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Linear Spaces and Operators

X and Y – normed linear spaces with norms ‖·‖x and ‖·‖y.

L : X→ Y is a linear transformations (or operators) if
L(αx+ βz) = αL(x) + βL(z) ∀x, z ∈ X and α, β ∈ R.

L[X,Y] the normed space of continuous linear operators:
‖T ‖ := sup

‖x‖x≤1
‖T x‖y ∀ T ∈ L[X,Y].

X∗ := L[X,R] – topological dual of X with the duality pairing
〈φ, x〉 = φ(x) ∀ (φ, x) ∈ X∗ × X.

The duality pairing gives rise to adjoints of a linear operator:
T ∈ L[X,Y] defines T ∗ ∈ L[Y∗,X∗] by

〈y∗, T (x)〉 = 〈T ∗(y∗), x〉 ∀ (y∗, x) ∈ Y∗ × X.



Matrix Representations

{xj}nj=1 and {yi}mi=1 are bases for X and Y.

Given x =
∑n

j=1 ajx
j ∈ X, the linear mapping

x
κ−→ (a1, . . . , an)T

is a linear isomorphism between X and Rn and is called the
coordinate mapping from X to Rn associated with the basis
{xj}nj=1.

η – coordinate mapping from Y to Rm with the basis {yi}mi=1.

Given T ∈ L[X,Y], there exist uniquely defined
{tij | i = 1, . . . ,m, j = 1, . . . , n} ⊂ R such that

T xj =
m∑
i=1

tijy
i, j = 1, . . . , n.

Therefore, η(T x) = Tκ(x) where where (tij) = T ∈ Rm×n

.
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The Kronecker Product

A,C ∈ Rm×n and B ∈ Rs×t. The Kronecker product of A with
B is the ms×mt matrix given by

A⊗B :=


a11B a12B · · · a1nB
a21B a22B · · · a2nB

...
...

...
...

am1B am2B · · · amnB

 .

A = [2 − 1], B =

[
0 −1
2 1

]
A⊗B =

[
0 −2 0 1
4 2 −2 −1

]



The Matrix Coordinate Map “vec”

Given A ∈ Rm×n,

vec(A) :=


A·1
A·2

...
A·n

 ,
that is, vec(A) is the mn vector obtained by stacking the
columns of A on top of each other.

Clearly, 〈A, B〉F = vec(A)T vec(B) and vec ∈ L[Rm×n, Rmn].



Properties of the Kronecker Product

1. A⊗B ⊗ C = (A⊗B)⊗ C = A⊗ (B ⊗ C)

2. (A⊗B)(C ⊗D) = AC ⊗BD when AC and BD exist.

3. (A⊗B)T = (AT ⊗BT )

4. (A† ⊗B†) = (A⊗B)†, where M † is the Moore-Penrose
pseudo inverse of the matrix M .

5. For vectors a and b, vec(abT ) = b⊗ a.

6. If AXB is a well defined matrix product, then

vec(AXB) = (BT ⊗A)vec(X).

In particular,

vec(AX) = (I⊗A)vec(X) and vec(XB) = (BT⊗I)vec(X),

where I is interpreted as the identity matrix of the
appropriate dimension.



Spectrum of the Kronecker Product

A ∈ Rn×n and B ∈ Rm×m have spectrum {λi}ni=1, {µi}mi=1 with
multiplicity, resp.ly.

Then the eigenvalues of A⊗B are

λiµj , i, j = 1, . . . , n

and the eigenvalues of (In ⊗A) + (B ⊗ Im) are

λi + µj , i, j = 1, . . . , n.

(In ⊗A) + (B ⊗ Im) is called the Kronecker sum of A and B.

In particular,
tr (A⊗B) = tr (A) tr (B) and det(A⊗B) = detAn det(B)m.



Singular Values of the Kronecker Product

A ∈ Rm×n and B ∈ Rs×t have singular value decompositions
UAΣAV

T
A and UBΣBV

T
V . Then, after reordering, the singular

value decomposition of A⊗B is

(UA ⊗ UB)(ΣA ⊗ ΣB)(V T
A ⊗ V T

B ).

In particular, the nonzero singular values of A⊗B are

σi(A)σj(B), i = 1, . . . , rankA, j = 1, . . . , rankB.



Matrix Representations for L[Rm×n,Rs×t]

On Rm×n the matrices

{Eij | i = 1, . . . ,m, j = 1, . . . , n} ,

where Eij is the matrix having a one in the ij position and zero
elsewhere, form the standard unit coordinate basis for Rm×n.

Observe that vec is the coordinate mapping on Rm×n associated
with this basis, where the coordinates are ordered by columns.

We show how to use vec and ⊗ to compute a matrix
representation for of elements L[Rm×n,Rs×t] with respect to the
standard unit coordinate bases on Rm×n and Rs×t.



Example 1

Let A ∈ Rs×m and B ∈ Rn×t and define T ∈ L[Rm×n,Rs×t] by
T (X) = AXB.

Then, using the coordinate mapping vec we get

vec(T (X)) = vec(AXB) = (BT ⊗A)vec(X).

Hence, the matrix representation of T in the coordinate bases is

T = (BT ⊗A) .



Example 2

Define T ∈ L[Rn×n,Rn×n] by T (X) = AX +XB, where
A,B ∈ Rn×n. Then

vec(T (X)) = vec(AX) + vec(XB)

= (I ⊗A)vec(X) + (BT ⊗ I)vec(X)

= [(In ⊗A) + (BT ⊗ In)]vec(X).

That is, the matrix representation of T in the unit coordinate
bases is

T = (In ⊗A) + (BT ⊗ In)

the Kronecker sum of A and BT .



The Derivative of det
The standard way to compute the derivative of the determinant is to
use Laplace’s formula: ∀ i0, j0 ∈ {1, 2, . . . , n}

det(X) =

n∑
i=1

xij0(−1)i+j0 det(X(i, j0)) =

n∑
j=1

xi0j(−1)i0+j det(X(i0, j)) ,

where X(i, j) ∈ R(n−1)×(n−1) is obtained from X by deleting the ith

row and jth column. This formula immediately tells us that

∂ det(X)

∂xij
= (−1)i+j det(X(i, j)) ∀ i, j ∈ {1, 2, . . . , n}.

Consequently, the derivative of the determinant can be written in
terms of the classical adjoint of X:

adj(A) :=
(
(−1)i+j det(X(i, j))

)T
.

That is,

(det(·))′(X)(D) =
〈
adj(X)T , D

〉
F

= tr (adj(X)D) so ∇det(X) = adj(X)T .

In differential notation, ddet(X) =
〈
adj(X)T , dX

〉
F
, which more

explicitly describes how to apply the chain rule.



The Determinant

The determinate is the unique multilinear form on the columns (or
rows) whose value at the identity is 1. Determinants have a much
longer history than do matrices themselves .They were derived to
solve linear systems long before the invention of matrices. The
culmination of this effort is what we now call Cramer’s rule. Cramer’s
rule tells us that

A adj(A) = adj(A)A = det(A)In.

So, when det(A) 6= 0, then A−1 exists and we have

A−1 =
1

det(A)
adj(A) = det(A−1) adj(A) and

adj(A) = det(A)A−1.

In particular, when A−1 exists, we have

∇ det(A) = adj(A)T = det(A)A−T .



The Banach Lemma

The spectral radius of A ∈ Rn×n is the maximum modulus of its
spectrum,

ρ(A) := max {|λ| | det(λ−A) = 0} .

Lemma: Given A ∈ Rn×n, if ρ(A) < 1, then (I −A)−1 exists
and is given by the geometric series

(I −A)−1 = I +A+A2 +A3 + . . . .

In addition, we have

1

1 + ρ(A)
≤ ρ((I −A)−1) ≤ 1

1− ρ(A)
.



Derivatives of A−1: d(X)−1 = −X−1(dX)X−1

The general linear group of degree n over R, GLn(R), is the set of real
nonsingular n× n matrices.

Define Φ : GLn(R)→ GLn(R) by Φ(A) := A−1. Let A ∈ GLn(R) and
∆A ∈ Rn×n be such that ρ(A−1∆A) < 1, then

(A+ ∆A)−1 = (A(I +A−1∆A))−1

= (I +A−1∆A)−1A−1

= (I −A−1∆A) +A−1∆A) + o(‖∆A‖2))A−1 (Banach Lemma)

= A−1 −A−1∆AA−1 +A−1∆AA−1∆AA−1 + o(‖∆A‖2).

So Φ′(A)(D) = −A−1DA−1 and Φ′′(A)(D,D) = 2A−1DA−1DA−1,
and

vec(Φ′(A)(D)) = −vec(A−1DA−1) = −(A−T ⊗A−1)vec(D)

=⇒ ∇Φ(A) = −A−T ⊗A−1

This procedure shows that Φ is C∞ and all these derivatives are easily
computed from the Banach Lemma.



Chain Rule Example

ψ(V ) :=

{
ln det(XTV −1X) , V ∈ Sn++

+∞ , otherwise,

ψ′(V )(D) =
〈
∇(ln det(·))(XTV −1X), (XT (·)−1X)′(V )(D)

〉
=
〈
(XTV −1X)−1, −XTV −1DV −1X

〉
= −tr

(
(XTV −1X)−1XTV −1DV −1X

)
= −tr

(
V −1X(XTV −1X)−1XTV −1D

)
=
〈
−V −1X(XTV −1X)−1XTV −1, D

〉
=⇒ ∇ψ(V ) = −V −1X(XTV −1X)−1XTV −1 ∈ Sn.


