Matrix Secant Methods

Matrix Secant Methods

We now consider Newton-Like methods of a special type. In a Newton-Like method the iteration scheme takes the form

$$
x_{k+1}:=x_{k}-M_{k}^{-1} g\left(x_{k}\right),
$$

where M_{k} is meant to approximate $g^{\prime}\left(x_{k}\right)$. In the one dimensional case, a choice of particular note is the secant approximation

$$
M_{k}=\frac{g\left(x_{k-1}\right)-g\left(x_{k}\right)}{x_{k-1}-x_{k}} .
$$

With this approximation one has

$$
g^{\prime}\left(x_{k}\right)^{-1}-M_{k}^{-1}=\frac{g\left(x_{k-1}\right)-\left[g\left(x_{k}\right)+g^{\prime}\left(x_{k}\right)\left(x_{k-1}-x_{k}\right)\right]}{g^{\prime}\left(x_{k}\right)\left[g\left(x_{k-1}\right)-g\left(x_{k}\right)\right]} .
$$

Also, near a point x^{*} at which g^{\prime} is non-singular there exists an $\alpha>0$ such that $\alpha\|x-y\| \leq\|g(x)-g(y)\|$, so

$$
\left\|g^{\prime}\left(x_{k}\right)^{-1}-M_{k}^{-1}\right\| \leq \frac{\frac{L}{2}\left\|x_{k-1}-x_{k}\right\|^{2}}{\alpha\left\|g^{\prime}\left(x_{k}\right)\right\|\left\|x_{k-1}-x_{k}\right\|} \leq K\left\|x_{k-1}-x_{k}\right\|
$$

for some constant $K>0$ whenever x_{k} and x_{k-1} are sufficiently close to x^{*}. Therefore, the secant method is locally two step quadratically convergent to a non-singular solution of the equation $g(x)=0$. An additional advantage of this approach is that no extra function evaluations are required to obtain the approximation M_{k}.

Matrix Secant Methods

Unfortunately, the secant approximation

$$
(\star) \quad M_{k}=\frac{g\left(x_{k-1}\right)-g\left(x_{k}\right)}{x_{k-1}-x_{k}}
$$

is meaningless in the $n>1$ dimensional case since division by vectors is undefined. However, this can be rectified by simply writing

$$
M_{k}\left(x_{k-1}-x_{k}\right)=g\left(x_{k-1}\right)-g\left(x_{k}\right)
$$

This equation is called the Matrix Secant Equation (MSE) or the Quasi-Newton Equation (QNE) at x_{k} and it determines M_{k} along an n dimensional manifold in $\mathbf{R}^{n \times n}$. Thus equation (\star) is not enough to uniquely determine M_{k} since (\star) is n linear equations in n^{2} unknowns.

Matrix Secant Methods

Consequently, we may place further conditions on the update M_{k} if we wish to do so. In order to see what further properties one would like the update to possess, let us consider an overall iteration scheme based on

$$
(\star \star) \quad x_{k+1}:=x_{k}-M_{k}^{-1} g\left(x_{k}\right) .
$$

At every iteration we have $\left(x_{k}, M_{k}\right)$ and compute x_{k+1} by (\star). Then M_{k+1} is constructed to satisfy (MSE).
If M_{k} is close to $g^{\prime}\left(x_{k}\right)$ and x_{k+1} is close to x_{k}, then M_{k+1} should be chosen not only to satisfy (\star) but also to be as "close" to M_{k} as possible. In what sense should we mean "close" here?
In order to facilitate the computations it is reasonable to mean "algebraically" close in the sense that M_{k+1} is only a rank 1 modification of M_{k}, i.e. there are vectors $u, v \in \mathbf{R}^{n}$ such that

$$
M_{k+1}=M_{k}+u v^{\top}
$$

Broyden's update

$$
M_{k+1}=M_{k}+u v^{\top}
$$

Define

$$
s_{k}:=x_{k+1}-x_{k} \text { and } y_{k}:=g\left(x_{k+1}\right)-g\left(x_{k}\right) .
$$

Multiply the matrix update by s_{k} and use the MSE $M_{k+1} s_{k}=y_{k}$ to obtain

$$
y_{k}=M_{k+1} s_{k}=M_{k} s_{k}+u v^{\top} s_{k} .
$$

Hence, if $v^{\top} s_{k} \neq 0$, we obtain

$$
u=\frac{y_{k}-M_{k} s_{k}}{v^{\boldsymbol{\top}} s_{k}} \text { and } M_{k+1}=M_{k}+\frac{\left(y_{k}-M_{k} s_{k}\right) v^{\top}}{v^{\top} s_{k}}
$$

This equation determines a class of rank one updates that satisfy the MSE by choosing $v \in \mathbf{R}^{n}$ so that $v^{\boldsymbol{\top}} s_{k} \neq 0$. An obvious choice for v is $s_{k} \neq 0$ yielding the Broyden update

$$
M_{k+1}=M_{k}=\frac{\left(y_{k}-M_{k} s_{k}\right) s_{k}^{\top}}{s_{k}^{\top} s_{k}} .
$$

Optimality of Broyden's Update

Theorem: Let $A \in \mathbf{R}^{n \times n}, s, y \in \mathbf{R}^{n}, s \neq 0$. The Broyden update

$$
A_{+}=A+\frac{(y-A s) s^{\top}}{s^{\top} s}
$$

is the unique solution to the problem

$$
\min \{\|B-A\|: B s=y\}
$$

Proof:

$$
\begin{aligned}
\left\|A_{+}-A\right\| & =\left\|\frac{(y-A s) s^{\top}}{s^{\top} s}\right\|=\left\|(B-A) \frac{s s^{\top}}{s^{\top} s}\right\| \\
& \leq\|B-A\|\left\|\frac{s s^{\top}}{s^{\top} s}\right\| \leq\|B-A\| .
\end{aligned}
$$

Broyden's Method

Algorithm:

Initialization: $x_{0} \in \mathbf{R}^{n}, M_{0} \in \mathbf{R}^{n \times n}$
Having (x_{k}, M_{k}) compute (x_{k+1}, M_{x+1}) as follows:
Solve $M_{k} s_{k}=-g\left(x_{k}\right)$ for s_{k} and set

$$
\begin{aligned}
x_{k+1}: & =x_{k}+s_{k} \\
y_{k}: & =g\left(x_{k}\right)-g\left(x_{k+1}\right) \\
M_{k+1}: & =M_{k}+\frac{\left(y_{k}-M_{k} s_{k}\right) s_{k}^{\top}}{s_{k}^{\top} s_{k}} .
\end{aligned}
$$

Broyden's Method

Algorithm:

Initialization: $x_{0} \in \mathbf{R}^{n}, M_{0} \in \mathbf{R}^{n \times n}$
Having (x_{k}, M_{k}) compute (x_{k+1}, M_{x+1}) as follows:
Solve $M_{k} s_{k}=-g\left(x_{k}\right)$ for s_{k} and set

$$
\begin{aligned}
x_{k+1}: & =x_{k}+s_{k} \\
y_{k}: & =g\left(x_{k}\right)-g\left(x_{k+1}\right) \\
M_{k+1}: & =M_{k}+\frac{\left(y_{k}-M_{k} s_{k}\right) s_{k}^{\top}}{s_{k}^{\top} s_{k}} .
\end{aligned}
$$

Inverse Updating: $M_{k}^{-1}=W_{k}$ where

$$
W_{k+1}:=W_{k}+\frac{\left(s_{k}-W_{k} y_{k}\right) s_{k}^{\top} W_{k}}{s_{k}^{\top} W_{k} y_{k}}
$$

Matrix Secant Methods for Optimization

$$
\mathcal{P}: \operatorname{minimize}_{x \in \mathbf{R}^{n}}
$$

where $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is C^{2}.
Goals:

1. Since M_{k} is intended to approximate $\nabla^{2} f\left(x_{k}\right)$ it is desirable that M_{k} be symmetric.
2. Since we are concerned with minimization, then at least locally one can assume the second-order sufficiency condition holds. Consequently, we would like the M_{k} 's to be positive definite.

Matrix Secant Methods for Optimization

$$
\mathcal{P}: \operatorname{minimize}_{x \in \mathbf{R}^{n}}
$$

where $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is C^{2}.
Goals:

1. Since M_{k} is intended to approximate $\nabla^{2} f\left(x_{k}\right)$ it is desirable that M_{k} be symmetric.
2. Since we are concerned with minimization, then at least locally one can assume the second-order sufficiency condition holds. Consequently, we would like the M_{k} 's to be positive definite.

The Broyden update fails these conditions.

The BFGS Update

Suppose $M \in \mathcal{S}_{++}^{n}$ and $s, y \in \mathbf{R}^{n} \backslash\{0\}$.
Find $\bar{M} \in \mathcal{S}_{++}^{n}$ so that $\bar{M} s=y$.

The BFGS Update

Suppose $M \in \mathcal{S}_{++}^{n}$ and $s, y \in \mathbf{R}^{n} \backslash\{0\}$.
Find $\bar{M} \in \mathcal{S}_{++}^{n}$ so that $\bar{M} s=y$.
Assume $M=L L^{T}$ and $\bar{M}=J J^{T}$ where both $L, J \in \mathbf{R}^{n \times n}$ are nonsingular.

The MSE implies that if

$$
J^{\top} s=v \quad \text { then } \quad J v=y
$$

Our approach is the apply the Broyden update to J and L giving

$$
J=L+\frac{(y-L v) v^{\top}}{v^{\top} v}
$$

Hence,

$$
v=J^{\top} s=L^{\top} s+\frac{v(y-L v)^{\top} s}{v^{\top} v}
$$

Hence $v=\alpha L^{\top} s$ for some $\alpha \in \mathbf{R}$.

The BFGS Update

Substituting this expression for v back in gives

$$
\alpha L^{\top} s=L^{\top} s+\frac{\alpha L^{\top} s\left(y-\alpha L L^{\top} s\right)^{\top} s}{\alpha^{2} s^{\top} L L^{\top} s}
$$

Hence

$$
\alpha^{2}=\left[\frac{s^{\top} y}{s^{\top} M s}\right]
$$

That is, J exists only if $s^{\top} y>0$ in which case

$$
J=L+\frac{(y-\alpha M s) s^{\top} L}{\alpha s^{\top} M s}, \quad \text { with } \quad \alpha=\left[\frac{s^{\top} y}{s^{\top} M s}\right]^{1 / 2}
$$

yielding

$$
\bar{M}=M+\frac{y y^{\top}}{y^{\top} s}-\frac{M s s^{\top} M}{s^{\top} M s} .
$$

$s^{\top} y>0$

In the iterative context
$s=s_{k}=-\lambda_{k} M_{k}^{-1} \nabla f\left(x_{k}\right) \quad$ and $\quad y=y_{k}=\nabla f\left(x_{k+1}\right)-\nabla f\left(x_{k}\right)$.
So

$$
\begin{aligned}
y^{\top} s=y_{k}^{\top} s_{k} & =\nabla f\left(x_{k+1}\right)^{\top} s_{k}-\nabla f\left(x_{k}\right)^{\top} s_{k} \\
& =\lambda_{k} \nabla f\left(x_{k}+\lambda_{k} d_{k}\right)^{\top} d_{k}-\lambda_{k} \nabla f\left(x_{k}\right)^{\top} d_{k} \\
& =\lambda_{k}\left(\nabla f\left(x_{k}+\lambda_{k} d_{k}\right)^{\top} d_{k}-\nabla f\left(x_{k}\right)^{\top} d_{k}\right),
\end{aligned}
$$

where $d_{k}:=-M_{k}^{-1} \nabla f\left(x_{k}\right)$. Since M_{k} is positive definite the direction d_{k} is a descent direction for f at x_{k} and so $\lambda_{k}>0$. Thus, we need to show that $\lambda_{k}>0$ can be chosen so that

$$
\nabla f\left(x_{k}+\lambda_{k} d_{k}\right)^{\top} d_{k} \geq \beta \nabla f\left(x_{k}\right)^{\top} d_{k}
$$

for some $\beta \in(0,1)$.

The Inverse BFGS Update

$$
\begin{aligned}
M_{k}^{-1} & =W_{k} \\
& =W+\frac{(s-W y) s^{\top}+s(s-W y)^{\top}}{y^{\top} s}-\frac{(s-W y)^{\top} y s s^{\top}}{\left(y^{\top} s\right)^{2}} .
\end{aligned}
$$

