Newton's Method

Equation Solving

$\mathcal{E}:$ Given $g: \mathbf{E} \rightarrow \mathbf{E}$ continuously differentiable, find $x \in \mathbf{E}$ for which $g(x)=0$.

Equation Solving

$\mathcal{E}:$ Given $g: \mathbf{E} \rightarrow \mathbf{E}$ continuously differentiable, find $x \in \mathbf{E}$ for which $g(x)=0$.

Newton's Approach:
Given an approximate solution $x_{0} \in \mathbf{E}$ to \mathcal{E} and wishes to improve upon it. If \bar{x} is an actual solution to \mathcal{E}, then

$$
0=g(\bar{x})=g\left(x_{0}\right)+g^{\prime}\left(x_{0}\right)\left(\bar{x}-x_{0}\right)+o\left\|\bar{x}-x_{0}\right\| .
$$

Thus, if x_{0} is "close" to \bar{x}, it is reasonable to suppose that the solution to the linearized system

$$
0=g\left(x_{0}\right)+g^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)
$$

is even closer.

Equation Solving

$\mathcal{E}:$ Given $g: \mathbf{E} \rightarrow \mathbf{E}$ continuously differentiable, find $x \in \mathbf{E}$ for which $g(x)=0$.

Newton's Approach:
Given an approximate solution $x_{0} \in \mathbf{E}$ to \mathcal{E} and wishes to improve upon it. If \bar{x} is an actual solution to \mathcal{E}, then

$$
0=g(\bar{x})=g\left(x_{0}\right)+g^{\prime}\left(x_{0}\right)\left(\bar{x}-x_{0}\right)+o\left\|\bar{x}-x_{0}\right\| .
$$

Thus, if x_{0} is "close" to \bar{x}, it is reasonable to suppose that the solution to the linearized system

$$
0=g\left(x_{0}\right)+g^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)
$$

is even closer.
To implement Newton's method we need conditions under which solving this equation is meaningful. In particular, we assume that $g^{\prime}\left(x_{0}\right)$ is nonsingular.

Newton and Newton Like Iterations

The Newton iteration:

$$
x_{k+1}:=x_{k}-\left[g^{\prime}\left(x_{i}\right)\right]^{-1} g\left(x_{k}\right) .
$$

The associated search direction

$$
d:=-\left[g^{\prime}\left(x_{k}\right)\right]^{-1} g\left(x_{k}\right)
$$

is called the Newton direction.
We analyze the convergence behavior of this scheme under the additional assumption that only an approximation to $g^{\prime}\left(x_{k}\right)$ is available.

Denote the approximation to $g^{\prime}\left(x_{k}\right)$ by J_{k}. The Newton-Like iteration scheme:

$$
x_{k+1}:=x_{k}-J_{k}^{-1} g\left(x_{k}\right)
$$

Convergence of Newton's Method

Theorem: Let $g: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be differentiable, $x_{0} \in \mathbf{R}^{n}$, and $J_{0} \in \mathbf{R}^{n \times n}$. Suppose that there exists $\bar{x}, x_{0} \in \mathbf{R}^{n}$, and $\epsilon>0$ with $\left\|x_{0}-\bar{x}\right\|<\epsilon$ such that

1. $g(\bar{x})=0$,
2. $g^{\prime}(x)^{-1}$ exists for $x \in B(\bar{x} ; \epsilon)$ with

$$
\sup \left\{\left\|g^{\prime}(x)^{-1}\right\|: x \in B(\bar{x} ; \epsilon)\right] \leq M_{1}
$$

3. g^{\prime} is Lipschitz continuous on $c \ell B(\bar{x} ; \epsilon)$ with Lipschitz constant L, and
4. $\theta_{0}:=\frac{L M_{1}}{2}\left\|x_{0}-\bar{x}\right\|+M_{0} K<1$ where

$$
K \geq\left\|\left(g^{\prime}\left(x_{0}\right)^{-1}-J_{0}^{-1}\right) y^{0}\right\|, y^{0}:=g\left(x^{0}\right) /\left\|g\left(x^{0}\right)\right\|, \text { and }
$$

$$
M_{0}=\max \left\{\left\|g^{\prime}(x)\right\|: x \in B(\bar{x} ; \epsilon)\right\}
$$

Convergence of Newton's Method

Further suppose that iteration $x_{k+1}:=x_{k}-J_{k}^{-1} g\left(x_{k}\right)$ is initiated at x_{0} where the J_{k} 's are chosen to satisfy one of the following conditions;
(i) $\left\|\left(g^{\prime}\left(x_{k}\right)^{-1}-J_{k}^{-1}\right) y_{k}\right\| \leq K$,
(ii) $\left\|\left(g^{\prime}\left(x_{k}\right)^{-1}-J_{k}^{-1}\right) y_{k}\right\| \leq \theta_{1}^{k} K$ for some $\theta_{1} \in(0,1)$,
(iii) $\left\|\left(g^{\prime}\left(x_{k}\right)^{-1}-J_{k}^{-1}\right) y_{k}\right\| \leq \min \left\{M_{2}\left\|x_{k}-x_{k-1}\right\|, K\right\}$, for some $M_{2}>0$, or
(iv) $\left\|\left(g^{\prime}\left(x_{k}\right)^{-1}-J_{k}^{-1}\right) y_{k}\right\| \leq \min \left\{M_{2}\left\|g\left(x_{k}\right)\right\|, K\right\}$, for some $M_{3}>0$,
where for each $k=1,2, \ldots, y_{k}:=g\left(x_{k}\right) /\left\|g\left(x_{k}\right)\right\|$.

Convergence of Newton's Method

These hypotheses on the accuracy of the approximations J_{k} yield the following conclusions about the rate of convergence of the iterates x_{k}.
(a) If (i) holds, then $x_{k} \rightarrow \bar{x}$ linearly.
(b) If (ii) holds, then $x_{k} \rightarrow \bar{x}$ superlinearly.
(c) If (iii) holds, then $x_{k} \rightarrow \bar{x}$ two step quadratically.
(d) If (iv) holds, then $x_{i} \rightarrow \bar{x}$ quadratically.

Convergence of Newton's Method

Proof: We begin by establishing the basic inequalities

$$
(\star) \quad\left\|x_{k+1}-\bar{x}\right\| \leq \frac{L M_{1}}{2}\left\|x_{k}-\bar{x}\right\|^{2}+\left\|\left(g^{\prime}\left(x_{k}\right)^{-1}-J_{k}^{-1}\right) g\left(x_{k}\right)\right\|,
$$

and

$$
(\star \star) \quad\left\|x_{k+1}-\bar{x}\right\| \leq \theta_{0}\left\|x_{k}-\bar{x}\right\|
$$

and the inclusion $x_{k+1} \in B(\bar{x} ; \epsilon)$ by induction on k. For $k=0$ we have

$$
\begin{aligned}
x_{1}-\bar{x}= & x_{0}-\bar{x}-g^{\prime}\left(x_{0}\right)^{-1} g\left(x_{0}\right)+\left[g^{\prime}\left(x_{0}\right)^{-1}-J_{0}^{-1}\right] g\left(x_{0}\right) \\
= & g^{\prime}\left(x_{0}\right)^{-1}\left[g(\bar{x})-\left(g\left(x_{0}\right)+g^{\prime}\left(x_{0}\right)\left(\bar{x}-x_{0}\right)\right)\right] \\
& \quad+\left[g^{\prime}\left(x_{0}\right)^{-1}-J_{0}^{-1}\right] g\left(x_{0}\right),
\end{aligned}
$$

since $g^{\prime}\left(x_{0}\right)^{-1}$ exists by the hypotheses. Consequently, the hypotheses (1)-(4) plus the quadratic bound lemma imply that

$$
\begin{array}{r}
\left\|x_{k+1}-\bar{x}\right\| \leq\left\|g^{\prime}\left(x_{0}\right)^{-1}\right\| \| g(\bar{x})-\left(g\left(x_{0}\right)+g^{\prime}\left(x_{0}\right)\left(\bar{x}-x_{0}\right)\right) \\
+\left\|\left(g^{\prime}\left(x_{0}\right)^{-1}-J_{0}^{-1}\right) g\left(x_{0}\right)\right\| \|
\end{array}
$$

Convergence of Newton's Method

$$
\begin{aligned}
\left\|x_{k+1}-\bar{x}\right\| \leq & \left\|g^{\prime}\left(x_{0}\right)^{-1}\right\|\left\|g(\bar{x})-\left(g\left(x_{0}\right)+g^{\prime}\left(x_{0}\right)\left(\bar{x}-x_{0}\right)\right)\right\| \\
& \quad+\left\|\left(g^{\prime}\left(x_{0}\right)^{-1}-J_{0}^{-1}\right) g\left(x_{0}\right)\right\| \\
\leq & \frac{M_{1} L}{2}\left\|x_{0}-\bar{x}\right\|^{2}+K\left\|g\left(x_{0}\right)-g(\bar{x})\right\| \\
\leq & \frac{M_{1} L}{2}\left\|x_{0}-\bar{x}\right\|^{2}+M_{0} K\left\|x_{0}-\bar{x}\right\| \\
\leq & \theta_{0}\left\|x_{0}-\bar{x}\right\|<\epsilon
\end{aligned}
$$

whereby the induction is established for $k=0$.

Convergence of Newton's Method

Next suppose that the induction hypothesis holds for $k=0,1, \ldots, s-1$. We show that it holds at $k=s$. Since $x_{s} \in B(\bar{x}, \epsilon)$, hypotheses (2)-(4) hold at x_{s}, one can proceed exactly as in the case $k=0$ to obtain (\star). Now if any one of (i)-(iv) holds, then (i) holds. Thus, by (\star), we find that

$$
\begin{aligned}
\left\|x_{s+1}-\bar{x}\right\| & \leq \frac{M_{1} L}{2}\left\|x_{s}-\bar{x}\right\|^{2}+\left\|\left(g^{\prime}\left(x_{s}\right)^{-1}-J_{s}^{-1}\right) g\left(x_{s}\right)\right\| \\
& \leq\left[\frac{M_{1} L}{2} \theta_{0}^{s}\left\|x_{0}-\bar{x}\right\|+M_{0} K\right]\left\|x_{s}-\bar{x}\right\| \\
& \leq\left[\frac{M_{1} L}{2}\left\|x_{0}-\bar{x}\right\|+M_{0} K\right]\left\|x_{s}-\bar{x}\right\| \\
& =\theta_{0}\left\|x_{s}-\bar{x}\right\| .
\end{aligned}
$$

Hence $\left\|x_{s+1}-\bar{x}\right\| \leq \theta_{0}\left\|x_{s}-\bar{x}\right\| \leq \theta_{0} \epsilon<\epsilon$ and so $x_{s+1} \in B(\bar{x}, \epsilon)$.

Convergence of Newton's Method

(a) If $\left\|\left(g^{\prime}\left(x_{k}\right)^{-1}-J_{k}^{-1}\right) y_{k}\right\| \leq K$ holds, then $x_{k} \rightarrow \bar{x}$ linearly.
(b) If $\left\|\left(g^{\prime}\left(x_{k}\right)^{-1}-J_{k}^{-1}\right) y_{k}\right\| \leq \theta_{1}^{k} K$ for some $\theta_{1} \in(0,1)$ holds, then $x_{k} \rightarrow \bar{x}$ superlinearly.

Proof:

$$
\begin{aligned}
\left\|x_{k+1}-\bar{x}\right\| & \leq \frac{L M_{1}}{2}\left\|x_{k}-\bar{x}\right\|^{2}+\left\|\left(g^{\prime}\left(x_{k}\right)^{-1}-J_{k}^{-1}\right) g\left(x_{k}\right)\right\| \\
& \leq \frac{L M_{1}}{2}\left\|x_{k}-\bar{x}\right\|^{2}+\theta_{1}^{k} K\left\|g\left(x_{k}\right)\right\| \\
& \leq\left[\frac{L M_{1}}{2} \theta_{0}^{k}\left\|x_{0}-\bar{x}\right\|+\theta_{1}^{k} M_{0} K\right]\left\|x_{k}-\bar{x}\right\|
\end{aligned}
$$

Hence $x_{k} \rightarrow \bar{x}$ superlinearly.

Convergence of Newton's Method

(d) If $\left\|\left(g^{\prime}\left(x_{k}\right)^{-1}-J_{k}^{-1}\right) y_{k}\right\| \leq \min \left\{M_{2}\left\|g\left(x_{k}\right)\right\|, K\right\}$, for some $M_{3}>0$ holds, then $x_{k} \rightarrow \bar{x}$ quadratically.

Proof: Again by (\star) and the fact that $x_{k} \rightarrow \bar{x}$, we eventually have

$$
\begin{aligned}
\left\|x_{k+1}-\bar{x}\right\| & \leq \frac{L M_{1}}{2}\left\|x_{k}-\bar{x}\right\|^{2}+\left\|\left(g^{\prime}\left(x_{k}\right)^{-1}-J_{k}^{-1}\right) g\left(x_{k}\right)\right\| \\
& \leq \frac{L M_{1}}{2}\left\|x_{k}-\bar{x}\right\|^{2}+M_{2}\left\|g\left(x_{k}\right)\right\|^{2} \\
& \leq\left[\frac{L M_{1}}{2}+M_{2} M_{0}^{2}\right]\left\|x_{k}-\bar{x}\right\|^{2}
\end{aligned}
$$

Newton's Method for Minimization

Theorem: Let $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ be twice differentiable, $x_{0} \in \mathbf{R}^{n}$, and $H_{0} \in \mathbf{R}^{n \times n}$. Suppose that

1. there exists $\bar{x} \in \mathbf{R}^{n}$ and $\epsilon>\left\|x_{0}-\bar{x}\right\|$ such that $f(\bar{x}) \leq f(x)$ whenever $\|x-\bar{x}\| \leq \epsilon$,
2. there is a $\delta>0$ such that $\delta\|z\|_{2}^{2} \leq z^{T} \nabla^{2} f(x) z$ for all $x \in B(\bar{x}, \epsilon)$,
3. $\nabla^{2} f$ is Lipschitz continuous on $\mathrm{cl} B(\bar{x} ; \epsilon)$ with Lipschitz constant L, and
4. $\theta_{0}:=\frac{L}{2 \delta}\left\|x_{0}-\bar{x}\right\|+M_{0} K<1$ where $M_{0}>0$ satisfies

$$
z^{T} \nabla^{2} f(x) z \leq M_{0}\|z\|_{2}^{2} \text { for all } x \in B(\bar{x}, \epsilon) \text { and }
$$

$$
K \geq\left\|\left(\nabla^{2} f\left(x_{0}\right)^{-1}-H_{0}^{-1}\right) y^{0}\right\| \text { with } y^{0}=\nabla f\left(x^{0}\right) /\left\|\nabla f\left(x^{0}\right)\right\|
$$

Newton's Method for Minimization

Further, suppose that the iteration

$$
x_{k+1}:=x_{k}-H_{k}^{-1} \nabla f\left(x_{k}\right)
$$

is initiated at x_{0} where the H_{k} 's are chosen to satisfy one of the following conditions:
(i) $\left\|\left(\nabla^{2} f\left(x_{k}\right)^{-1}-H_{k}^{-1}\right) y_{k}\right\| \leq K$,
(ii) $\left\|\left(\nabla^{2} f\left(x_{k}\right)^{-1}-H_{k}^{-1}\right) y_{k}\right\| \leq \theta_{1}^{k} K$ for some $\theta_{1} \in(0,1)$,
(iii) $\left\|\left(\nabla^{2} f\left(x_{k}\right)^{-1}-H_{k}^{-1}\right) y_{k}\right\| \leq \min \left\{M_{2}\left\|x_{k}-x_{k-1}\right\|, K\right\}$, for some $M_{2}>0$, or
(iv) $\left\|\left(\nabla^{2} f\left(x_{k}\right)^{-1}-H_{k}^{-1}\right) y_{k}\right\| \leq \min \left\{M_{2}\left\|\nabla f\left(x_{k}\right)\right\|, K\right\}$, for some $M_{3}>0$,
where for each $k=1,2, \ldots y_{k}:=\nabla f\left(x_{k}\right) /\left\|\nabla f\left(x_{k}\right)\right\|$.

Newton's Method for Minimization

These hypotheses on the accuracy of the approximations H_{k} yield the following conclusions about the rate of convergence of the iterates x_{k}.
(a) If (i) holds, then $x_{k} \rightarrow \bar{x}$ linearly.
(b) If (ii) holds, then $x_{k} \rightarrow \bar{x}$ superlinearly.
(c) If (iii) holds, then $x_{\epsilon} \rightarrow \bar{x}$ two step quadratically.
(d) If (iv) holds, then $x_{k} \rightarrow \bar{k}$ quadradically.

Newton's Method: Example

Let $f(x)=x^{2}+e^{x}$. Then $f^{\prime}(x)=2 x+e^{x}, f^{\prime \prime}(x)=2+e^{x}$, $f^{\prime \prime \prime}(x)=e^{x}$. Given $x_{0}=1$ we may take $L=2, M_{0}=4$, and $M_{1}=\frac{1}{2}$. Hence the pure Newton strategy should converge to $\bar{x} \approx-0.3517337$ with

$$
\left\|x_{k}-\bar{x}\right\| \leq 2(.676)^{2^{k}}
$$

The actual interates are given in the following table.

x	$f^{\prime}(x)$
1	4.7182818
0	1
$-1 / 3$.0498646
-.3516893	.00012
-.3517337	.00000000064

Convergence of Steepest Descent with Backtracking

K	X	$f(x)$	$f^{\prime}(x)$	s
0	1	.37182818	4.7182818	0
1	0	1	1	0
2	-.5	.8565307	-0.3934693	1
3	-.25	.8413008	0.2788008	2
4	-.375	.8279143	-.0627107	3
5	-.34075	.8273473	.0297367	5
6	-.356375	.8272131	-.01254	6
7	-.3485625	.8271976	.0085768	7
8	-.3524688	.8271848	-.001987	8
9	-.3514922	.8271841	.0006528	10
10	-.3517364	.827184	-.0000072	12

