Newton's Method

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Equation Solving

 \mathcal{E} : Given $g: \mathbf{E} \to \mathbf{E}$ continuously differentiable, find $x \in \mathbf{E}$ for which g(x) = 0.

Equation Solving

 \mathcal{E} : Given $g: \mathbf{E} \to \mathbf{E}$ continuously differentiable, find $x \in \mathbf{E}$ for which g(x) = 0.

Newton's Approach:

Given an approximate solution $x_0 \in \mathbf{E}$ to \mathcal{E} and wishes to improve upon it. If \overline{x} is an actual solution to \mathcal{E} , then

$$0 = g(\overline{x}) = g(x_0) + g'(x_0)(\overline{x} - x_0) + o \|\overline{x} - x_0\|.$$

Thus, if x_0 is "close" to \overline{x} , it is reasonable to suppose that the solution to the linearized system

$$0 = g(x_0) + g'(x_0)(x - x_0)$$

うして ふゆ く は く は く む く し く

is even closer.

Equation Solving

 \mathcal{E} : Given $g: \mathbf{E} \to \mathbf{E}$ continuously differentiable, find $x \in \mathbf{E}$ for which g(x) = 0.

Newton's Approach:

Given an approximate solution $x_0 \in \mathbf{E}$ to \mathcal{E} and wishes to improve upon it. If \overline{x} is an actual solution to \mathcal{E} , then

$$0 = g(\overline{x}) = g(x_0) + g'(x_0)(\overline{x} - x_0) + o \|\overline{x} - x_0\|.$$

Thus, if x_0 is "close" to \overline{x} , it is reasonable to suppose that the solution to the linearized system

$$0 = g(x_0) + g'(x_0)(x - x_0)$$

is even closer.

To implement Newton's method we need conditions under which solving this equation is meaningful. In particular, we assume that $g'(x_0)$ is nonsingular.

Newton and Newton Like Iterations

The Newton iteration:

$$x_{k+1} := x_k - [g'(x_i)]^{-1}g(x_k).$$

The associated search direction

$$d := -[g'(x_k)]^{-1}g(x_k).$$

is called the Newton direction.

We analyze the convergence behavior of this scheme under the additional assumption that only an approximation to $g'(x_k)$ is available.

Denote the approximation to $g'(x_k)$ by J_k . The Newton-Like iteration scheme:

$$x_{k+1} := x_k - J_k^{-1} g(x_k).$$

うして ふゆ く は く は く む く し く

Theorem: Let $g : \mathbf{R}^n \to \mathbf{R}^n$ be differentiable, $x_0 \in \mathbf{R}^n$, and $J_0 \in \mathbf{R}^{n \times n}$. Suppose that there exists \bar{x} , $x_0 \in \mathbf{R}^n$, and $\epsilon > 0$ with $||x_0 - \bar{x}|| < \epsilon$ such that

1. $g(\bar{x}) = 0$, 2. $g'(x)^{-1}$ exists for $x \in B(\bar{x}; \epsilon)$ with

$$\sup\{\|g'(x)^{-1}\|: x \in B(\overline{x}; \epsilon)\} \le M_1$$

うして ふゆ く は く は く む く し く

3. g' is Lipschitz continuous on $c\ell B(\overline{x}; \epsilon)$ with Lipschitz constant L, and

4.
$$\theta_0 := \frac{LM_1}{2} ||x_0 - \overline{x}|| + M_0 K < 1$$
 where
 $K \ge ||(g'(x_0)^{-1} - J_0^{-1})y^0||, y^0 := g(x^0)/||g(x^0)||, \text{ and}$
 $M_0 = \max\{||g'(x)|| : x \in B(\overline{x}; \epsilon)\}.$

Further suppose that iteration $x_{k+1} := x_k - J_k^{-1}g(x_k)$ is initiated at x_0 where the J_k 's are chosen to satisfy one of the following conditions;

(i)
$$||(g'(x_k)^{-1} - J_k^{-1})y_k|| \le K$$
,
(ii) $||(g'(x_k)^{-1} - J_k^{-1})y_k|| \le \theta_1^k K$ for some $\theta_1 \in (0, 1)$,
(iii) $||(g'(x_k)^{-1} - J_k^{-1})y_k|| \le \min\{M_2 ||x_k - x_{k-1}||, K\}$, for some $M_2 > 0$, or
(iv) $||(g'(x_k)^{-1} - J_k^{-1})y_k|| \le \min\{M_2 ||g(x_k)||, K\}$, for some

うして ふゆ く は く は く む く し く

 $M_3 > 0,$

where for each $k = 1, 2, ..., y_k := g(x_k) / ||g(x_k)||.$

These hypotheses on the accuracy of the approximations J_k yield the following conclusions about the rate of convergence of the iterates x_k .

- (a) If (i) holds, then $x_k \to \overline{x}$ linearly.
- (b) If (ii) holds, then $x_k \to \overline{x}$ superlinearly.
- (c) If (iii) holds, then $x_k \to \overline{x}$ two step quadratically.
- (d) If (iv) holds, then $x_i \to \overline{x}$ quadratically.

Proof: We begin by establishing the basic inequalities

(*)
$$||x_{k+1} - \overline{x}|| \le \frac{LM_1}{2} ||x_k - \overline{x}||^2 + ||(g'(x_k)^{-1} - J_k^{-1})g(x_k)||,$$

and

$$(\star\star) \quad \|x_{k+1} - \overline{x}\| \le \theta_0 \|x_k - \overline{x}\|$$

and the inclusion $x_{k+1} \in B(\bar{x}; \epsilon)$ by induction on k. For k = 0 we have

$$\begin{aligned} x_1 - \overline{x} &= x_0 - \overline{x} - g'(x_0)^{-1}g(x_0) + [g'(x_0)^{-1} - J_0^{-1}]g(x_0) \\ &= g'(x_0)^{-1}[g(\overline{x}) - (g(x_0) + g'(x_0)(\overline{x} - x_0))] \\ &+ [g'(x_0)^{-1} - J_0^{-1}]g(x_0), \end{aligned}$$

since $g'(x_0)^{-1}$ exists by the hypotheses. Consequently, the hypotheses (1)–(4) plus the quadratic bound lemma imply that

$$\begin{aligned} \|x_{k+1} - \overline{x}\| &\leq \|g'(x_0)^{-1}\| \|g(\overline{x}) - (g(x_0) + g'(x_0)(\overline{x} - x_0)) \\ &+ \|(g'(x_0)^{-1} - J_0^{-1})g(x_0)\| \| \end{aligned}$$

$$||x_{k+1} - \overline{x}|| \le ||g'(x_0)^{-1}|| ||g(\overline{x}) - (g(x_0) + g'(x_0)(\overline{x} - x_0))|| + ||(g'(x_0)^{-1} - J_0^{-1})g(x_0)||$$

$$\leq \frac{M_1 L}{2} \|x_0 - \overline{x}\|^2 + K \|g(x_0) - g(\overline{x})\|$$

$$\leq \frac{M_1 L}{2} \|x_0 - \overline{x}\|^2 + M_0 K \|x_0 - \overline{x}\|$$

$$\leq \theta_0 \|x_0 - \overline{x}\| < \epsilon,$$

whereby the induction is established for k = 0.

Next suppose that the induction hypothesis holds for $k = 0, 1, \ldots, s - 1$. We show that it holds at k = s. Since $x_s \in B(\overline{x}, \epsilon)$, hypotheses (2)–(4) hold at x_s , one can proceed exactly as in the case k = 0 to obtain (\star). Now if any one of (i)–(iv) holds, then (i) holds. Thus, by (\star), we find that

$$\begin{aligned} \|x_{s+1} - \overline{x}\| &\leq \frac{M_1 L}{2} \|x_s - \overline{x}\|^2 + \|(g'(x_s)^{-1} - J_s^{-1})g(x_s)\| \\ &\leq [\frac{M_1 L}{2} \theta_0^s \|x_0 - \overline{x}\| + M_0 K] \|x_s - \overline{x}\| \\ &\leq [\frac{M_1 L}{2} \|x_0 - \overline{x}\| + M_0 K] \|x_s - \overline{x}\| \\ &= \theta_0 \|x_s - \overline{x}\|. \end{aligned}$$

Hence $||x_{s+1} - \overline{x}|| \le \theta_0 ||x_s - \overline{x}|| \le \theta_0 \epsilon < \epsilon$ and so $x_{s+1} \in B(\overline{x}, \epsilon)$.

(a) If
$$||(g'(x_k)^{-1} - J_k^{-1})y_k|| \le K$$
 holds, then $x_k \to \overline{x}$ linearly.

(b) If $||(g'(x_k)^{-1} - J_k^{-1})y_k|| \le \theta_1^k K$ for some $\theta_1 \in (0, 1)$ holds, then $x_k \to \overline{x}$ superlinearly.

Proof:

$$\begin{aligned} \|x_{k+1} - \overline{x}\| &\leq \frac{LM_1}{2} \|x_k - \overline{x}\|^2 + \|(g'(x_k)^{-1} - J_k^{-1})g(x_k)\| \\ &\leq \frac{LM_1}{2} \|x_k - \overline{x}\|^2 + \theta_1^k K \|g(x_k)\| \\ &\leq [\frac{LM_1}{2} \theta_0^k \|x_0 - \overline{x}\| + \theta_1^k M_0 K] \|x_k - \overline{x}\| \end{aligned}$$

Hence $x_k \to \overline{x}$ superlinearly.

(d) If $||(g'(x_k)^{-1} - J_k^{-1})y_k|| \le \min\{M_2 ||g(x_k)||, K\}$, for some $M_3 > 0$ holds, then $x_k \to \overline{x}$ quadratically.

Proof: Again by (\star) and the fact that $x_k \to \bar{x}$, we eventually have

$$\begin{aligned} \|x_{k+1} - \overline{x}\| &\leq \frac{LM_1}{2} \|x_k - \overline{x}\|^2 + \|(g'(x_k)^{-1} - J_k^{-1})g(x_k)\| \\ &\leq \frac{LM_1}{2} \|x_k - \overline{x}\|^2 + M_2 \|g(x_k)\|^2 \\ &\leq [\frac{LM_1}{2} + M_2 M_0^2] \|x_k - \overline{x}\|^2 . \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

Newton's Method for Minimization

Theorem: Let $f : \mathbf{R}^n \to \mathbf{R}$ be twice differentiable, $x_0 \in \mathbf{R}^n$, and $H_0 \in \mathbf{R}^{n \times n}$. Suppose that

- 1. there exists $\overline{x} \in \mathbf{R}^n$ and $\epsilon > ||x_0 \overline{x}||$ such that $f(\overline{x}) \leq f(x)$ whenever $||x \overline{x}|| \leq \epsilon$,
- 2. there is a $\delta > 0$ such that $\delta ||z||_2^2 \le z^T \nabla^2 f(x) z$ for all $x \in B(\overline{x}, \epsilon)$,
- 3. $\nabla^2 f$ is Lipschitz continuous on $\operatorname{cl} B(\overline{x}; \epsilon)$ with Lipschitz constant L, and
- 4. $\theta_0 := \frac{L}{2\delta} \|x_0 \overline{x}\| + M_0 K < 1$ where $M_0 > 0$ satisfies $z^T \nabla^2 f(x) z \le M_0 \|z\|_2^2$ for all $x \in B(\overline{x}, \epsilon)$ and $K \ge \|(\nabla^2 f(x_0)^{-1} - H_0^{-1})y^0\|$ with $y^0 = \nabla f(x^0) / \|\nabla f(x^0)\|$.

Newton's Method for Minimization

Further, suppose that the iteration

$$x_{k+1} := x_k - H_k^{-1} \nabla f(x_k)$$

is initiated at x_0 where the H_k 's are chosen to satisfy one of the following conditions:

(i)
$$\|(\nabla^2 f(x_k)^{-1} - H_k^{-1})y_k\| \le K$$
,
(ii) $\|(\nabla^2 f(x_k)^{-1} - H_k^{-1})y_k\| \le \theta_1^k K$ for some $\theta_1 \in (0, 1)$,
(iii) $\|(\nabla^2 f(x_k)^{-1} - H_k^{-1})y_k\| \le \min\{M_2 \|x_k - x_{k-1}\|, K\}$, for
some $M_2 > 0$, or
(iv) $\|(\nabla^2 f(x_k)^{-1} - H_k^{-1})y_k\| \le \min\{M_2 \|\nabla f(x_k)\|, K\}$, for some
 $M_3 > 0$,

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

where for each $k = 1, 2, \dots y_k := \nabla f(x_k) / \|\nabla f(x_k)\|$.

These hypotheses on the accuracy of the approximations H_k yield the following conclusions about the rate of convergence of the iterates x_k .

うして ふゆ く は く は く む く し く

- (a) If (i) holds, then $x_k \to \overline{x}$ linearly.
- (b) If (ii) holds, then $x_k \to \overline{x}$ superlinearly.
- (c) If (iii) holds, then $x_{\epsilon} \to \overline{x}$ two step quadratically.
- (d) If (iv) holds, then $x_k \to \overline{k}$ quadradically.

Newton's Method: Example

Let $f(x) = x^2 + e^x$. Then $f'(x) = 2x + e^x$, $f''(x) = 2 + e^x$, $f'''(x) = e^x$. Given $x_0 = 1$ we may take L = 2, $M_0 = 4$, and $M_1 = \frac{1}{2}$. Hence the pure Newton strategy should converge to $\overline{x} \approx -0.3517337$ with

$$||x_k - \overline{x}|| \le 2(.676)^{2^k}$$

The actual interates are given in the following table.

x	f'(x)		
1	4.7182818		
0	1		
-1/3	.0498646		
3516893	.00012		
3517337	.00000000064		

うして ふゆ く は く は く む く し く

Convergence of Steepest Descent with Backtracking

K	X	f(x)	f'(x)	s
0	1	.37182818	4.7182818	0
1	0	1	1	0
2	5	.8565307	-0.3934693	1
3	25	.8413008	0.2788008	2
4	375	.8279143	0627107	3
5	34075	.8273473	.0297367	5
6	356375	.8272131	01254	6
7	3485625	.8271976	.0085768	7
8	3524688	.8271848	001987	8
9	3514922	.8271841	.0006528	10
10	3517364	.827184	0000072	12

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ