◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

We now consider Newton-Like methods of a special type. In a Newton-Like method the iteration scheme takes the form

$$x_{k+1} := x_k - M_k^{-1} g(x_k),$$

where M_k is meant to approximate $g'(x_k)$. In the one dimensional case, a choice of particular note is the secant approximation

$$M_k = \frac{g(x_{k-1}) - g(x_k)}{x_{k-1} - x_k}$$

With this approximation one has

$$g'(x_k)^{-1} - M_k^{-1} = \frac{g(x_{k-1}) - [g(x_k) + g'(x_k)(x_{k-1} - x_k)]}{g'(x_k)[g(x_{k-1}) - g(x_k)]}.$$

Also, near a point x^* at which g' is non–singular there exists an $\alpha > 0$ such that $\alpha ||x - y|| \le ||g(x) - g(y)||$, so

$$\left\|g'(x_k)^{-1} - M_k^{-1}\right\| \le \frac{\frac{L}{2} \|x_{k-1} - x_k\|^2}{\alpha \|g'(x_k)\| \|x_{k-1} - x_k\|} \le K \|x_{k-1} - x_k\|$$

for some constant K > 0 whenever x_k and x_{k-1} are sufficiently close to x^* . Therefore, the secant method is locally two step quadratically convergent to a non-singular solution of the equation g(x) = 0. An additional advantage of this approach is that no extra function evaluations are required to obtain the approximation M_k .

Unfortunately, the secant approximation

(*)
$$M_k = \frac{g(x_{k-1}) - g(x_k)}{x_{k-1} - x_k}$$

is meaningless in the n > 1 dimensional case since division by vectors is undefined. However, this can be rectified by simply writing

$$M_k(x_{k-1} - x_k) = g(x_{k-1}) - g(x_k).$$

This equation is called the Matrix Secant Equation (MSE) or the Quasi-Newton Equation (QNE) at x_k and it determines M_k along an n dimensional manifold in $\mathbf{R}^{n \times n}$. Thus equation (\star) is not enough to uniquely determine M_k since (\star) is n linear equations in n^2 unknowns.

Consequently, we may place further conditions on the update M_k if we wish to do so. In order to see what further properties one would like the update to possess, let us consider an overall iteration scheme based on

$$(\star\star) \qquad x_{k+1} := x_k - M_k^{-1}g(x_k).$$

At every iteration we have (x_k, M_k) and compute x_{k+1} by (\star) . Then M_{k+1} is constructed to satisfy (MSE). If M_k is close to $g'(x_k)$ and x_{k+1} is close to x_k , then M_{k+1} should be chosen not only to satisfy (\star) but also to be as "close" to M_k as possible. In what sense should we mean "close" here? In order to facilitate the computations it is reasonable to mean "algebraically" close in the sense that M_{k+1} is only a rank 1 modification of M_k , i.e. there are vectors $u, v \in \mathbf{R}^n$ such that

$$M_{k+1} = M_k + uv^{\mathsf{T}}.$$

Broyden's update

$$M_{k+1} = M_k + uv^{\mathsf{T}}$$

Define

$$s_k := x_{k+1} - x_k$$
 and $y_k := g(x_{k+1}) - g(x_k)$.

Multiply the matrix update by s_k and use the MSE $M_{k+1}s_k = y_k$ to obtain

$$y_k = M_{k+1}s_k = M_k s_k + uv^\mathsf{T} s_k.$$

Hence, if $v^{\mathsf{T}} s_k \neq 0$, we obtain

$$u = \frac{y_k - M_k s_k}{v^{\mathsf{T}} s_k}$$
 and $M_{k+1} = M_k + \frac{(y_k - M_k s_k)v^{\mathsf{T}}}{v^{\mathsf{T}} s_k}$.

This equation determines a class of rank one updates that satisfy the MSE by choosing $v \in \mathbf{R}^n$ so that $v^{\mathsf{T}} s_k \neq 0$. An obvious choice for v is $s_k \neq 0$ yielding the *Broyden update*

$$M_{k+1} = M_k = \frac{(y_k - M_k s_k) s_k^\mathsf{T}}{s_k^\mathsf{T} s_k}.$$

ション ふゆ さい シャリン しょうくしゃ

Optimality of Broyden's Update

Theorem: Let $A \in \mathbf{R}^{n \times n}$, $s, y \in \mathbf{R}^n$, $s \neq 0$. The Broyden update

$$A_+ = A + \frac{(y - As)s^\mathsf{T}}{s^\mathsf{T}s}$$

is the unique solution to the problem

$$\min\{\|B - A\| : Bs = y\}.$$

Proof:

$$||A_{+} - A|| = ||\frac{(y - As)s^{\mathsf{T}}}{s^{\mathsf{T}}s}|| = ||(B - A)\frac{ss^{\mathsf{T}}}{s^{\mathsf{T}}s}||$$

$$\leq ||B - A|| ||\frac{ss^{\mathsf{T}}}{s^{\mathsf{T}}s}|| \leq ||B - A||.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

Broyden's Method

Algorithm:

Initialization: $x_0 \in \mathbf{R}^n$, $M_0 \in \mathbf{R}^{n \times n}$ Having (x_k, M_k) compute (x_{k+1}, M_{x+1}) as follows: Solve $M_k s_k = -g(x_k)$ for s_k and set

$$x_{k+1}: = x_k + s_k$$

$$y_k: = g(x_k) - g(x_{k+1})$$

$$M_{k+1}: = M_k + \frac{(y_k - M_k s_k) s_k^{\mathsf{T}}}{s_k^{\mathsf{T}} s_k}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Broyden's Method

Algorithm:

Initialization: $x_0 \in \mathbf{R}^n$, $M_0 \in \mathbf{R}^{n \times n}$ Having (x_k, M_k) compute (x_{k+1}, M_{x+1}) as follows: Solve $M_k s_k = -g(x_k)$ for s_k and set

$$x_{k+1}: = x_k + s_k$$

$$y_k: = g(x_k) - g(x_{k+1})$$

$$M_{k+1}: = M_k + \frac{(y_k - M_k s_k)s_k^{\mathsf{T}}}{s_k^{\mathsf{T}} s_k}$$

Inverse Updating: $M_k^{-1} = W_k$ where

$$W_{k+1} := W_k + \frac{(s_k - W_k y_k) s_k^{\mathsf{T}} W_k}{s_k^{\mathsf{T}} W_k y_k}$$

うして ふゆ く 山 マ ふ し マ う く し マ

Matrix Secant Methods for Optimization

 $\mathcal{P}: \min_{x \in \mathbf{R}^n} f(x)$

where $f : \mathbf{R}^n \to \mathbf{R}$ is C^2 .

Goals:

- 1. Since M_k is intended to approximate $\nabla^2 f(x_k)$ it is desirable that M_k be symmetric.
- 2. Since we are concerned with minimization, then at least locally one can assume the second-order sufficiency condition holds. Consequently, we would like the M_k 's to be positive definite.

うして ふゆ く 山 マ ふ し マ う く し マ

Matrix Secant Methods for Optimization

 $\mathcal{P}: \min_{x \in \mathbf{R}^n} f(x)$

where $f : \mathbf{R}^n \to \mathbf{R}$ is C^2 .

Goals:

- 1. Since M_k is intended to approximate $\nabla^2 f(x_k)$ it is desirable that M_k be symmetric.
- 2. Since we are concerned with minimization, then at least locally one can assume the second-order sufficiency condition holds. Consequently, we would like the M_k 's to be positive definite.

The Broyden update fails these conditions.

The BFGS Update

Suppose $M \in \mathcal{S}_{++}^n$ and $s, y \in \mathbf{R}^n \setminus \{0\}$. Find $\overline{M} \in \mathcal{S}_{++}^n$ so that $\overline{M}s = y$.

The BFGS Update

Suppose $M \in \mathcal{S}_{++}^n$ and $s, y \in \mathbf{R}^n \setminus \{0\}$. Find $\overline{M} \in \mathcal{S}_{++}^n$ so that $\overline{M}s = y$.

Assume $M = LL^T$ and $\overline{M} = JJ^T$ where both $L, J \in \mathbf{R}^{n \times n}$ are nonsingular.

The MSE implies that if

$$J^{\mathsf{T}}s = v$$
 then $Jv = y$.

Our approach is the apply the Broyden update to J and L giving

$$J = L + \frac{(y - Lv)v^{\mathsf{T}}}{v^{\mathsf{T}}v}$$

Hence,

$$v = J^{\mathsf{T}}s = L^{\mathsf{T}}s + \frac{v(y - Lv)^{\mathsf{T}}s}{v^{\mathsf{T}}v}.$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Hence $v = \alpha L^{\mathsf{T}} s$ for some $\alpha \in \mathbf{R}$.

The BFGS Update

Substituting this expression for v back in gives

$$\alpha L^{\mathsf{T}}s = L^{\mathsf{T}}s + \frac{\alpha L^{\mathsf{T}}s(y - \alpha LL^{\mathsf{T}}s)^{\mathsf{T}}s}{\alpha^2 s^{\mathsf{T}}LL^{\mathsf{T}}s}.$$

Hence

$$\alpha^2 = \left[\frac{s^{\mathsf{T}}y}{s^{\mathsf{T}}Ms}\right].$$

That is, J exists only if $s^{\mathsf{T}}y > 0$ in which case

$$J = L + \frac{(y - \alpha M s) s^{\mathsf{T}} L}{\alpha s^{\mathsf{T}} M s}, \quad \text{with} \quad \alpha = \left[\frac{s^{\mathsf{T}} y}{s^{\mathsf{T}} M s}\right]^{1/2},$$

yielding

$$\overline{M} = M + \frac{yy^{\mathsf{T}}}{y^{\mathsf{T}}s} - \frac{Mss^{\mathsf{T}}M}{s^{\mathsf{T}}Ms}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

 $s^{\mathsf{T}}y > 0$

In the iterative context

 $s = s_k = -\lambda_k M_k^{-1} \nabla f(x_k)$ and $y = y_k = \nabla f(x_{k+1}) - \nabla f(x_k)$. So

$$y^{\mathsf{T}}s = y_k^{\mathsf{T}}s_k = \nabla f(x_{k+1})^{\mathsf{T}}s_k - \nabla f(x_k)^{\mathsf{T}}s_k$$

= $\lambda_k \nabla f(x_k + \lambda_k d_k)^{\mathsf{T}}d_k - \lambda_k \nabla f(x_k)^{\mathsf{T}}d_k$
= $\lambda_k (\nabla f(x_k + \lambda_k d_k)^{\mathsf{T}}d_k - \nabla f(x_k)^{\mathsf{T}}d_k),$

where $d_k := -M_k^{-1} \nabla f(x_k)$. Since M_k is positive definite the direction d_k is a descent direction for f at x_k and so $\lambda_k > 0$. Thus, we need to show that $\lambda_k > 0$ can be chosen so that

$$\nabla f(x_k + \lambda_k d_k)^{\mathsf{T}} d_k \ge \beta \nabla f(x_k)^{\mathsf{T}} d_k$$

for some $\beta \in (0, 1)$.

The Inverse BFGS Update

$$\begin{split} M_k^{-1} &= W_k \\ &= W + \frac{(s - Wy)s^{\mathsf{T}} + s(s - Wy)^{\mathsf{T}}}{y^{\mathsf{T}}s} - \frac{(s - Wy)^{\mathsf{T}}yss^{\mathsf{T}}}{(y^{\mathsf{T}}s)^2}. \end{split}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで