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Matrix Secant Methods
We now consider Newton-Like methods of a special type. In a
Newton-Like method the iteration scheme takes the form

xk+1 := xk −M−1k g(xk),
where Mk is meant to approximate g′(xk). In the one dimensional
case, a choice of particular note is the secant approximation

Mk = g(xk−1)−g(xk)
xk−1−xk

.

With this approximation one has
g′(xk)

−1 −M−1k = g(xk−1)−[g(xk)+g′(xk)(xk−1−xk)]
g′(xk)[g(xk−1)−g(xk)]

.

Also, near a point x∗ at which g′ is non–singular there exists an α > 0
such that α ‖x− y‖ ≤ ‖g(x)− g(y)‖ , so

∥∥g′(xk)−1 −M−1k

∥∥ ≤ L
2 ‖xk−1 − xk‖

2

α ‖g′(xk)‖ ‖xk−1 − xk‖
≤ K ‖xk−1 − xk‖

for some constant K > 0 whenever xk and xk−1 are sufficiently close
to x∗. Therefore, the secant method is locally two step quadratically
convergent to a non–singular solution of the equation g(x) = 0. An
additional advantage of this approach is that no extra function
evaluations are required to obtain the approximation Mk.
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Unfortunately, the secant approximation

(?) Mk =
g(xk−1)− g(xk)
xk−1 − xk

is meaningless in the n > 1 dimensional case since division by vectors
is undefined. However, this can be rectified by simply writing

Mk(xk−1 − xk) = g(xk−1)− g(xk).

This equation is called the Matrix Secant Equation (MSE) or the
Quasi-Newton Equation (QNE) at xk and it determines Mk along an
n dimensional manifold in Rn×n. Thus equation (?) is not enough to
uniquely determine Mk since (?) is n linear equations in n2 unknowns.
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Consequently, we may place further conditions on the update Mk if
we wish to do so. In order to see what further properties one would
like the update to possess, let us consider an overall iteration scheme
based on

(??) xk+1 := xk −M−1k g(xk).

At every iteration we have (xk,Mk) and compute xk+1 by (?). Then
Mk+1 is constructed to satisfy (MSE).
If Mk is close to g′(xk) and xk+1 is close to xk, then Mk+1 should be
chosen not only to satisfy (?) but also to be as “close” to Mk as
possible. In what sense should we mean “close” here?
In order to facilitate the computations it is reasonable to mean
“algebraically” close in the sense that Mk+1 is only a rank 1
modification of Mk, i.e. there are vectors u, v ∈ Rn such that

Mk+1 =Mk + uvT.



Broyden’s update

Mk+1 =Mk + uvT

Define
sk := xk+1 − xk and yk := g(xk+1)− g(xk).

Multiply the matrix update by sk and use the MSE Mk+1sk = yk to
obtain

yk =Mk+1sk =Mksk + uvTsk.

Hence, if vTsk 6= 0, we obtain

u =
yk −Mksk

vTsk
and Mk+1 =Mk +

(yk −Mksk)v
T

vTsk
.

This equation determines a class of rank one updates that satisfy the
MSE by choosing v ∈ Rn so that vTsk 6= 0. An obvious choice for v is
sk 6= 0 yielding the Broyden update

Mk+1 =Mk =
(yk −Mksk)s

T
k

sT
ksk

.



Optimality of Broyden’s Update

Theorem: Let A ∈ Rn×n, s, y ∈ Rn, s 6= 0. The Broyden update

A+ = A+
(y −As)sT

sTs

is the unique solution to the problem

min{‖B −A‖ : Bs = y}.

Proof:

‖A+ −A‖ = ‖ (y −As)s
T

sTs
‖ = ‖(B −A)ss

T

sTs
‖

≤ ‖B −A‖ ‖ss
T

sTs
‖ ≤ ‖B −A‖.



Broyden’s Method
Algorithm:
Initialization: x0 ∈ Rn, M0 ∈ Rn×n

Having (xk,Mk) compute (xk+1,Mx+1) as follows:
Solve Mksk = −g(xk) for sk and set

xk+1 : = xk + sk

yk : = g(xk)− g(xk+1)

Mk+1 : = Mk +
(yk −Mksk)s

T
k

sT
ksk

.

Inverse Updating: M−1k =Wk where

Wk+1 :=Wk +
(sk −Wkyk)s

T
kWk

sT
kWkyk
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Matrix Secant Methods for Optimization

P : minimize
x∈Rn

f(x)

where f : Rn → R is C2.
Goals:
1. Since Mk is intended to approximate ∇2f(xk) it is desirable

that Mk be symmetric.
2. Since we are concerned with minimization, then at least

locally one can assume the second-order sufficiency
condition holds. Consequently, we would like the Mk’s to
be positive definite.

The Broyden update fails these conditions.
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The BFGS Update

Suppose M ∈ Sn++ and s, y ∈ Rn \ {0}.
Find M ∈ Sn++ so that Ms = y.

Assume M = LLT and M = JJT where both L, J ∈ Rn×n are
nonsingular.

The MSE implies that if
JTs = v then Jv = y.

Our approach is the apply the Broyden update to J and L
giving

J = L+
(y − Lv)vT

vTv
.

Hence,

v = JTs = LTs+
v(y − Lv)Ts

vTv
.

Hence v = αLTs for some α ∈ R.
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The BFGS Update

Substituting this expression for v back in gives

αLTs = LTs+
αLTs(y − αLLTs)Ts

α2sTLLTs
.

Hence
α2 =

[
sTy

sTMs

]
.

That is, J exists only if sTy > 0 in which case

J = L+
(y − αMs)sTL

αsTMs
, with α =

[
sTy

sTMs

]1/2
,

yielding

M =M +
yyT

yTs
− MssTM

sTMs
.



sTy > 0

In the iterative context

s = sk = −λkM−1k ∇f(xk) and y = yk = ∇f(xk+1)−∇f(xk).

So

yTs = yT
ksk = ∇f(xk+1)

Tsk −∇f(xk)Tsk
= λk∇f(xk + λkdk)

Tdk − λk∇f(xk)Tdk
= λk(∇f(xk + λkdk)

Tdk −∇f(xk)Tdk),

where dk := −M−1k ∇f(xk). Since Mk is positive definite the
direction dk is a descent direction for f at xk and so λk > 0.
Thus, we need to show that λk > 0 can be chosen so that

∇f(xk + λkdk)
Tdk ≥ β∇f(xk)Tdk

for some β ∈ (0, 1).



The Inverse BFGS Update

M−1k =Wk

=W +
(s−Wy)sT + s(s−Wy)T

yTs
− (s−Wy)TyssT

(yTs)2
.


