
Convex-Composite Optimization



Convex-Composite Model

We now consider problems of the form

min f(x) := h(F (x))

where h : E→ R is a closed proper convex function and
F : E→ Y is continuously differentiable.

In general, the functions h ◦ F are neither differentiable or
convex. However, the nonsmoothness is of a familiar form since
it arises from the convex function h.

Most problems from nonlinear programming can be cast in this
framework.
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Nonlinear least squares

Let F : E→ Y with m = dimY >> dimE = n and consider
the equation F (x) = 0.

Since m > n it is highly unlikely that a solution to this equation
exists. However, one might try to obtain a best approximate
solution by solving the problem

min{‖F (x)‖ : x ∈ E}.

This is a convex composite optimization problem since the norm
is a convex function.



Nonlinear convex inclusions

Let F : E→ Y with m = dimY >> dimE = n and consider
the iinclusion F (x) ∈ C where C ⊂ Y is nonempty closed cvx.

Since m > n it is again highly unlikely that a solution to this
equation exists. However, one might try to obtain a best
approximate solution by solving the problem

min{dist (F (x) |C ) : x ∈ E}.

This is a convex composite optimization problem since the
distance to a convex set is cvx.

The set C is often a cone such as Sn+ or Rk × {0}m−k.



Nonlinear Programming (NLP)

Let F : E→ Y, C ⊂ Y a non-empty closed convex set, and
f0 : E→ R, and consider the constrained optimization problem

min{f0(x) : F (x) ∈ C} = min f0(x) + δC(F (x)).

This is a convex composite optimization problem since
h(µ, y) := µ + δC(y) is cvx.



Exact Penalization

Again consider the NLP

min {f0(x) |F (x) ∈ C } = min f0(x) + δC(F (x)).

One can approximate this problem by the unconstrained
optimization problem

min{f0(x) + αdist (f(x) |C ) : x ∈ E}.

This is a convex composite optimization problem where
h(η, y) = η + αdist (y |C ) is a convex function.

The function f0(x) + αdist (f(x) |C ) is called an exact penalty
function for the problem min{f0(x) : F (x) ∈ C}.
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First-Order theory for CVX-Comp
Consider the cvx-comp objective h ◦ F . If h is finite-valued, we
know it is locally Lipschitz. Consequently,

f(y) = h(F (y)) = h(F (x) + F ′(x)(y − x)) + o(‖y − x‖).

Given d ∈ E, we can rewrite this equation as

h(F (x+ d)) = h(F (x)) + ∆f(x; d) + o(‖d‖) where
∆f(x; d) := h(F (x) + F ′(x)d)− h(F (x)).

Then, for every d ∈ E,

f ′(x; d) = lim
t↓0

f(x+ td)− f(x)

t

= lim
t↓0

∆f(x; td)

t
+
o(t)

t

= h′(F (x);F ′(x)d).
That is, f is directionally differentiable on E in all directions.
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∂f(x)

Recall the notion of regular subdifferential defined earlier for
potentially non-convex functions:

∂̂f(x) := {v | f(x) + 〈v, y − x〉 ≤ f(y) + o(‖y − x‖) ∀ y ∈ E}.

We showed that ∂̂f(x) is a closed convex set that coincides with
∂f(x) when f is convex.

When f is cvx-comp, for every v ∈ ∂̂f(x), we have

〈v, d〉 ≤ f(x+ td)− f(x)

t
=

∆f(x; td)

t
+
o(t)

t
∀ t > 0.

Hence
〈v, d〉 ≤ h′(F (x);F ′(x)d) = δ∗(F ′(x)d| ∂h(F (x))) = δ∗(d|F ′(x)∗∂h(F (x))).

So that
δ∗(d| ∂̂f(x)) ≤ δ∗(d|F ′(x)∗∂h(F (x))) =⇒ ∂̂f(x) ⊂ F ′(x)∗∂h(F (x)).
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∂f(x) = F ′(x)∗∂h(F (x))

On the other hand, we have

f(y) = h(F (x) + F ′(x)(y − x)) + o(‖y − x‖)
≥ h(F (x)) + 〈v, F ′(x)(y − x)〉+ o(‖y − x‖) ∀ v ∈ ∂h(F (x))

= f(x) + 〈F ′(x)∗v, (y − x)〉+ o(‖y − x‖) ∀ v ∈ ∂h(F (x)).

Hence,
F ′(x)∗∂h(F (x)) ⊂ ∂̂f(x) .

Consequently,

∂̂f(x) = F ′(x)∗∂h(F (x)) and f ′(x; d) = δ∗(d| ∂̂f(x)).

For this reason, when f is finite-valued cvx-comp, we write
∂f(x) instead of ∂̂f(x) and call ∂f(x) the subdifferential of f at
x.



Directional Derivative Approximation
In our development of numerical methods for minimizing convex
composite functions, we make extensive use of the difference
function

∆f(x; d) := h(F (x) + F ′(x)d)− h(F (x)).

In particular, it is often used as a surrogate for the for the
directional derivative f ′(x; d). In this respect, recall that

λ−1
1 ∆f(x;λ1d) ≤ λ−1

2 ∆f(x;λ2d) for 0 < λ1 ≤ λ2,

due to the non–decreasing nature of the difference quotients. An
important consequence of this inequality is that

f ′(x; d) = inf
t>0

t−1∆f(x; td) ≤ ∆f(x; d),

which also implies that

∆f(x; td) ≤ t∆f(x; d) ∀ t > 0.



Optimality Conditions for Cvx Comp Optimization

Theorem: Let h : Y → R be convex and F : E→ Y be
continuously differentiable. If x̄ is a local solution to the
problem min{h(F (x))}, then 0 ∈ ∂f(x̄). Moreover, the following
conditions are equivalent:
(a) 0 ∈ ∂f(x).
(b) d = 0 is a global solution to mind∈E h(F (x̄) + F ′(x̄)d).
(c) 0 ≤ h′(F (x);F ′(x)d) for all d ∈ E.
(d) 0 ≤ ∆f(x; d) for all d ∈ E.



Optimality Conditions for Cvx Comp Optimization

Proof: Let x̄ be a local solution to min{h(F (x))} and set
Ψ(d) := h(F (x̄) + F ′(x̄)d). Then 0 ≤ f ′(x̄; d) for all d ∈ E.
Since f ′(x̄; ·) = δ∗∂f(x̄), it must be the case that 0 ∈ ∂f(x).

[(a)⇐⇒ (b)] Since Ψ is convex and
∂Ψ(0) = F ′(x̄)∗∂h(F (x̄)) = ∂f(x̄), we have 0 ∈ ∂Ψ(0) so d = 0
is a global solution to mind Ψ(d).

[(a)⇐⇒ (c)] This follows from the fact that
f ′(x̄; d) = h′(F (x);F ′(x̄)d).

[(c) =⇒ (d)] Due to the convexity of Ψ,
h′(F (x);F ′(x̄)d) ≤ ∆f(x; d) for all d ∈ E so (c) implies (d).

[(d) =⇒ (b)] (d) implies that h(F (x̄)) ≤ h(F (x̄) +F ′(x̄)d) for all
d ∈ E so that (b) holds.



Line–Search Methods

Let f : E→ R and consider the problem minx f(x).

We consider iterative schemes of the form

xk+1 := xk + λkdk,

where it is intended that f(xk+1) < f(xk).

Such methods are called descent methods. The scalar λk > 0 is
called the step length and the vector dk is called the search
direction.

Observe that

{d : f ′(x; d) < 0} ⊂ {d : ∃ λ̄ > 0, s.t. f(x+λd) < f(x) ∀λ ∈ (0, λ̄)}.

Thus, one way to achieve descent is to choose the search
direction from the set {d : f ′(x0; d) < 0}.



Cauchy and Gauss-Newton search directions

The search direction dk obtained by solving

min{f ′(xk; d) : ‖d‖ ≤ 1}.

is called the direction of steepest descent, or the Cauchy
direction.

The search direction dk obtained by solving

min
‖d‖≤β

∆f(xk; d) +
1

2α
‖d‖2

is called the prox-Newton or Gauss-Newton search direction.
Here 0 < α, β ≤ ∞ with infinite values allowed.



The Backtracking line search

Consider the finite-valued cvx-comp framework f = h ◦ F . Let
c, γ ∈ (0, 1) and let xk, dk ∈ E be such that ∆f(xk; d) < 0.

Backtracking Line Search:

λk := max γs

subject to s ∈ {0, 1, 2, . . .} and

h(F (x+ γsd)) ≤ h(F (x)) + cγs∆f(xkdk).

The value λk is called the backtracking step size.



Backtracking Descent Algorithm
Algorithm: Backtracking Descent

Input: Initial point x0 ∈ E and line search parameters
c, γ ∈ (0, 1).

For: k = 1, 2, . . .

Search Direction: Let Dk ⊂ {d : ∆f(xk; d) < 0}.
If Dk = ∅ stop; otherwise choose dk ∈ Dk.
Backtracking line search:

λk := max γs

subject to s ∈ {0, 1, 2, . . .} and

h(F (x+ γsd)) ≤ h(F (x)) + cγs∆f(xkdk).

Update: Set xk+1 := xk + λkdk and k := k + 1.



Convergence of Backtracking Descent Algorithm
Theorem: Let f : E→ R be given by f(x) = h(F (x)) where
h : Y → R is convex and F : E→ Y is differentiable. Let
x0 ∈ Rn and assume that
(a) h is Lip. cont. on the set {y : h(y) ≤ h(F (x0))}, and
(b) F ′ is uniformly continuous on the set

co{x : h(F (x)) ≤ h(F (x0))}.
If {xk} is the sequence generated by the algorithm initiated at
x0, then one of the following must occur:
(i) There is a k0 such that Dk0 = ∅.
(ii) f(xk) ↓ −∞.
(iii) The sequence {‖dk‖} diverges to +∞.
(iv) For every subsequence J ⊂ N for which {dk}J is bounded,

we have
lim
J

∆f(xk; dk) = 0.



Convergence of Backtracking Descent Algorithm
Proof: Spps to the contrary that none of (i) – (iv) occur. Then
∃ J ⊂ N such that {dj}J is bounded and there is a β > 0 with

supJ ∆f(xj ; dj) ≤ −β < 0.
Since {f(xj)} is a decr. seq. that is bounded below, f(xj)→ f∗ for
some f∗ ∈ R. Consequently, (f(xj+1)− f(xj))→ 0.

The choice of λk implies that λj∆f(xj ; dj)→ 0. Therefore, λj
J→ 0 so

WLOG λj < 1 for all j ∈ J . Again, the choice of λj implies that
cλjγ

−1∆f(xj ; dj) ≤ f(xj + λjγ
−1dj)− f(xj) ∀ j ∈ J.

But, f(xj + λjγ
−1dj)− f(xj)

≤ λjγ
−1∆f(xj ; dj) +K‖F (xj + λjγ

−1dj)− (F (xj) + λjγ
−1F ′(xj)dj)‖

≤ λjγ
−1∆f(xj ; dj) +Kλjγ

−1‖dj‖
∫ 1

0
‖F ′(xj + τγ−1λjdj)− F ′(xj)‖dτ

≤ λjγ
−1{∆f(xj ; dj) +K‖dj‖ω(γ−1λj‖dj‖)]

for all j ∈ J , where K is a Lipschitz constant for h and ω is the
modulus of continuity for F ′.
Therefore,

0 < (1− c)∆f(xj ; dj) +Kω(λjγ
−1‖dj‖)‖dj‖

≤ (c− 1)β +Kω(λjγ
−1‖dj‖)‖dj‖

for all j ∈ J . Letting j ∈ J go to ∞, we obtain the contradiction
0 ≤ (c− 1)β < 0.
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Convergence of Backtracking Descent Algorithm

Corollary: Let f and {xk} be as in the statement of Theorem
and let τ ∈ (0, 1) and {δk} ⊂ (δ, δ̄) for some δ̄ ≥ δ > 0.
Suppose that
(a) f is bounded below, and
(b) Dk := {d ∈ δkB |∆f(xk; d) ≤ τ∆kf(xk)}, where

∆kf(xk) := min {∆f(xk; d) | ‖d‖ ≤ δk }.

Then every cluster, x, point of the sequence {xj} satisfies
0 ∈ ∂f(x̄).



Convergence of Backtracking Descent Algorithm

Proof: By the Theorem, ∆f(xj ; dj)→ 0 =⇒ ∆kf(xk)→ 0.
For j ∈ N, let bd j ∈ argmin {∆f(xk; d) | ‖d‖ ≤ δk }. If J ⊂ N is
such that xj

J→x we can always refine J if necessary to get that
(dj , d̄j , δj)

J→(d, d̃j , δ̃) for some d, d̃ ∈ δ̃B and δ̃ ∈ (δ, δ̄). But
then ∆f(x; d) = ∆f(x; d̃) = 0 which implies that

h(F (x) + F ′(x)d) = h(F (x) + F ′(x)d̃) = h(F (x)).

Note that

h(F (xj) + F ′(xj)d̄j) ≤ h(F (xj) + F ′(xj)d) ∀ d ∈ δ̄jB.

Hence, in the limit over J ,

h(F (x) + F ′(x)d̃) ≤ h(F (x) + F ′(x)d) ∀ d ∈ δ̃B.



Convergence of Backtracking Descent Algorithm

Consequently,

d̃ ∈ arg min{h(F (x) + F ′(x)d) : ‖d‖ ≤ δ̃}.

But h(F (x)) = h(F (x) + F ′(x)d) so that
0 ∈ arg min{h(F (x) + F ′(x)d) : ‖d‖ ≤ δ̃}.

Since h(F (x) + F ′(x)d) is convex, d = 0 is a global solution to
the problem min{h(F (x) + F ′(x)d)}. Therefore, by the
optimality condition theorem,

0 ∈ ∂f(x̄).


