).
\]

- We say that \(F \) is uniformly continuous on \(D \subset \mathbb{R}^n \) if for every \(\epsilon > 0 \) there exists a \(\delta(\epsilon) > 0 \) such that
\[
 \|F(y) - F(x)\| \leq \epsilon \quad \text{whenever} \quad \|y - x\| \leq \delta(\epsilon).
\]

\textbf{Fact:} If \(F \) is continuous on a compact set \(D \subset \mathbb{R}^n \), then \(F \) is uniformly continuous on \(D \).

- We say that \(F \) is Lipschitz continuous on a set \(D \subset \mathbb{R}^n \) if there exists a constant \(K \geq 0 \) such that
\[
 \|F(x) - F(y)\| \leq K \|x - y\|
\]
for all \(x, y \in D \).

\textbf{Fact:} Lipschitz continuity implies uniform continuity.

\textbf{Proof:} \(\delta = \epsilon/K \). \(\blacksquare \)

\textbf{Examples:}
1. \(f(x) = x^{-1} \) is continuous on \((0,1)\), but it is not uniformly continuous on \((0,1)\).
2. \(f(x) = \sqrt{x} \) is uniformly continuous on \([0, 1]\), but it is not Lipschitz continuous on \([0, 1]\).

FACT: If \(F' \) exists and is continuous on a compact convex set \(D \subset \mathbb{R}^m \), then \(F \) is Lipschitz continuous on \(D \).

Proof: Mean value Theorem:

\[
\|F(x) - F(y)\| \leq \left(\sup_{z \in [x,y]} \|F'(z)\| \right) \|x - y\|.
\]

Lipschitz continuity is almost but not quite a differentiability hypothesis. The Lipschitz constant provides bounds on rate of change.

Quadratic Bound Lemma

Lemma 0.6.1 Let \(F: \mathbb{R}^n \to \mathbb{R}^m \) be such that \(F' \) is Lipschitz continuous on the convex set \(D \subset \mathbb{R}^n \). Then

\[
\|F(y) - (F(x) + F'(x)(y - x))\| \leq \frac{K}{2}\|y - x\|^2
\]

for all \(x, y \in D \) where \(K \) is a Lipschitz constant for \(F' \) on \(D \).

Proof:

\[
F(y) - F(x) - F'(x)(y - x) = \int_0^1 F'(x + t(y - x))(y - x)dt - F'(x)(y - x)
\]

\[
= \int_0^1 [F'(x + t(y - x)) - F'(x)](y - x)dt
\]

\[
\|F(y) - (F(x) + F'(x)(y - x))\| = \| \int_0^1 [F'(x + t(y - x)) - F'(x)](y - x)dt\|
\]

\[
\leq \int_0^1 \|(F'(x + t(y - x)) - F'(x))(y - x)\|dt
\]

\[
\leq \int_0^1 \|F'(x + t(y - x)) - F'(x)\| \|y - x\|dt
\]

\[
\leq \int_0^1 Kt\|y - x\|^2dt
\]

\[
= \frac{K}{2}\|y - x\|^2.
\]
Extended Quadratic Bound Lemma

Lemma 0.6.2 Let $F : \mathbb{R}^n \to \mathbb{R}^m$ be continuously differentiable in an open convex set $D \subset \mathbb{R}^n$. If we assume that F' is Lipschitz continuous in D with Lipschitz constant $K > 0$, then for all $x, y, z \in D$ we have

$$\|F(y) - F(x) - F'(z)(y - x)\| \leq K \frac{\|x - z\| + \|y - z\|}{2} \|x - y\|$$

Proof: Just as in the proof of the quadratic bound lemma

$$F(y) - F(x) - F'(z)(y - x) = \int_0^1 (F'(x + t(y - x)) - F'(z))(y - x) dt.$$

Therefore,

$$\|F(y) - F(x) - F'(z)(y - x)\| \leq \|y - x\| \int_0^t \|x + t(y - x) - z\| dt \leq \|y - x\| \int_0^t K \|t(y - z) + (1 - t)(x - z)\| dt \leq \|y - x\| K \int_0^t \|y - z\| + (1 - t)\|x - z\| dt \leq K \frac{\|y - z\| + \|x - z\|}{2} \|y - x\|.$$

\[\Box\]

0.6.5 Some Facts about Symmetric Matrices

Let $H \in \mathbb{R}^{n \times n}$ be symmetric, i.e. $H^T = H$

1. There exists an orthonormal basis of eigen-vectors for H, i.e. if $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$ are the n eigenvalues of H (not necessarily distinct), then there exist vectors q_1, \ldots, q_n such that $\lambda_i q_i = H q_i$ for $i = 1, \ldots, n$ with $q_i^T q_j = \delta_{ij}$. Equivalently, there exists a unitary transformation $Q = \{q_1, \ldots, q_n\}$ such that

$$H = Q \Lambda Q^T$$

where $\Lambda = \text{diag}[\lambda_1, \ldots, \lambda_n]$.

2. $H \in \mathbb{R}^{n \times n}$ is positive semi-definite, i.e.

$$x^T H x \geq 0 \text{ for all } x \in \mathbb{R}^n,$$

if and only if $\forall \lambda \in \sum \left(\frac{1}{2}(H + H^T)\right)$ with $\lambda \geq 0$.