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1. Basics. Let X and Y be normed linear spaces with norms ‖·‖x and ‖·‖y,
respectively. A linear transformation (or mapping) from X to Y is any mapping
L : X→ Y such that

L(αx+ βz) = αL(x) + βL(z) ∀x, z ∈ X and α, β ∈ R.

Let L[X,Y] denote the normed space of continuous linear transformations from X to
Y where the (operator) norm is given by

‖T ‖ := sup
‖x‖x≤1

‖T x‖y ∀ T ∈ L[X,Y].

The topological dual of the normed linear space X is

X∗ := L[X,R]

with the duality pairing denoted by

〈φ, x〉 = φ(x) ∀ (φ, x) ∈ X∗ × X.

The duality pairing gives rise to the notion of the adjoint of a linear operator: given
T ∈ L[X,Y], the adjoint of T is the unique linear operator T ∗ ∈ L[Y∗,X∗] defined by

〈y∗, T (x)〉 = 〈T ∗(y∗), x〉 ∀ (y∗, x) ∈ Y∗ × X.

A Euclidean space is a finite dimensional inner product space. The space Rn can
be endowed with an infinite variety of inner products, however, every inner product
on Rn takes the form 〈x, y〉V = xTV y for some symmetric positive definite matrix
V ∈ Sn++ (= the cone of symmetric n × n positive definite matrices). On the space
Rm×n, the standard inner product is the Frobenius inner product given by 〈A, B〉F =
〈A, B〉 = tr

(
ATB

)
. The duality pairing on a Euclidean space can be show to be

equivalent to the inner product.
Let X and Y be finite dimensional real vector spaces, and let {xj}nj=1 and {yi}mi=1

be bases for X and Y, respectively. Given x =
∑n
j=1 ajx

j ∈ X, the linear mapping

x
κ7→ (a1, . . . , an)T

is a linear isomorphism between X and Rn. The mapping κ is called the coordinate
mapping from X to Rn associated with the basis {xj}nj=1. Let η be the coordinate

mapping for Y to Rm associated with the basis {yi}mi=1. Given T ∈ L[X,Y], there
exist uniquely defined {tij | i = 1, . . . ,m, j = 1, . . . , n} ⊂ R such that

T xj =

m∑
i=1

tijy
i, j = 1, . . . , n.

Consequently, given x ∈ X we have η(T x) = Tκ(x), where T ∈ Rm×n is the ma-
trix whose components are (tij). Using this kind of basis representation for a linear
transformation between finite dimensional spaces can be very useful, but it can also
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obscure the action of a linear transformation and make its representation unnecessar-
ily arduous. Nonetheless, one often simply identifies a linear transformation with its
matrix representation associated with an agreed upon preferred pair of bases. All of
this formalism and be extended to vector spaces over arbitrary fields. The primary
fields of interest to us are the real and complex fields.

We will be interested in linear transformations on Rm×n. Two very useful tools
in this context are the Kronecker and Hadamard products.

Definition 1.1 (The Kronecker and Hadamard Products). Let A,C ∈ Rm×n
and B ∈ Rs×t. The Kronecker product of A with B is the ms×mt matrix given by

A⊗B :=


a11B a12B · · · a1nB
a21B a22B · · · a2nB

...
...

...
...

am1B am2B · · · amnB

 ,
and the Hadamard product of A and C is the m× n matrix given by

A� C := (aijcij),

i.e., the componentwise product of A and C.
Another useful tool is the vec operator: given A ∈ Rm×n,

vec(A) :=


A·1
A·2

...
A·n

 ,
that is, vec(A) is the mn vector obtained by stacking the columns of A on top of each
other. Clearly, 〈A, B〉F = vec(A)T vec(B). Note that vec ∈ L[Rm×n, Rmn].

Proposition 1.2 (Properites of the Kronecker Product).
1. A⊗B ⊗ C = (A⊗B)⊗ C = A⊗ (B ⊗ C)
2. (A⊗B)(C ⊗D) = AC ⊗BD when AC and BD exist.
3. (A⊗B)T = (AT ⊗BT )
4. tr (A⊗B) = tr (A) tr (B)
5. (A†⊗B†) = (A⊗B)†, where M† is the Moore-Penrose pseudo inverse of the

matrix M .
6. rank (A⊗B) = rankA rankB
7. For vectors a and b, vec(abT ) = b⊗ a.
8. If AXB is a well defined matrix product, then

vec(AXB) = (BT ⊗A)vec(X).

In particular,

vec(AX) = (I ⊗A)vec(X) and vec(XB) = (BT ⊗ I)vec(X),

where I is interpreted as the identity matrix of the appropriate dimension.
Examples 1.3 (Linear Operators and Matrix Representations).
1. Consider the vector space Rn×n and let A ∈ Rm×n and B ∈ Rn×k. We define

the linear transformation T ∈ L[Rn×n,Rm×k] by T (X) = AXB:

T (αX + βY ) = A(αX + βY )B = αAXB + βAY B = αT (X) + βT (Y ).
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On the linear space Rm×n the set of matrices

{Eij | i = 1, . . . ,m, j = 1, . . . , n} ,

where Eij is the matrix having a one in the ij position and zero elsewhere, is
the standard unit coordinate basis for Rm×n. Observe that vec is the coordi-
nate mapping on Rm×n associated with the standard unit coordinate matrices
Eij. Using vec one can compute a matrix representation for T with respect
to the standard unit coordinate bases. This is done by applying the vec op-
erator to the expression T (X) = AXB and then using properties of the the
Kronecker product to get a matrix formula:

vec(T (X)) = vec(AXB) = (BT ⊗A)vec(X).

That is, the matrix representation of T in the unit coordinate bases is T =
BT ⊗A.

2. Again consider the vector space Rn×n, but now let A,B ∈ Rn×n. We define
the linear transformation T ∈ L[Rn×n,Rn×n] by T (X) = AX +XB. Again,
we can obtain a matrix representation for this operator in the unit coordinate
basis by using vec and applying properties of the Kronecker product:

vec(T (X)) = vec(AX) + vec(XB) = (I ⊗A)vec(X) + (BT ⊗ I)vec(X)

= [(In ⊗A) + (BT ⊗ In)]vec(X).

That is, the matrix representation of T in the unit coordinate bases is T =
(In ⊗A) + (BT ⊗ In).

3. Let Pn[t] be the linear space of real polynomials of degree n or less in the
variable t. Given λ ∈ R, the polynomials e(k,λ)(t) := (t− λ)k, k = 0, 1, . . . , n
are known to form a basis for Pn. Consider the linear transformation D ∈
L[Pn,Pn−1] given by D(p) = p′, where p′ is the derivative of p with respect
to t. Give the matrix representation of D in the bases e(k,0). What about the
bases e(k,λ)?

2. Derivatives. First the definitions.
Definition 2.1. Let F : O → Y, where O ⊂ X is open.
1. We say that F is Gateau differentiable at x ∈ O if there exists J ∈ L[X,Y]

such that

lim t→ 0
F (x+ td)− F (x)− tJd

t
= 0 ∀ d ∈ X ,

where we call J the Gateau derivative of F at x.
2. We say that F is Frechét differentiable at x ∈ O if there exists J ∈ L[X,Y]

such that

lim y → x
‖F (y)− F (x)− J(y − x)‖

‖y − x‖
= 0 ,

where we call J the Frechét derivative of F at x. The Frechét derivative of F
at x is denoted by F ′(x).

The notions of Gateaux and Frechét differentiability coincide in finite dimensions.
This equivalence is often useful in computing derivatives since it reduces the compu-
tation over the scalars.
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For mappings ψ : Rn → R, we call the embedding of the matrix representation for
ψ′(x) in the standard unit coordinate bases into Rn the gradient of ψ at x and write
∇ψ(x). When the partial derivatives of ψ exist and are continuous, ∇ψ(x) is just the
vector of these partial derivatives. More generally, since ψ′(x) ∈ L[Rn,R] = (Rn)∗

and Rn is an inner product space, we can identify ψ′(x) with an element of Rn. We
call this element the gradient of ψ at x and write it as ∇ψ(x).

For mappings F : Rn → Rm, we can decompose F into its coordinate functions

F (x) =


F1(x)
F2(x)

...
Fm(x)

 ,
where Fi : Rn → R, i = 1, . . . ,m. Consequently, the matrix representation of F ′(x)
in the standard unit coordinate vectors is given by

∇F (x) =


∇F1(x)T

∇F2(x)T

...
∇Fm(x)T

 ,
which is called the Jacobian of F at x (some authors call ∇F (x)T the Jacobian of F
at x in order the preserve the consistency in the use of the transpose with ∇).

To compute Frechét derivatives, it is extremely useful to use what is called little-o
notation:

F (y) = F (x) + F ′(x)(y − x) + o(‖y − x‖),

where o(t) is an element of the class of functions satisfying limt→0
o(t)
t = 0. Observe

that if T ∈ L[X,Y], then, for all x ∈ X and y ∈ Y, we have

T y = T (x+ (y − x)) = T x+ T (y − x),

and so T ′(x) = T for all x ∈ X. That is, for any pair of topological vector spaces X
and Y, the derivative of an element of L[X,Y] is itself.

Example 2.2.

1. Let A ∈ Rm×n, b ∈ Rm and define the function f : Rn → R by f(x) :=
1
2
‖Ax− b‖22. Then

f(x+ ∆x) = 1
2
‖A(x+ ∆x)− b‖22

= 1
2
〈(Ax− b) +A∆x, (Ax− b) +A∆x〉

= 1
2
〈Ax− b, Ax− b〉+ 〈Ax− b, A∆x〉+ 1

2
〈A∆x, A∆x〉

= f(x) +
〈
AT (Ax− b), ∆x

〉
+ o(‖∆x‖22).

Hence f ′(x)u = (Ax − b)TAu for all u ∈ Rn. Consequently, in the standard
unit coordinate bases, the matrix representation for f ′(x) is (Ax − b)TA, so
∇f(x) = AT (Ax − b). Note that this computation is elementary and we did
not need to compute the individual partial derivatives first.
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2. Consider the function h(x) := 1
2
‖F (x)‖22, where F : Rn → Rm is differen-

tiable. The same technique as in the example above can be applied to show
that ∇h(x) = ∇F (x)TF (x) without the need to compute the individual par-
tial derivatives first: in the computation to follow (1) the fact that the sum,
product, inner product, or norm of two or more little-o functions is another
little-o function and (2) the computation in the first example is also used;

h(x+ ∆x) := 1
2

∥∥∥F (x) +∇F (x)∆x+ o(‖∆x‖22)
∥∥∥
2

= 1
2

〈
(F (x) +∇F (x)∆x) + o(‖∆x‖22), (F (x) +∇F (x)∆x) + o(‖∆x‖22)

〉
= 1

2
〈F (x) +∇F (x)∆x, F (x) +∇F (x)∆x〉+〈
F (x) +∇F (x)∆x, o(‖∆x‖22)

〉
+ 1

2

〈
o(‖∆x‖22), o(‖∆x‖22)

〉
= 1

2
‖F (x) +∇F (x)∆x‖22 + o(‖∆x‖22)

= h(x) + 〈F (x), ∇F (x)∆x〉+ 1
2
‖∇F (x)∆x‖22 + o(‖∆x‖22)

= h(x) +
〈
∇F (x)TF (x), ∆

〉
+ o(‖∆x‖22).

Note that this is simply the chain rule applied to h.
Theorem 2.3 (Chain Rule). Let X, Y and Z be normed linear spaces and

consider the mappings H : Y→ Z and F : X→ Y. Define the composition of F with
H to be the mapping H ◦ F : X → Z given by (H ◦ F )(x) := H(F (x)). If x ∈ X is
such that F ′ exists and is continuous at x and H ′ exists at F (x), then (H ◦F )′ exists
at x and is given by

(H ◦ F )′(x) = H ′(F (x)) ◦ F ′(x).

Remark 2.4. When X = Rn, Y = Rm and Z = R, then the gradient of H ◦ F
at x is given by

∇(H ◦ F )(x) = ∇F (x)T∇H(F (x)).

This is validated in Example 2.2.
Example 2.5 (The Derivative of Linear Operators and the Chain Rule).
1. Consider the linear transformation T ∈ L[Rn×n,Rn×n] given by T (X) =

AX + XB in Example 1.3, and let F : Rn → Rn×n is given by F (x) :=
diag (x), where the linear transformation diag (·) ∈ L[Rn,Rn×n] maps x to
the n× n matrix whose diagonal is x. Then

(T ◦ diag (·))′(x)(d) = Adiag (d) + diag (d)B

for all x ∈ Rn.
2. Consider the linear operator T ∈ L[Rn×n,Rm×k] given by T (X) = AXB dis-

cussed in Example 1.3. We have T ′(X)(D) = ADB for all X. Consequently,
if Y is a normed linear space and F : Y → Rn×n is (Gateaux) Frechét dif-
ferentiable at y ∈ Y, then the derivative of the mapping (T ◦ F ) is given by
(T ◦ F )′(y)(d) = A(F ′(y)d)B. For example, if F : Rn → Rn×n is given by

F (x) := exp(− 1
2

∥∥x− x0∥∥2
2
)In for some x0 ∈ Rn, then

∇F (x) = In exp(− 1
2

∥∥x− x0∥∥2
2
)(x− x0)T ∈ L[Rn,Rn×n],

5



and so

(T ◦ F )′(x)(d) = A(F ′(x)d)B

= A(exp(− 1
2

∥∥x− x0∥∥2
2
)
〈
x− x0, d

〉
In)B

= exp(− 1
2

∥∥x− x0∥∥2
2
)(x− x0)T dAB.

There are any forms of the product rule depending on the structure of the product.
For example, the product of two scalar-valued function, or to matrix-valued functions,
or one scalar-valued and one matrix-valued function. But all of these product rules
have the same general form that can easily be derived from the definition of the
derivative. We give one such product rule for two matrix-valued functions.

Theorem 2.6 (Product Rule for Matrix-valued Functions). Let Z be a normed
linear space and let Fi : Z → Rn×n, i = 1, 2, be such that both are differentiable at
z ∈ Z. Then the mapping G : Z→ Rn×n given by G(z) := F1(z)F2(z) is differentiable
at z with

G′(z)(D) = [F ′1(z)(D)]F2(z) + F1(z)[F ′2(z)(D)].

Proof.

F1(z + ∆z)F2(z + ∆z)

= (F1(z) + F ′1(z)(∆z) + o1(‖∆z‖))(F2(z) + F ′2(z)(∆z) + o2(‖∆z‖))
= F1(z)F2(z) + F ′1(z)(∆z)F2(z) + F1(z)F ′2(z)(∆z) + o(‖∆z‖).

3. The Derivative of the Determinant. The determinant mapping gives us
our first nontrivial mapping from Rn×n to R. The formula for the derivative is called
Jacobi’s formula. In a sense, this derivative should be “easy” since the determinant
of a matrix is just a polynomial in the entries of the matrix. The standard way to
compute the derivative of the determinant is to use Laplace’s formula: given X =
(xij) ∈ Rn×n, we have for all i0, j0 ∈ {1, 2, . . . , n} that

det(X) =

n∑
i=1

xij0(−1)i+j0 det(X(i, j0)) =

n∑
j=1

xi0j(−1)i0+j det(X(i0, j)) ,

where X(i, j) ∈ R(n−1)×(n−1) is the matrix obtained from X by deleting the ith row
and jth column. This formula immediately tells us that

∂ det(X)

∂xij
= (−1)i+j det(X(i, j)) ∀ i, j ∈ {1, 2, . . . , n}.

Consequently, the derivative of the determinant can be written in terms of the classical
adjoint of X:

adj(A) :=
(
(−1)i+j det(X(i, j))

)T
.

That is,

(det(·))′(X)(D) = tr (adj(X)D) =
〈
adj(X)T , D

〉
F
.
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This can also be written in differential notation as

ddet(X) =
〈
adj(X)T , dX

〉
F
,

which more explicitly describes how to apply the chain rule. The differential notation
also tells us that the gradient of det at X is adj(X)T , i.e. ∇ det(X) = adj(X)T . That
is, adj(X)T is the embedding of det(X)′ into Rn×n under the duality pairing given by
the Frobenious inner product 〈A, B〉F = tr

(
ATB

)
.

The determinate is the unique multilinear form on the columns (or rows) whose
value at the identity is 1. Determinants have a much longer history than do matrices
themselves since they were derived to solve linear systems of equations long before
the invention of matrices. The culmination of this effort is what we now call Cramer’s
rule. Cramer’s rule tells us that for any A ∈ Rn×n we have

A adj(A) = adj(A)A = det(A)In.

Consequently, when det(A) 6= 0, then A−1 exists and we have

A−1 =
1

det(A)
adj(A) = det(A−1) adj(A) and

adj(A) = det(A)A−1.

In particular, when A−1 exists, we have

∇det(A) = adj(A)T = det(A)A−T .

As a brief note of caution, it is well established that the computation of a deter-
minate is, in general, a highly unstable numerical process as is the computation of
the inverse. Nonetheless, it is an extremely valuable theoretical tool.

The determinant has long been the key theoretical tool of understanding the
eigenvalues (principal, proper, ... values) of a matrix. We now use this connection to
give an alternative derivation of the derivative of the determinant. This alternative
derivation nicely illustrates a powerful approach to computing derivatives using the
connection between the Gateaux and Frechét derivatives in finite dimensions.

Recall that the characteristic polynomial of a matrix A ∈ Rn×n are given by

det(λIn −A) = λn − tr (A)λ(n−1) + · · ·+ (−1)n det(A).

We use this fact to derive the derivative of the determinate on the nonsingular matrices
using the formula for the Gateaux derivative.

Let A ∈ Rn×n be nonsingular. Given D ∈ Rn×n and t ∈ R \ {0}, set λ := t−1.
The characteristic polynomial formula tells us that

det(A+ tD) = det(tA(t−1I − (−A−1D))

= tn det(A) det(λI − (−A−1D))

= tn det(A)(λn + tr
(
A−1D

)
λ(n−1) + ...

= det(A)(1 + tr
(
A−1D

)
t+ t2(stuff)

= det(A) + det(A)tr
(
A−1D

)
t+ t2(stuff)

= det(A) + t
〈
det(A)A−T , D

〉
+ t2(stuff).
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Consequently, the Gateaux derivative, and hence the derivative, is given by

∇ det(A) = det(A)A−T .

An interesting consequence of this representation is that if Ak → A with the members
of the sequence {Ak} all nonsingular, then

adj(A) = lim
k

det(Ak)A−1k

even when A is singular! In this way we recover from our the second derivation of the
derivative the full representation of the derivative even at singular matrices.

4. More Derivative Examples. In this section we provide a few more exam-
ples of derivative computations.

4.1. X−1. Since the eigenvalues of a matrix are continuous functions of the ma-
trix entries, the set of nonsingular matrices is open in Rn×n. Hence one can apply the
standard approach to computing the derivative of the inverse. However, I will take a
more powerful approach that highlights some of the ideas I am trying to illustrate in
these notes. This approach uses the Banach Lemma which makes use of the spectral
radius: given A ∈ Rn×n, the spectral radius of A is the maximum modulus of its
spectrum,

ρ(A) := max {|λ| | det(λ−A) = 0} .

Lemma 4.1 (Banach Lemma). Given A ∈ Rn×n, if ρ(A) < 1, then (I − A)−1

exists and is given by the geometric series

(I −A)−1 = I +A+A2 +A3 + . . . .

In addition, we have

1

1 + ρ(A)
≤ ρ((I −A)−1) ≤ 1

1− ρ(A)
.

The derivative of the inverse mapping now easily follows. Let GLn(R) denote the
set of real nonsingular n × n matrices. This set is called the general linear group of
degree n over R. It is an open subset of Rn×n. Define Φ : GLn(R) → GLn(R) by
Φ(A) := A−1. Let A ∈ GLn(R) and ∆A ∈ Rn×n be such that ρ(A−1∆A) < 1, then

(A+ ∆A)−1 = (A(I +A−1∆A))−1

= (I +A−1∆A)−1A−1

= (I −A−1∆A) + o(‖∆A‖))A−1 (Banach Lemma)

= A−1 −A−1∆AA−1 + o(‖∆A‖).

(4.1)

Consequently,

Φ′(A)(D) = −A−1DA−1 (4.2)

and

dΦ(A) = −A−1dAA−1.
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This result has numerous applications. For example, let X ∈ Rm×n consider the
mapping φ : Sm → Sn

φ(V ) := XTV −1X.

Since that map W 7→ XTWX is linear, the derivative formula above tells us that

φ′(V )(D) = −XTV −1DV −1X (4.3)

and

dφ(V ) = −XTV −1(dV )V −1X.

At the outset of this section it was stated that the Banach Lemma approach was
more powerful than the standard approach to the computation of the derivative of the
inverse mapping. The reason for this is that it gives a power series expansion in terms
of ∆A and consequently it shows that the inverse mapping is infinitely differentiable
and gives a formulas for all of its derivatives. Let’s see how we obtain the second
derivative.

Let X and Y be two normed linear spaces. A mapping Q : X × X → Y is said
to be a bilinear form from X to Y if it is linear in each argument separately: for all
(xi, zj) ∈ X× X, i = 1, 2, and α, β, γ, δ ∈ R

Q(αx1 + βx2, γz1 + δz2) = αQ(x1, γz1 + δz2) + βQ(x2, γz1 + δz2)

= γQ(αx1 + βx2, z1) + δQ(αx1 + βx2, z2).

The bilinear form Q is said to be symmetric if Q(x, z) = Q(z, x). Let B[X,Y] denote
the set of all continuous bilinear forms from X to Y. If Y = R, the bilinear forms are
called quadratic forms.

Example 4.2. Given A ∈ Rm×n, B ∈ Rn×n, and C ∈ Rn×k, the mapping
Q : Rn×n × Rn×n → Rm×k given by

Q(X,Z) = AXBZC

is a bilinear form in B[Rn×n,Rm×k]. This bilinear form is a a quadratic form if
m = k = 1, and it is symmetric if m = k = 1, A = C and B ∈ Sn.

Definition 4.3 (Second Derivative). Let F : X → Y we say that F is twice
differentiable at x if F is differentiable at x and there is a bilinear form Q ∈ Q[X,Y]
such that

lim
z→x

‖F (z)− (F (z) + F ′(x)(z − x) + 1
2
Q(z − x, z − x))‖

‖y − x‖2
= 0.

We call Q the second derivative of F at x and write Q = F ′′(x).
One can also define the second derivative by defining it to be the derivative of the

derivative. For this approach, recall that F ′(x) ∈ L[X,Y] and so F ′ : X → L[X,Y].
Consequently, F ′′(x) ∈ L [X,L[X,Y]], F ′′(x)(D) ∈ L[X,Y], and F ′′(x)(D1)(D2) ∈ Y.
In particular, F ′′(x) yields a bilinear form from X to Y and so the two approaches
are equivalent in this sense, but they may give different representations for the same
mapping which we call second derivative. In practice, one usually takes the derivative
of the derivative to get the second derivative, but there are cases where the appropriate
quadratic form presents itself for free due to the way the function is defined.
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By applying the Banach Lemma, we obtain an instance where the quadratic form
associated with the second derivatve is obtained for “free”. Following the derivative
computations in (4.1), we have

(A+ ∆A)−1 = (A(I +A−1∆A))−1

= (I +A−1∆A)−1A−1

= (I −A−1∆A) +A−1∆A) + o(‖∆A‖2))A−1 (Banach Lemma)

= A−1 −A−1∆AA−1 +A−1∆AA−1∆AA−1 + o(‖∆A‖2).

(4.4)

Consequently,

Φ′′(A)(D,D) = 2A−1DA−1DA−1.

We now compute the second derivative by differentiating the derivative. We do
this by applying the product rule to the derivative formula. Recall that the derivative
of Φ(A) = A−1 is given in (4.2). We can write this expression as the product of two
functions Φ′(A)(D1) = F1(A)F2(A), where F1(A) := −A−1D1 and F2(A) := A−1

with the variable D1 considered to be fixed. We have

F ′1(A)(D2) = A−1D2A
−1D1 and

F ′2(A)(D2) = −A−1D2A
−1.

Consequently,

Φ′′(A)(D1)(D2) = (A−1D2A
−1D1)(A−1) + (−A−1D1)(−A−1D2A

−1),

so that

Φ′′(V )(D)(D) = 2A−1DA−1DA−1

as desired.

4.2. ln det(X). The natural log of the determinant, or log-det function, appears
in many application particularly in statistics. The first concern is choosing a suitable
domain for the log-det function. Since the logarithm is only defined over the real
number, one must restrict X to have positive determinant, and, since the eigenvalues
of a matrix are continuous functions of the matrix entries, the set of matrices with
positive determinant is open. In addition, the component functions of the classical
adjoint are polynomials in the matrix entries so that the partials of the gradient are
continuous functions of the matrix entries. Therefore, one can directly apply the chain
rule to the log-det at any matrix having positive determinant to obtain the derivative
of the log-det at that point: for A ∈ Rn×n with det(A) > 0, we have

∇(ln det(·))(A) = A−T .

In many applications, the ambient space is Sn rather than Rn×n. This is also an
inner product space under the Frobenious inner product, and if A symmetric so is
adj(A). Hence the derivative of det(A) is again adj(A), and now∇(ln det(·))(A) = A−1

whenever det(A) > 0 due to symmetry. In most applications of log-det on Sn, one
restricts the application of log-det to the open convex cone Sn++ of real symmetric
positive definite matrices whose closure is Sn+ the cone of real symmetric positive
semidefinite matrices. The log-det is well defined on Sn++.
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In this context, an important application is the map ψ : Sm → R ∪ {+∞} given
by

ψ(V ) :=

{
ln det(XTV −1X) , V ∈ Sn++

+∞ , otherwise,

where X ∈ Rm×n is such that ker(X) = {0}. Since ker(X) = {0}, it is easily seen
that XTV −1X ∈ Sn++ whenever V ∈ Sm++. By combining the results of this section
and those of the previous section and using the fact that tr

(
ATB

)
= tr

(
BAT

)
for all

A,B ∈ Rm×n, the chain rule yields

ψ′(V )(D) =
〈
∇(ln det(·))(XTV −1X), (XT (·)−1X)′(V )(D)

〉
=
〈
(XTV −1X)−1, −XTV −1DV −1X

〉
= −tr

(
(XTV −1X)−1XTV −1DV −1X

)
= −tr

(
V −1X(XTV −1X)−1XTV −1D

)
=
〈
−V −1X(XTV −1X)−1XTV −1, D

〉
,

which tells us that

∇ψ(V ) = −V −1X(XTV −1X)−1XTV −1.

Observe that ∇ψ(V ) ∈ Sm as it should be.

An expression for the second derivative is obtained by applying the product rule
to ∇ψ(V ): for V ∈ Sn++ and D ∈ Sn,

(∇ψ(·))′(V )(D) = V −1DV −1X(XTV −1X)−1XV −1 + V −1X(XTV −1X)−1XTV −1DV −1

− V −1X(XTV −1X)−1XV −1DV −1X(XTV −1X)−1XV −1.

Hence,

ψ′′(V )(D)(D) = 〈(∇ψ(·))′(V )(D), D〉
= tr

(
V −1X(XTV −1X)−1XTV −1DV −1D

)
+ tr

(
V −1DV −1X(XTV −1X)−1XV −1D

)
− tr

(
V −1X(XTV −1X)−1XV −1DV −1X(XTV −1X)−1XV −1D

)
= tr

(
2V −1X(XTV −1X)−1XV −1DV −1D

−V −1X(XTV −1X)−1XV −1DV −1X(XTV −1X)−1XV −1D
)

= tr
(

2(V −1/2QV −1/2DV −1/2)(V −1/2D)− (V −1/2QV −1/2DV −1/2)Q(V −1/2D)
)

= tr
(

(V −1/2QV −1/2DV −1/2)[2I −Q](V −1/2D)
)
,

where Q := V −1/2X(XTV −1X)−1XV −1/2 is easily seen to be the orthogonal projec-
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tion onto Ran
(
V −1/2X

)
. Hence

ψ′′(V )(D)(D) = tr
(

(V −1/2QV −1/2DV −1/2)[2I −Q](V −1/2D)
)

= tr
(

(V −1/2Q2V −1/2DV −1/2)[2I −Q](V −1/2D)
)

= tr
(

(V −1/2DV −1/2Q)T [2I −Q](V −1/2DV −1/2Q)
)

= tr
(
ZT [2I −Q]Z

)
=

n∑
j=1

zTj [2I −Q]zj ,

where Z := V −1/2DV −1/2Q whose jth column is zj , j = 1, . . . , n. Since Q is an
orthogonal projection, for all z ∈ Rn,

zT [2I −Q]z = 2 ‖z‖22 − ‖Qz‖
2
2 = 2 ‖(I −Q)z‖22 + ‖Qz‖22 = ‖(I −Q)z‖22 + ‖z‖22 ≥ 0

with equality if and only if z = 0. That is, 2I −Q ∈ Sn++. Hence,

ψ′′(V )(D)(D) ≥ 0 ∀D ∈ Sn

with equality if and only if D = 0, or equivalently, the quadratic form ψ′′(V )(·)(·)
is positive definite on Sn++. In particular, this implies that the function ψ is strictly
convex on Sn.

Remark 4.4. For further illusrtations of matrix differentiation , see my notes
Meta-Analysis Variance Estimators in Mixed Effects Models.
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