Convex Analysis

Functions Taking Infinite Values

We consider functions f mapping \mathbf{E} to the extended-real-line $\overline{\mathbf{R}}=\mathbf{R} \cup\{ \pm \infty\}$.

Care must be taken when working with $\pm \infty$. In particular, we set $0 \cdot \pm \infty=0$ and will be careful to avoid the expressions $(+\infty)+(-\infty)$ throughout.

Since the primary focus of our discussion is convex functions, there is a bias between $+\infty$ and $-\infty$.

Given $f: \mathbf{E} \rightarrow \bar{R}$, the effective domain and epigraph of f are

$$
\begin{aligned}
\operatorname{dom} f & :=\{x \in \mathbf{E}: f(x)<+\infty\} \\
\operatorname{epi} f & :=\{(x, r) \in \mathbf{E} \times \mathbf{R}: f(x) \leq r\}
\end{aligned}
$$

respectively.
A function $f: \mathbf{E} \rightarrow \overline{\mathbf{R}}$ is called proper if it never takes the value $-\infty$ and $\operatorname{dom} f \neq \emptyset$.

Epigraphs

Figure: Epigraph and effective domain of the function whose value is $\max \left\{-x, \frac{1}{2} x^{2}\right\}$ for $x \in[-1,1]$ and $+\infty$ elsewhere.

Epigraphs

Figure: Epigraph and effective domain of the function whose value is $\max \left\{-x, \frac{1}{2} x^{2}\right\}$ for $x \in[-1,1]$ and $+\infty$ elsewhere.

Lemma: A function $f: \mathbf{E} \rightarrow \overline{\mathbf{R}}$ is closed (lsc) if and only if epi f is a closed set.

Convex Functions

We say that the function $f: \mathbf{E} \rightarrow \overline{\mathbf{R}}$ is convex if epi f is a convex set.

Convex Functions

We say that the function $f: \mathbf{E} \rightarrow \overline{\mathbf{R}}$ is convex if epi f is a convex set.

Lemma: $f: \mathbf{E} \rightarrow \overline{\mathbf{R}}$ is convex if and only if

$$
f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y) \quad \forall x, y \in \mathbf{E} \text { and } \lambda \in(0,1) .
$$

Convex Functions

We say that the function $f: \mathbf{E} \rightarrow \overline{\mathbf{R}}$ is convex if epi f is a convex set.

Lemma: $f: \mathbf{E} \rightarrow \overline{\mathbf{R}}$ is convex if and only if
$f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y) \quad \forall x, y \in \mathbf{E}$ and $\lambda \in(0,1)$.

Lemma: If $f: \mathbf{E} \rightarrow \overline{\mathbf{R}}$ is convex, then, for all $r \in \mathbf{R}$ the set $\{x \mid f(x) \leq r\}$ is convex.

3 Special Functions for $Q \subset \mathbf{E}$

The indicator function for Q :

$$
\delta_{Q}(x):= \begin{cases}0 & , x \in Q \\ +\infty & , x \notin Q\end{cases}
$$

The support function for Q :

$$
\delta_{Q}^{*}(x):=\sup _{v \in Q}\langle v, x\rangle .
$$

The gauge function for Q :

$$
\gamma_{Q}(x):=\inf \left\{\lambda \in \mathbf{R}_{+} \mid x \in \lambda Q\right\} .
$$

3 Special Functions for $Q \subset \mathbf{E}$

The indicator function for Q :

$$
\delta_{Q}(x):= \begin{cases}0 & , x \in Q \\ +\infty & , x \notin Q\end{cases}
$$

The support function for Q :

$$
\delta_{Q}^{*}(x):=\sup _{v \in Q}\langle v, x\rangle .
$$

The gauge function for Q :

$$
\gamma_{Q}(x):=\inf \left\{\lambda \in \mathbf{R}_{+} \mid x \in \lambda Q\right\} .
$$

(1) If $\mathbb{B} \subset \mathbf{E}$ is the closed unit ball for the norm $\|\cdot\|$, then

$$
\|\cdot\|=\delta_{\mathbb{B}^{\circ}}^{*}=\gamma_{\mathbb{B}} .
$$

3 Special Functions for $Q \subset \mathbf{E}$

The indicator function for Q :

$$
\delta_{Q}(x):= \begin{cases}0 & , x \in Q, \\ +\infty & , x \notin Q .\end{cases}
$$

The support function for Q :

$$
\delta_{Q}^{*}(x):=\sup _{v \in Q}\langle v, x\rangle
$$

The gauge function for Q :

$$
\gamma_{Q}(x):=\inf \left\{\lambda \in \mathbf{R}_{+} \mid x \in \lambda Q\right\} .
$$

(1) If $\mathbb{B} \subset \mathbf{E}$ is the closed unit ball for the norm $\|\cdot\|$, then

$$
\|\cdot\|=\delta_{\mathbb{B}^{\circ}}^{*}=\gamma_{\mathbb{B}} .
$$

(2) If $K \subset \mathbf{E}$ is a closed convex cone, then

$$
\delta_{K^{\circ}}^{*}=\delta_{K}=\gamma_{K}
$$

Epigraphical Perspective

In our study of functions $f: \mathbf{E} \rightarrow \overline{\mathbf{R}}$ we take an epigraphical perspective, that is, we study properties of a function by studying properties of its epigraph.

Epigraphical Perspective

In our study of functions $f: \mathbf{E} \rightarrow \overline{\mathbf{R}}$ we take an epigraphical perspective, that is, we study properties of a function by studying properties of its epigraph.

For example, a function is closed (lsc) if its epigraph is a closed set. Similarly, a function is convex if its epigraph is a convex set.

The primary advantages of this perspective is that it allows us to discover properties of functions through properties of sets.

Epigraphical Perspective

In our study of functions $f: \mathbf{E} \rightarrow \overline{\mathbf{R}}$ we take an epigraphical perspective, that is, we study properties of a function by studying properties of its epigraph.

For example, a function is closed (lsc) if its epigraph is a closed set. Similarly, a function is convex if its epigraph is a convex set.

The primary advantages of this perspective is that it allows us to discover properties of functions through properties of sets.

A key observation in this regard is the fact that for every $x \in \operatorname{dom} f$,

$$
f(x)=\inf _{(x, \mu) \in \mathrm{epi} f} \mu
$$

Epigraphs that are Cones

What are the functions whose epigraphs are cones?

Epigraphs that are Cones

What are the functions whose epigraphs are cones?
For $\lambda>0$, λ epi $f=$ epi f, i.e., if $(x, \mu) \in \operatorname{epi} f$ so is $(\lambda x, \lambda \mu)$ for all $\lambda \geq 0$. Hence, we can relate the values of $f(\lambda x)$ to those of $f(x)$ as follows: for $\lambda>0$,

$$
\begin{aligned}
f(\lambda x) & =\inf _{(\lambda x, \lambda \mu) \in \operatorname{epi} f} \lambda \mu \\
& =\lambda \inf _{(x, \mu) \in \lambda^{-1} \mathrm{epi} f} \mu \\
& =\lambda \inf _{(x, \mu) \in \operatorname{epi} f} \mu \\
& =\lambda f(x) .
\end{aligned}
$$

From this, it is easy to show that epi f is a cone if and only if $f(\lambda x)=\lambda f(x)$ for all $x \in \operatorname{dom} f$ and $\lambda \geq 0$.

Such functions are called positively homogeneous.

Epigraphs that are Convex Cones

If epi f is a convex cone, what can be said about f ?
We have already shown that f must be positively homogeneous. But convexity tells us that epi $f=\operatorname{epi} f+$ epi f, i.e., for every pair $(x, \mu),(y, \tau) \in \operatorname{epi} f$ we have

$$
(x, \mu)+(y, \tau)=(x+y, \mu+\tau) \in \operatorname{epi} f .
$$

Consequently,

$$
\{\mu+\tau \mid(x, \mu),(y, \tau) \in \operatorname{epi} f\} \subset\{\omega \mid(x+y, \omega) \in \operatorname{epi} f\}
$$

and so, for all $x, y \in \operatorname{dom} f$,

$$
\begin{aligned}
f(x+y) & =\inf _{(x+y, \omega) \in \operatorname{epi} f} \omega \leq \inf _{(x, \mu),(y, \tau) \in \operatorname{epi} f} \mu+\tau \\
& =\left(\inf _{(x, \mu) \in \operatorname{epi} f} \mu\right)+\left(\inf _{(y, \tau) \in \operatorname{epi} f} \tau\right)=f(x)+f(y) .
\end{aligned}
$$

Since this inequality trivially holds if either x or y is not in $\operatorname{dom} f$,

$$
f(x+y) \leq f(x)+f(y) \quad \forall x, y \in \mathbf{E} .
$$

Such functions are called subadditive. Hence functions whose epigraphs are convex cones are both positively homogeneous and subadditive. Such functions are called sublinear.

Exercise

1) Show that a the epigraph of a positively homogeneous function is a cone.
2) Show that the epigraph of a sublinear function is a convex cone.

Support Functions are Sublinear

Let $S \subset \mathbf{E}$ be nonempty and consider the support function $\delta_{S}^{*}(x)=\sup _{v \in S}\langle v, x\rangle$.
positive homogeneity: $\lambda \geq 0$,

$$
\begin{aligned}
\delta_{S}^{*}(\lambda x) & =\sup \{\langle\lambda x, v\rangle \mid v \in S\}=\lambda \sup \{\langle x, v\rangle \mid v \in S\} \\
& =\lambda \delta^{\star}(x \mid S) \quad \forall \lambda \geq 0
\end{aligned}
$$

subadditivity: $x^{1}, x^{2} \in \mathbf{E}$,

$$
\begin{aligned}
\delta_{S}^{*}\left(x^{1}+x^{2}\right) & =\sup \left\{\left\langle x^{1}+x^{2}, v\right\rangle \mid v \in S\right\} \\
& =\sup \left\{\left\langle x^{1}, v^{1}\right\rangle+\left\langle x^{2}, v^{2}\right\rangle \mid v^{1}=v^{2} \in S\right\} \\
& \leq \sup \left\{\left\langle x^{1}, v^{1}\right\rangle+\left\langle x^{2}, v^{2}\right\rangle \mid v^{1}, v^{2} \in S\right\} \\
& \leq \sup \left\{\left\langle x^{1}, v^{1}\right\rangle \mid v^{1} \in S\right\}+\sup \left\{\left\langle x^{2}, v^{2}\right\rangle \mid v^{2} \in S\right\} \\
& =\delta^{\star}\left(x^{1} \mid S\right)+\delta^{\star}\left(x^{2} \mid S\right)
\end{aligned}
$$

Support Functions are Sublinear

Let $S \subset \mathbf{E}$ be nonempty and consider the support function $\delta_{S}^{*}(x)=\sup _{v \in S}\langle v, x\rangle$.
positive homogeneity: $\lambda \geq 0$,

$$
\begin{aligned}
\delta_{S}^{*}(\lambda x) & =\sup \{\langle\lambda x, v\rangle \mid v \in S\}=\lambda \sup \{\langle x, v\rangle \mid v \in S\} \\
& =\lambda \delta^{\star}(x \mid S) \quad \forall \lambda \geq 0
\end{aligned}
$$

subadditivity: $x^{1}, x^{2} \in \mathbf{E}$,

$$
\begin{aligned}
\delta_{S}^{*}\left(x^{1}+x^{2}\right) & =\sup \left\{\left\langle x^{1}+x^{2}, v\right\rangle \mid v \in S\right\} \\
& =\sup \left\{\left\langle x^{1}, v^{1}\right\rangle+\left\langle x^{2}, v^{2}\right\rangle \mid v^{1}=v^{2} \in S\right\} \\
& \leq \sup \left\{\left\langle x^{1}, v^{1}\right\rangle+\left\langle x^{2}, v^{2}\right\rangle \mid v^{1}, v^{2} \in S\right\} \\
& \leq \sup \left\{\left\langle x^{1}, v^{1}\right\rangle \mid v^{1} \in S\right\}+\sup \left\{\left\langle x^{2}, v^{2}\right\rangle \mid v^{2} \in S\right\} \\
& =\delta^{\star}\left(x^{1} \mid S\right)+\delta^{\star}\left(x^{2} \mid S\right)
\end{aligned}
$$

Are sublinear functions support functions?

Convexity and Optimization

Strict Convexity: A convex function $f: \mathbf{E} \rightarrow \overline{\mathbf{R}}$ is said to be strictly convex if
$f((1-\lambda) x+\lambda y)<(1-\lambda) f(x)+\lambda f(y) \quad \forall x, y \in \operatorname{dom} f, \lambda \in(0,1)$ with $x \neq y$.

Theorem: Let $f: \mathbf{E} \rightarrow \overline{\mathbf{R}}$ be convex. If $\bar{x} \in \operatorname{dom} f$ is a local solution to the problem $\min f(x)$, then \bar{x} is a global optimal solution. Moreover, if f is strictly convex, then the global optimal solution is unique.

Convexity and Optimization

Proof: If $f(\bar{x})=-\infty$ we are done, so assume that $-\infty<f(\bar{x})$. Suppose there is a $\widehat{x} \in \mathbf{R}^{n}$ with $f(\widehat{x})<f(\bar{x})$. Let $\epsilon>0$ be such that $f(\bar{x}) \leq f(x)$ whenever $\|x-\bar{x}\| \leq \epsilon$.
Set $\lambda:=\epsilon(2\|\bar{x}-\widehat{x}\|)^{-1}$ and $x_{\lambda}:=\bar{x}+\lambda(\widehat{x}-\bar{x})$. Then
$\left\|x_{\lambda}-\bar{x}\right\| \leq \epsilon / 2$ and

$$
f\left(x_{\lambda}\right) \leq(1-\lambda) f(\bar{x})+\lambda f(\widehat{x})<f(\bar{x})
$$

This contradiction implies no such \widehat{x} exists.

Convexity and Optimization

Proof: If $f(\bar{x})=-\infty$ we are done, so assume that $-\infty<f(\bar{x})$. Suppose there is a $\widehat{x} \in \mathbf{R}^{n}$ with $f(\widehat{x})<f(\bar{x})$. Let $\epsilon>0$ be such that $f(\bar{x}) \leq f(x)$ whenever $\|x-\bar{x}\| \leq \epsilon$.
Set $\lambda:=\epsilon(2\|\bar{x}-\widehat{x}\|)^{-1}$ and $x_{\lambda}:=\bar{x}+\lambda(\widehat{x}-\bar{x})$. Then
$\left\|x_{\lambda}-\bar{x}\right\| \leq \epsilon / 2$ and

$$
f\left(x_{\lambda}\right) \leq(1-\lambda) f(\bar{x})+\lambda f(\widehat{x})<f(\bar{x})
$$

This contradiction implies no such \widehat{x} exists.

To see the second statement in the theorem, let x^{1} and x^{2} be distinct global minimizers of f. Then, for $\lambda \in(0,1)$,

$$
f\left((1-\lambda) x^{1}+\lambda x^{2}\right)<(1-\lambda) f\left(x^{1}\right)+\lambda f\left(x^{2}\right)=f\left(x^{1}\right),
$$

which contradicts the assumption that x^{1} is a global minimizer.

The Directional Derivative

Theorem: Let $f: \mathbf{E} \rightarrow \overline{\mathbf{R}}$ be convex and let $x \in \operatorname{dom} f$.
(1) Given $d \in \mathbf{E}$ the difference quotient

$$
\frac{f(x+t d)-f(x)}{t}
$$

is a non-decreasing function of t on $(0,+\infty)$.

The Directional Derivative

Theorem: Let $f: \mathbf{E} \rightarrow \overline{\mathbf{R}}$ be convex and let $x \in \operatorname{dom} f$.
(1) Given $d \in \mathbf{E}$ the difference quotient

$$
\frac{f(x+t d)-f(x)}{t}
$$

is a non-decreasing function of t on $(0,+\infty)$.
(2) For all $d \in \mathbf{E}, f^{\prime}(x ; d)$ exists with

$$
f^{\prime}(x ; d):=\inf _{t>0} \frac{f(x+t d)-f(x)}{t} .
$$

The Directional Derivative

Theorem: Let $f: \mathbf{E} \rightarrow \overline{\mathbf{R}}$ be convex and let $x \in \operatorname{dom} f$.
(1) Given $d \in \mathbf{E}$ the difference quotient

$$
\frac{f(x+t d)-f(x)}{t}
$$

is a non-decreasing function of t on $(0,+\infty)$.
(2) For all $d \in \mathbf{E}, f^{\prime}(x ; d)$ exists with

$$
f^{\prime}(x ; d):=\inf _{t>0} \frac{f(x+t d)-f(x)}{t}
$$

(3) The "subdifferential inequality" holds for all $x \in \operatorname{dom} f$:

$$
f(x)+f^{\prime}(x: y-x) \leq f(y) \quad \forall y \in \mathbf{E} .
$$

The Directional Derivative

Theorem: Let $f: \mathbf{E} \rightarrow \overline{\mathbf{R}}$ be convex and let $x \in \operatorname{dom} f$.
(1) Given $d \in \mathbf{E}$ the difference quotient

$$
\frac{f(x+t d)-f(x)}{t}
$$

is a non-decreasing function of t on $(0,+\infty)$.
(2) For all $d \in \mathbf{E}, f^{\prime}(x ; d)$ exists with

$$
f^{\prime}(x ; d):=\inf _{t>0} \frac{f(x+t d)-f(x)}{t}
$$

(3) The "subdifferential inequality" holds for all $x \in \operatorname{dom} f$:

$$
f(x)+f^{\prime}(x: y-x) \leq f(y) \quad \forall y \in \mathbf{E} .
$$

(4) The function $f^{\prime}(x ; \cdot)$ is sublinear. In particular, $f^{\prime}(x ; \cdot)$ is a convex function for all $x \in \operatorname{dom} f$.
$t \mapsto(f(x+t d)-f(x)) / t$ nondecreasing for $t>0$
Let $x \in \operatorname{dom} f$ and $d \in \mathbf{E}$. If $x+t d \notin \operatorname{dom} f$ for all $t>0$, the result follows. So assume that

$$
0<\bar{t}=\sup \{t: x+t d \in \operatorname{dom} f\}
$$

Let $0<t_{1}<t_{2}<\bar{t}$. Then

$$
\begin{aligned}
f\left(x+t_{1} d\right) & =f\left(x+\left(\frac{t_{1}}{t_{2}}\right) t_{2} d\right) \\
& =f\left[\left(1-\left(\frac{t_{1}}{t_{2}}\right)\right) x+\left(\frac{t_{1}}{t_{2}}\right)\left(x+t_{2} d\right)\right] \\
& \leq\left(1-\frac{t_{1}}{t_{2}}\right) f(x)+\left(\frac{t_{1}}{t_{2}}\right) f\left(x+t_{2} d\right) \\
& =f(x)+t_{1} \frac{f\left(x+t_{2} d\right)-f(x)}{t_{2}} .
\end{aligned}
$$

Hence

$$
\frac{f\left(x+t_{1} d\right)-f(x)}{t_{1}} \leq \frac{f\left(x+t_{2} d\right)-f(x)}{t_{2}}
$$

$$
f^{\prime}(x ; d)=\inf _{t>0}(f(x+t d)-f(x)) / t
$$

(2) If $x+t d \notin \operatorname{dom} f$ for all $t>0$, then the result is obviously true.
So assume there is a $\bar{t}>0$ such that $x+t d \in \operatorname{dom} f$ for all $t \in(0, \bar{t}]$. Since

$$
f^{\prime}(x ; d):=\lim _{t \downarrow 0} \frac{f(x+t d)-f(x)}{t}
$$

and the difference quotient in the limit is non-decreasing in t on $(0,+\infty)$, the limit is necessarily given by the infimum of the difference quotient. This infimum always exists and so $f^{\prime}(x ; d)$ always exists and is given by the infimum.
(3) The subdifferential inequality follows from (2) by taking $d:=y-x$ and $t=1$ in the infimum:

$$
f^{\prime}(x ; y-x) \leq f(y)-f(x)
$$

$f^{\prime}(x ; \cdot)$ is sublinear

Positive homogeneity:

$$
f^{\prime}(x ; \alpha d)=\alpha \lim _{t \downarrow 0} \frac{f(x+(t \alpha) d)-f(x)}{(t \alpha)}=\alpha f^{\prime}(x ; d)
$$

Subadditivity:

$$
\begin{aligned}
f^{\prime}(x ; u+v) & =\lim _{t \downarrow 0} \frac{f(x+t(u+v))-f(x)}{t} \\
& =\lim _{t \downarrow 0} \frac{f\left(x+\frac{t}{2}(u+v)\right)-f(x)}{t / 2} \\
& =\lim _{t \downarrow 0} 2 \frac{f\left(\frac{1}{2}(x+t u)+\frac{1}{2}(x+t v)\right)-f(x)}{t} \\
& \leq \lim _{t \downarrow 0} 2 \frac{\frac{1}{2} f(x+t u)+\frac{1}{2} f(x+t v)-f(x)}{t} \\
& =\lim _{t \downarrow 0} \frac{f(x+t u)-f(x)}{t}+\frac{f(x+t v)-f(x)}{t} \\
& =f^{\prime}(x ; u)+f(x ; v)
\end{aligned}
$$

Convexity and Optimality

Theorem: Let $f: \mathbf{E} \rightarrow \mathbf{R} \cup\{+\infty\}$ be convex, $\Omega \subset \mathbf{E}$ convex, $\bar{x} \in \operatorname{dom} f \cap \Omega$. Then \bar{x} solves $\min _{x \in \Omega} f(x)$ if and only if $f^{\prime}(\bar{x} ; y-\bar{x}) \geq 0$ for all $y \in \Omega$.

Proof: (\Rightarrow) Let $y \in \Omega$ so that $\bar{x}+t(y-\bar{x}) \in \Omega$ for all $t \in[0,1]$. Then $f(\bar{x}) \leq f(\bar{x}+t(y-\bar{x}))$ for all $t \in[0,1]$. Therefore, $f^{\prime}(\bar{x} ; y-\bar{x})=\lim _{t \downarrow 0} t^{-1}(f(\bar{x}+t(y-\bar{x}))-f(\bar{x})) \geq 0$.
(\Leftarrow) For $y \in \Omega$,

$$
0 \leq f^{\prime}(\bar{x} ; y-\bar{x})=\inf _{t>0} \frac{f(x+t(y-\bar{x})-f(x)}{t} \stackrel{(t=1)}{\leq} f(y)-f(\bar{x})
$$

Convexity and Optimality

Theorem: Let $f: \mathbf{E} \rightarrow \mathbf{R} \cup\{+\infty\}$ be convex, $\Omega \subset \mathbf{E}$ convex, $\bar{x} \in \operatorname{dom} f \cap \Omega$. Then \bar{x} solves $\min _{x \in \Omega} f(x)$ if and only if $f^{\prime}(\bar{x} ; y-\bar{x}) \geq 0$ for all $y \in \Omega$.

Proof: (\Rightarrow) Let $y \in \Omega$ so that $\bar{x}+t(y-\bar{x}) \in \Omega$ for all $t \in[0,1]$. Then $f(\bar{x}) \leq f(\bar{x}+t(y-\bar{x}))$ for all $t \in[0,1]$. Therefore, $f^{\prime}(\bar{x} ; y-\bar{x})=\lim _{t \downarrow 0} t^{-1}(f(\bar{x}+t(y-\bar{x}))-f(\bar{x})) \geq 0$.
(\Leftarrow) For $y \in \Omega$,

$$
0 \leq f^{\prime}(\bar{x} ; y-\bar{x})=\inf _{t>0} \frac{f(x+t(y-\bar{x})-f(x)}{t} \stackrel{(t=1)}{\leq} f(y)-f(\bar{x})
$$

Corollary: If f is differentiable at \bar{x}, \bar{x} solves $\min _{x \in \Omega} f(x)$ if and only if $-\nabla f(\bar{x}) \in N_{\Omega}(\bar{x})$.

Proof: $0 \leq f^{\prime}(\bar{x} ; y-\bar{x})=\langle\nabla f(\bar{x}), y-\bar{x}\rangle$ for all $y \in \Omega$ iff $-\nabla f(\bar{x}) \in N_{\Omega}(\bar{x})$.

Differential Tests for Convexity

The following are equivalent for a C^{1}-smooth function $f: U \rightarrow \mathbf{R}$ defined on a convex open set $U \subset \mathbf{E}$.
(a) (convexity) f is convex.
(b) (gradient inequality) $f(y) \geq f(x)+\langle\nabla f(x), y-x\rangle$ for all $x, y \in U$.
(c) (monotonicity) $\langle\nabla f(y)-\nabla f(x), y-x\rangle \geq 0$ for all $x, y \in U$.
If f is C^{2}-smooth, then the following property can be added to the list:
(d) The relation $\nabla^{2} f(x) \succeq 0$ holds for all $x \in U$.

Examples of Convex Functions

(1) Given a self-adjoint linear operator $\mathcal{A}: \mathbf{E} \rightarrow \mathbf{E}$, a point $c \in \mathbf{E}$, and $b \in \mathbf{R}$ the quadratic function $f(x)=\frac{1}{2}\langle\mathcal{A} x, x\rangle+\langle c, x\rangle+b$ is convex if and only if \mathcal{A} is positive semidefinite.
(2) (Boltzmann-Shannon entropy)

$$
f(x)= \begin{cases}x \log x & \text { if } x>0 \\ 0 & \text { if } x=0 \\ +\infty & \text { if } x<0\end{cases}
$$

(3) (Fermi-Dirac entropy)

$$
f(x)= \begin{cases}x \log (x)+(1-x) \log (1-x) & \text { if } x \in(0,1) \\ 0 & \text { if } x \in\{-1,1\} \\ +\infty & \text { otherwise }\end{cases}
$$

Examples of Convex Functions

(4) (Hellinger)

$$
f(x)= \begin{cases}-\sqrt{1-x^{2}} & \text { if } x \in[-1,1] \\ +\infty & \text { otherwise }\end{cases}
$$

(5) (Exponential) $f(x)=e^{x}$
(6) (Log-exp) $f(x)=\log \left(1+e^{x}\right)$

Bounds for β-Smooth Convex Functions

Let $f: \mathbf{E} \rightarrow \overline{\mathbf{R}}$. TFAE (the following are equivalent)
(1) f is β-smooth.
(2) $0 \leq f(y)-f(x)-\langle\nabla f(x), y-x\rangle \leq \frac{\beta}{2}\|x-y\|^{2}$
(3) $f(x)+\langle\nabla f(x), y-x\rangle+\frac{1}{2 \beta}\|\nabla f(x)-\nabla f(y)\|^{2} \leq f(y)$
(4) $\frac{1}{\beta}\|\nabla f(x)-\nabla f(y)\|^{2} \leq\langle\nabla f(x)-\nabla f(y), x-y\rangle$
(5) $0 \leq\langle\nabla f(x)-\nabla f(y), x-y\rangle \leq \beta\|x-y\|^{2}$

Epigraphical Operations

Recall that for a convex function f and $x \in \operatorname{dom} f$,

$$
f(x)=\inf _{(x, \mu) \in \operatorname{epi} f} \mu
$$

This construction fact can be extended to by defining the lower envelope for any subset Q of $\mathbf{E} \times \mathbf{R}$:

$$
E_{Q}(x):=\inf _{(x, r) \in Q} r
$$

$$
\text { epi } E_{Q}
$$

Figure: Lower envelope of Q.
Hence epi $E_{Q}=Q+\left(\{0\} \times \mathbf{R}_{+}\right)$when the infimum is attained when finite.

Example: λ epi $f, \lambda>0$

Epi-multiplication

$$
\begin{aligned}
\inf _{(x, r) \in \lambda \mathrm{epi} f} r & =\inf \left\{r \mid\left(\lambda^{-1} x, \lambda^{-1} r\right) \in \operatorname{epi} f\right\} \\
& =\lambda \inf \left\{\lambda^{-1} r \mid\left(\lambda^{-1} x, \lambda^{-1} r\right) \in \operatorname{epi} f\right\} \\
& =\lambda \inf \left\{\tau \mid\left(\lambda^{-1} x, \tau\right) \in \operatorname{epi} f\right\} \\
& =\lambda f(x / \lambda)
\end{aligned}
$$

Example: epi $f_{1}+\operatorname{epi} f_{2}$

Epi-addition or infimal convolution

$$
\begin{aligned}
& \inf _{(x, r) \in \text { epi } f_{1}+\text { epi } f_{2}} r=\inf \left\{r \mid(x, r)=\left(x_{1}, r_{1}\right)+\left(x_{2}, r_{2}\right),\left(x_{i}, r_{i}\right) \in \operatorname{epi} f_{i}\right\} \\
& =\inf \left\{r_{1}+r_{2} \mid\left(y, r_{1}\right) \in \operatorname{epi} f_{1},\left(x-y, r_{2}\right) \in \operatorname{epi} f_{2}\right\} \\
& =\inf _{y} \inf _{r_{1}, r_{2}}\left\{r_{1}+r_{2} \mid\left(y, r_{1}\right) \in \operatorname{epi} f_{1},\left(x-y, r_{2}\right) \in \operatorname{epi} f_{2}\right\} \\
& =\inf _{y} f_{1}(y)+f_{2}(x-y) \\
& =:\left(f_{1} \square f_{2}\right)(x) .
\end{aligned}
$$

Inverse Linear Image

Let $A \in \mathbf{L}[\mathbf{Y}, \mathbf{E}]$. Recall

$$
E_{Q}(x):=\inf _{(x, r) \in Q} r
$$

What is E_{Q} when $Q=[A \times I]$ epi f ?

$$
\begin{aligned}
E_{Q}(x) & =\inf \{r \mid x=A y,(y, r) \in \operatorname{epi} f\} \\
& =\inf _{x=A y} \inf _{(y, r) \in \mathrm{epi} f} r \\
& =\inf _{x=A y} f(y)
\end{aligned}
$$

Infimal Projection

Let $g: \mathbf{E} \times \mathbf{Y} \rightarrow \overline{\mathbf{R}}$ and consider the projection $P \in \mathbf{L}[\mathbf{E} \times \mathbf{Y} \times \mathbf{R}]$ given by $P(x, y)=x$.

What is $E_{[P \times I] \text { epi } g}$?

$$
\begin{aligned}
E_{[P \times I] \mathrm{epi} g}(x) & =\inf \{\mu \mid x=P(z, y),(z, y, \mu) \in \operatorname{epi} g\} \\
& =\inf _{x=P(z, y)} g(z, y) \\
& =\inf _{y} g(x, y)
\end{aligned}
$$

The Perspective mapping

Let $Q:=\mathbf{R}_{+}(\{1\} \times \operatorname{epi} f)$. What is $E_{Q}(\lambda, x)$ for $\lambda \geq 0$?

It is straightforward to show that $E_{Q}(\lambda, x)=+\infty$ if $\lambda<0$ and that $E_{Q}(0, x)=0$. So we suppose $0<\lambda$.

$$
\begin{aligned}
E_{Q}(\lambda, x) & =\inf \left\{r \mid(\lambda, x, r) \in \mathbf{R}_{+}(\{1\} \times \operatorname{epi} f)\right\} \\
& =\inf \{r \mid \exists \tau \geq 0 \text { s.t. }(\lambda, x, r) \in \tau(\{1\} \times \operatorname{epi} f)\} \\
& =\inf \{r \mid(x, r) \in \lambda e p i f\} \\
& =\inf \left\{r \mid\left(\lambda^{-1} x, \lambda^{-1} r\right) \in \operatorname{epi} f\right\} \\
& =\lambda \inf \left\{\lambda^{-1} r \mid\left(\lambda^{-1} x, \lambda^{-1} r\right) \in \operatorname{epi} f\right\} \\
& =\lambda f\left(\lambda^{-1} x\right)
\end{aligned}
$$

Relative interiors of sets in a product space
pic
Theorem: Let $Q \subset \mathbf{X} \times \mathbf{Y}$. For each $x \in \mathbf{X}$ set

$$
Q_{x}:=\{y \in \mathbf{Y} \mid(x, y) \in Q\} \text { and } D:=\left\{x \in \mathbf{X} \mid Q_{x} \neq \emptyset\right\}
$$

Then

$$
(x, y) \in \operatorname{ri} Q \quad \Longleftrightarrow \quad x \in \operatorname{ri} D \text { and } y \in \operatorname{ri} Q_{x}
$$

Proof: Let $\mathcal{P}(x, y)=x$ be the projection of $\mathbf{X} \times \mathbf{Y}$ onto \mathbf{X}, and set $\mathcal{A}_{x}:=\{x\} \times \mathbf{Y}$. Then $\mathcal{P} Q=D$, so ri $D=\operatorname{ri} \mathcal{P} Q=\mathcal{P}$ ri Q. Hence, $(x, y) \in \operatorname{ri} Q$ iff $x \in \operatorname{ri} D$ and

$$
(x, y) \in \mathcal{A}_{x} \cap \operatorname{ri} Q=\operatorname{ri}\left(\mathcal{A}_{x} \cap Q\right)=\operatorname{ri}\left(\{x\} \times Q_{x}\right)=\{x\} \times \operatorname{ri} Q_{x}
$$

So, $(x, y) \in \operatorname{ri} Q$ if and only if $x \in \operatorname{ri} D$ and $y \in \operatorname{ri} Q_{x}$.

ri epi f

Lemma: Let $f: \mathbf{E} \rightarrow \overline{\mathbf{R}}$ be convex. Then

$$
\text { ri epi } f=\{(x, \mu) \mid x \in \operatorname{ridom} f \text { and } f(x)<\mu\}
$$

Proof: Apply the previous result to epi $f \subset \mathbf{E} \times \mathbf{R}$.

Then $D=\operatorname{dom} f$ and (epi $f)_{x}=\{\mu \in \mathbf{R} \mid f(x) \leq \mu\}$.

Clearly, ri (epi $f)_{x}=\{\mu \in \mathbf{R} \mid f(x)<\mu\}$, which gives the result.

Local Boundedness of Cvx Func.s on ri dom

Theorem: Let $f: \mathbf{E} \rightarrow \overline{\mathbf{R}}$ be convex. Then, $\forall \bar{x} \in \operatorname{ridom} f$, there is a cvx nbhd U of \bar{x} and an $M>0$ s.t. $U \cap \operatorname{aff} \operatorname{dom} f \subset \operatorname{ridom} f$ and

$$
f(x) \leq M \quad \forall x \in U \cap \operatorname{aff} \operatorname{dom} f .
$$

Proof: Let $\bar{x} \in \operatorname{ridom} f$ and let u_{1}, \ldots, u_{n} be an orthonormal basis for \mathbf{E} with u_{1}, \ldots, u_{k} an orthonormal basis for par $\operatorname{dom} f$. Then $B_{1}:=\operatorname{intr} \operatorname{conv}\left\{ \pm u_{i} \mid i=1, \ldots, n\right\}$ is a sym. open nghd of the origin. Let $\epsilon>0$ be s.t.

$$
\bar{x}+\epsilon B_{1} \cap \text { par dom } f=\left(\bar{x}+\epsilon B_{1}\right) \cap \operatorname{aff} \operatorname{dom} f \subset \operatorname{ridom} f
$$

Set $U:=\bar{x}+\epsilon B_{1}$. Then, for every $x \in \bar{x}+\epsilon B_{1} \cap \operatorname{par} \operatorname{dom} f$,

$$
\exists \lambda_{i}, \mu_{i} \geq 0, i=1, \ldots, n \text { with } \sum_{j=1}^{k}\left(\lambda_{i}+\mu_{i}\right)=1
$$

such that

$$
x=\bar{x}+\epsilon\left[\sum_{j=1}^{k} \lambda_{i} u_{i}+\mu_{i}\left(-u_{i}\right)\right]=\sum_{j=1}^{k} \lambda_{i}\left(\bar{x}+\epsilon u_{i}\right)+\mu_{i}\left(\bar{x}-\epsilon u_{i}\right)
$$

Therefore,

$$
\begin{aligned}
f(x) & \leq \sum_{j=1}^{k} \lambda_{i} f\left(\bar{x}+\epsilon u_{i}\right)+\sum_{j=1}^{k} \mu_{i} f\left(\bar{x}-\epsilon u_{i}\right) \\
& \leq \max \left\{f\left(\bar{x} \pm \epsilon u_{i}\right) \mid i=1, \ldots, k\right\}=: M
\end{aligned}
$$

Local Lip. Cont. of Cvx Func.s on ri dom

Theorem: Let $f: \mathbf{E} \rightarrow \overline{\mathbf{R}}$ be convex. Then for every $\bar{x} \in \operatorname{ridom} f$ there is an $\epsilon>0$ s.t. f is Lip. cont. on $B_{\epsilon}(\bar{x}) \cap \operatorname{aff} \operatorname{dom} f$.
Proof: Set $D:=\operatorname{pardom} f$. Let $\epsilon>0$ and $M>0$ be such that $B_{2 \epsilon}(\bar{x}) \cap \operatorname{aff} \operatorname{dom} f \subset \operatorname{ridom} f$ with $f(x) \leq M \forall x \in B_{2 \epsilon}(\bar{x}) \cap \operatorname{aff} \operatorname{dom} f$. Set $h(x):=(2 M)^{-1}[f(x+\bar{x})-f(\bar{x})]$. If h is Lip. cont. on D near 0 , then f is Lip. cont. on aff dom f near \bar{x}. Observe that $h(0)=0$ and $h(x) \leq 1$ for all $x \in B_{2 \epsilon}(0) \cap D$. Moreover, for every $x \in B_{2 \epsilon}(0) \cap D$, $0=h(0)=h\left(\frac{1}{2} x-\frac{1}{2} x\right) \leq \frac{1}{2} h(x)+\frac{1}{2} h(-x)$ so that
$-1 \leq-h(x) \leq h(-x)$. That is, $-1 \leq h(x) \leq 1$ for all $x \in B_{2 \epsilon} \cap D$.
For $x, y \in B_{\epsilon}(0) \cap D$ with $x \neq y$ set $\alpha:=\|x-y\|$ and $\beta:=\epsilon / \alpha$.
Define $w:=y+\beta(y-x) \in B_{2 \epsilon} \cap D$. Then

$$
y=(1+\beta)^{-1}[w+\beta x]=\frac{1}{1+\beta} w+\frac{\beta}{1+\beta} x .
$$

The convexity of h implies that

$$
\begin{aligned}
h(y)-h(x) & \leq \frac{1}{1+\beta} h(w)+\frac{\beta}{1+\beta} h(x)-h(x)=\frac{1}{1+\beta}[h(w)-h(x)] \\
& \leq \frac{2}{1+\beta}=\frac{2}{\alpha+\epsilon}\|x-y\| \leq 2 \epsilon^{-1}\|x-y\| .
\end{aligned}
$$

Symmetric in x and y implies the local Lip. cont. of h.

Supporting hyperplanes to epigraphs

We apply the following separation theorem to epi f.

Theorem: Let $Q \subset \mathbf{E}$ be convex with $\bar{x} \in \operatorname{rb} Q$. Then there exists $\bar{z} \in \mathbf{E}$ such that

$$
\langle\bar{z}, x\rangle \leq\langle\bar{z}, \bar{x}\rangle \forall x \in \operatorname{cl} Q \text { and }\langle\bar{z}, x\rangle<\langle\bar{z}, \bar{x}\rangle \forall x \in \operatorname{ri} Q
$$

Supporting hyperplanes to epigraphs

We apply the following separation theorem to epi f.

Theorem: Let $Q \subset \mathbf{E}$ be convex with $\bar{x} \in \operatorname{rb} Q$. Then there exists $\bar{z} \in \mathbf{E}$ such that

$$
\langle\bar{z}, x\rangle \leq\langle\bar{z}, \bar{x}\rangle \forall x \in \operatorname{cl} Q \text { and }\langle\bar{z}, x\rangle<\langle\bar{z}, \bar{x}\rangle \forall x \in \operatorname{ri} Q
$$

Theorem: Let $f: \mathbf{E} \rightarrow \overline{\mathbf{R}}$ be proper convex and let $\bar{x} \in \operatorname{ridom} f$. Then there is a $v \in \mathbf{E}$ such that

$$
\sup _{x}[\langle v, x\rangle-f(x)] \leq\langle v, \bar{x}\rangle-f(\bar{x})
$$

Supporting hyperplanes to epigraphs

Proof: Since $\bar{x} \in \operatorname{ridom} f, f$ is cont. at \bar{x} relative to $\operatorname{dom} f$ and so cl $f(\bar{x})=f(\bar{x})$. In particular, $(\bar{x}, f(\bar{x})) \in \operatorname{rbepi} f$. Hence, there exists $(w, \tau) \in \mathbf{E} \times \mathbf{R}$ s.t.

$$
\begin{aligned}
& \langle(w, \tau),(x, \mu)\rangle \leq\langle(w, \tau),(\bar{x}, f(\bar{x}))\rangle \forall(x, \mu) \in \operatorname{cl} \text { epi } f \text { and } \\
& \langle(w, \tau),(x, \mu)\rangle<\langle(w, \tau),(\bar{x}, f(\bar{x}))\rangle \forall(x, \mu) \in \operatorname{ri} \text { epi } f .
\end{aligned}
$$

Hence,

$$
\langle w, x-\bar{x}\rangle+\tau(\mu-f(\bar{x}))<0 \quad \forall x \in \operatorname{ridom} f, \mu>f(x) .
$$

Taking $x=\bar{x}$, we see that $\tau<0$. Dividing by $|\tau|$ and setting $v=w /|\tau|$ and $\mu=f(x)$, we obtain

$$
\langle v, x\rangle-f(x) \leq\langle v, \bar{x}\rangle-f(\bar{x}) \quad \forall x \in \operatorname{dom} f
$$

The result follows since if $x \notin \operatorname{dom} f$ then the above inequality is trivially true.

The Subgradient Inequality

Theorem: Let $f: \mathbf{E} \rightarrow \overline{\mathbf{R}}$ be proper convex and let $\bar{x} \in \operatorname{ridom} f$. Then there is a $v \in \mathbf{E}$ such that

$$
f(\bar{x})+\langle v, x-\bar{x}\rangle \leq f(x) \quad \forall x \in \mathbf{E} .
$$

The Subgradient Inequality

Theorem: Let $f: \mathbf{E} \rightarrow \overline{\mathbf{R}}$ be proper convex and let $\bar{x} \in \operatorname{ridom} f$. Then there is a $v \in \mathbf{E}$ such that

$$
f(\bar{x})+\langle v, x-\bar{x}\rangle \leq f(x) \quad \forall x \in \mathbf{E} .
$$

Proof: The Theorem tells us that there exist $v \in \mathbf{E}$ such that

$$
\langle v, x\rangle-f(x) \leq\langle v, \bar{x}\rangle-f(\bar{x}) \quad \forall x \in \mathbf{E},
$$

which gives the result.

The Subdifferential

Definition: Let $f: \mathbf{E} \rightarrow \overline{\mathbf{R}}$ be convex and let $\bar{x} \in \operatorname{dom} f$. We say that f is subdifferentiable at \bar{x} if there exists $v \in \mathbf{E}$ such that

$$
f(\bar{x})+\langle v, x-\bar{x}\rangle \leq f(x) \quad \forall x \in \mathbf{E}
$$

We call v a subgradient for f at \bar{x}. The set of all subgradients at \bar{x} is called the subdifferential of f at \bar{x}, denoted

$$
\partial f(\bar{x}):=\{v \mid f(\bar{x})+\langle v, x-\bar{x}\rangle \leq f(x) \quad \forall x \in \mathbf{E}\} .
$$

For $x \notin \operatorname{dom} f$, we define $\partial f(x)=\emptyset$. The domain of ∂f is $\operatorname{dom} \partial f:=\{x \mid \partial f(x) \neq \emptyset\}$.

The Subdifferential

Definition: Let $f: \mathbf{E} \rightarrow \overline{\mathbf{R}}$ be convex and let $\bar{x} \in \operatorname{dom} f$. We say that f is subdifferentiable at \bar{x} if there exists $v \in \mathbf{E}$ such that

$$
f(\bar{x})+\langle v, x-\bar{x}\rangle \leq f(x) \quad \forall x \in \mathbf{E}
$$

We call v a subgradient for f at \bar{x}. The set of all subgradients at \bar{x} is called the subdifferential of f at \bar{x}, denoted

$$
\partial f(\bar{x}):=\{v \mid f(\bar{x})+\langle v, x-\bar{x}\rangle \leq f(x) \quad \forall x \in \mathbf{E}\} .
$$

For $x \notin \operatorname{dom} f$, we define $\partial f(x)=\emptyset$. The domain of ∂f is $\operatorname{dom} \partial f:=\{x \mid \partial f(x) \neq \emptyset\}$.

Properties:

(1) ridom $f \subset \operatorname{dom} \partial f \subset \operatorname{dom} f$
(2) $\partial f(x)$ is a nonempty closed convex set for all $x \in \operatorname{ridom} f$.
(3) If $x \in \operatorname{intr} \operatorname{dom} f$, then $\partial f(x)$ is compact.

Optimization and the Subdifferential

Theorem: Let $f: \mathbf{E} \rightarrow \overline{\mathbf{R}}$ be proper convex. Then $\bar{x} \in \mathbf{E}$ is a global solution to $\min f(x)$ if and only if $0 \in \partial f(\bar{x})$.

Proof: Apply the subgradient inequality:

$$
f(\bar{x})+\langle v, x-\bar{x}\rangle \leq f(x) \quad \forall x \in \mathbf{E} .
$$

The Convex Conjugate

Recall that by applying the separation theorem to the epigraph of a proper convex function f, we found that for every $\bar{x} \in \operatorname{ridom} f$ there exists $v \in \mathbf{E}$ such that

$$
\begin{aligned}
\delta_{\mathrm{epi} f}^{*}(v,-1) & =\sup _{x \in \operatorname{dom} f}[\langle v, x\rangle-f(x)] \\
& =\sup _{x}[\langle v, x\rangle-f(x)] \\
& \leq\langle v, \bar{x}\rangle-f(\bar{x})
\end{aligned}
$$

This relationship indicates that $f^{*}: \mathbf{E} \rightarrow \overline{\mathbf{R}}$ given by

$$
f^{*}(v):=\sup _{x}[\langle v, x\rangle-f(x)]
$$

plays a special in our study of convex functions.
We call f^{*} the convex conjugate of f.

The Convex Conjugate

Recall that by applying the separation theorem to the epigraph of a proper convex function f, we found that for every $\bar{x} \in \operatorname{ridom} f$ there exists $v \in \mathbf{E}$ such that

$$
\begin{aligned}
\delta_{\mathrm{epi} f}^{*}(v,-1) & =\sup _{x \in \operatorname{dom} f}[\langle v, x\rangle-f(x)] \\
& =\sup _{x}[\langle v, x\rangle-f(x)] \\
& \leq\langle v, \bar{x}\rangle-f(\bar{x})
\end{aligned}
$$

This relationship indicates that $f^{*}: \mathbf{E} \rightarrow \overline{\mathbf{R}}$ given by

$$
f^{*}(v):=\sup _{x}[\langle v, x\rangle-f(x)]
$$

plays a special in our study of convex functions.
We call f^{*} the convex conjugate of f.
Note that $f^{*}=(\mathrm{cl} f)^{*}$ since $\delta_{\text {epi } f}^{*}=\delta_{\text {clepi } f}^{*}$.

The Bi-Conjugate and the Subdiffential

$$
f^{*}(v):=\sup _{x}[\langle v, x\rangle-f(x)]=\delta_{\mathrm{epi} f}^{*}(v,-1)=\delta_{\mathrm{epicl} f}^{*}(v,-1)
$$

By definition, f^{*} is a closed proper convex function whenever f is a proper convex function.

Theorem: [Fenchel-Young Inequality] Let $f: \mathbf{E} \rightarrow \overline{\mathbf{R}}$ be a proper convex function. Then

$$
f^{*}(v)+f(x) \geq f^{*}(v)+\operatorname{cl} f(x) \geq\langle v, x\rangle \quad \forall x, v \in \mathbf{E}
$$

with equality throughout if and only if $v \in \partial f(x)$.

The Bi-Conjugate and the Subdiffential

Consequently, for all $x \in \mathbf{E}$,

$$
\begin{aligned}
\operatorname{cl} f(x) & \geq \sup _{v \in \operatorname{dom} f^{*}}\left[\langle v, x\rangle-f^{*}(v)\right] \\
& =\sup _{v}\left[\langle v, x\rangle-f^{*}(v)\right] \\
& =\left(f^{*}\right)^{*}(x) .
\end{aligned}
$$

The Bi-Conjugate and the Subdiffential

Consequently, for all $x \in \mathbf{E}$,

$$
\begin{aligned}
\operatorname{cl} f(x) & \geq \sup _{v \in \operatorname{dom} f^{*}}\left[\langle v, x\rangle-f^{*}(v)\right] \\
& =\sup _{v}\left[\langle v, x\rangle-f^{*}(v)\right] \\
& =\left(f^{*}\right)^{*}(x)
\end{aligned}
$$

Therefore,

$$
\operatorname{cl} f(x)+f^{*}(v) \geq\left(f^{*}\right)^{*}(x)+f^{*}(v) \geq\langle v, x\rangle \quad \forall x, v \in \mathbf{E}
$$

with equality throughout iff $x \in \partial f^{*}(v)$ iff $v \in \partial \mathrm{cl} f(x)$.

The Bi-Conjugate and the Subdiffential

Consequently, for all $x \in \mathbf{E}$,

$$
\begin{aligned}
\operatorname{cl} f(x) & \geq \sup _{v \in \operatorname{dom} f^{*}}\left[\langle v, x\rangle-f^{*}(v)\right] \\
& =\sup _{v}\left[\langle v, x\rangle-f^{*}(v)\right] \\
& =\left(f^{*}\right)^{*}(x) .
\end{aligned}
$$

Therefore,

$$
\operatorname{cl} f(x)+f^{*}(v) \geq\left(f^{*}\right)^{*}(x)+f^{*}(v) \geq\langle v, x\rangle \quad \forall x, v \in \mathbf{E}
$$

with equality throughout iff $x \in \partial f^{*}(v)$ iff $v \in \partial \mathrm{cl} f(x)$.
Theorem: For every proper convex function $f: \mathbf{E} \rightarrow \overline{\mathbf{R}}$,

$$
\operatorname{cl} f=\left(f^{*}\right)^{*}=f^{* *}, \quad(\partial(\operatorname{cl} f))^{-1}=\partial f^{*},
$$

and

$$
\partial(\operatorname{cl} f)(x)=\left\{v \mid \operatorname{cl} f(x)+f^{*}(v) \leq\langle v, x\rangle\right\},
$$

with $\partial(\operatorname{cl} f)(x)=\partial f(x)$ whenever $x \in \operatorname{dom} \partial f$.
Proof: cl f coincides with f on $\operatorname{ridom} f=\operatorname{ridom}(\operatorname{cl} f)$ and ri dom $f \subset \operatorname{dom} \partial f$.

Support Functions Revisited

Let $Q \subset \mathbf{E}$ be nonempty closed and convex. Then

$$
\left(\delta_{Q}(\cdot)\right)^{*}(v)=\sup _{x}\left[\langle v, x\rangle-\delta_{Q}(x)\right]=\delta_{Q}^{*}(x) .
$$

Support Functions Revisited

Let $Q \subset \mathbf{E}$ be nonempty closed and convex. Then

$$
\left(\delta_{Q}(\cdot)\right)^{*}(v)=\sup _{x}\left[\langle v, x\rangle-\delta_{Q}(x)\right]=\delta_{Q}^{*}(x)
$$

Recall that support functions are subadditive. We now address the question of whether a proper subadditive function can be written as a support function.

Support Functions Revisited

Let $f: \mathbf{E} \rightarrow \overline{\mathbf{R}}$ be proper subadditive. Then, for $\lambda>0$,

$$
\begin{aligned}
f^{*}(v) & =\sup _{x \in \operatorname{dom} f}[\langle v, x\rangle-f(x)] \\
& =\sup _{x \in \operatorname{dom} f}[\langle v, \lambda x\rangle-f(\lambda x)] \\
& =\lambda \sup _{x \in \operatorname{dom} f}[\langle v, x\rangle-f(x)]=\lambda f^{*}(v) .
\end{aligned}
$$

Therefore, $f^{*}(v)=0$ for all $v \in \operatorname{dom} f^{*}$ and so $f^{*}=\delta_{\operatorname{dom} f^{*}}$.

Since f is proper convex, $\operatorname{cl} f=f^{* *}=\delta_{\operatorname{dom} f^{*}}^{*}$.

Support Functions Revisited

Theorem: The class closed proper subadditive functions on \mathbf{E} equals the class of support functions on \mathbf{E}. In particular, if $f: \mathbf{E} \rightarrow \overline{\mathbf{R}}$ is closed proper subadditive, then f is the support function of the set $\operatorname{dom} f^{*}=\{v \mid\langle v, x\rangle \leq f(x) \forall x \in \mathbf{E}\}$.

Support Functions Revisited

Theorem: The class closed proper subadditive functions on \mathbf{E} equals the class of support functions on \mathbf{E}. In particular, if $f: \mathbf{E} \rightarrow \overline{\mathbf{R}}$ is closed proper subadditive, then f is the support function of the set dom $f^{*}=\{v \mid\langle v, x\rangle \leq f(x) \forall x \in \mathbf{E}\}$.

Proof: Since f is positively homogeneous,

$$
\begin{aligned}
\operatorname{dom} f^{*} & =\left\{v \mid \exists \mu>0 \text { s.t. } f^{*}(v) \leq \mu\right\} \\
& =\{v \mid \exists \mu>0 \text { s.t. }\langle v, x\rangle-f(x) \leq \mu \forall x \in \mathbf{E}\} \\
& =\{v \mid \exists \mu>0 \text { s.t. }\langle v, \lambda x\rangle-f(\lambda x) \leq \mu \forall x \in \mathbf{E}, \lambda>0\} \\
& =\left\{v \mid \exists \mu>0 \text { s.t. }\langle v, x\rangle-f(x) \leq \frac{\mu}{\lambda} \forall x \in \mathbf{E}, \lambda>0\right\} \\
& =\{v \mid\langle v, x\rangle-f(x) \leq 0 \forall x \in \mathbf{E}\} .
\end{aligned}
$$

The result follows since we have shown that $f=\delta_{\operatorname{dom} f^{*}}^{*}$.

$f^{\prime}(x ; \cdot)$ and ∂f

Theorem: Let $f: \mathbf{E} \rightarrow \overline{\mathbf{R}}$ be a proper convex function and let $\bar{x} \in \operatorname{dom} \partial f$. Then the closure of $f^{\prime}(\bar{x} ; \cdot)$ is $\delta^{*}(\cdot \mid \partial f(\bar{x}))$. Moreover, if $\bar{x} \in \operatorname{ridom} f$, then $f^{\prime}(\bar{x} ; \cdot)$ is closed and proper.

Proof: Let $v \in \partial f(\bar{x})$ and let φ be the closure of $f^{\prime}(\bar{x} ; \cdot)$. Then, for $t>0$ and $d \in \mathbf{E},\langle v, d\rangle \leq \frac{f(\bar{x}+t d)-f(\bar{x})}{t}$ so $\langle v, d\rangle \leq f^{\prime}(\bar{x} ; d)$. Hence $f^{\prime}(\bar{x} ; \cdot)$ is proper, and φ is closed proper and subadditive. Therefore, φ is the support function of the set

$$
\begin{aligned}
\{v \mid\langle v, d\rangle \leq \varphi(d) \forall d \in \mathbf{E}\} & =\left\{v \left\lvert\,\langle v, d\rangle \leq \frac{f(\bar{x}+t d)-f(\bar{x})}{t} \forall\right., d \in \mathbf{E}, t>0\right\} \\
& =\{v \mid f(\bar{x})+\langle v, d\rangle \leq f(\bar{x}+d) \forall, d \in \mathbf{E}\} \\
& =\{v \mid f(\bar{x})+\langle v, x-\bar{x}\rangle \leq f(x) \forall, x \in \mathbf{E}\} \\
& =\partial f(\bar{x}) .
\end{aligned}
$$

If $\bar{x} \in \operatorname{ridom} f$, then $\operatorname{dom} f^{\prime}(\bar{x} ; \cdot)=\operatorname{par} \operatorname{dom} f=\operatorname{ridom} f^{\prime}(\bar{x} ; \cdot)$ so that $f^{\prime}(\bar{x} ; \cdot)$ is locally Lip. on its domain and so closed and proper.

$\partial f(x)=\{v\}$ implies differentiability

Corollary: Let $f: \mathbf{E} \rightarrow \overline{\mathbf{R}}$ be a proper convex function. If $\bar{x} \in \operatorname{dom} \partial f$, then $(\operatorname{par} \operatorname{dom} f)^{\perp} \subset \partial f(\bar{x})$.

Proof: Let $v \in \partial f(\bar{x})$ and $w \in(\operatorname{par} \operatorname{dom} f)^{\perp}$. Then for every $y \in \operatorname{dom} f$,

$$
f(\bar{x})+\langle v+w, y-x\rangle=f(\bar{x})+\langle v, y-x\rangle \leq f(y) .
$$

Corollary: Let $f: \mathbf{E} \rightarrow \overline{\mathbf{R}}$ be a proper convex function. If $\bar{x} \in \operatorname{dom} \partial f$ is such that $\partial f(\bar{x})=\{v\}+(\text { par dom } f)^{\perp}$, then f is differentiable relative to the affine manifold $S:=\operatorname{aff} \operatorname{dom} f$ with gradient $\nabla_{S} f(\bar{x})=v$. In particular, if $\bar{x} \in \operatorname{intr} \operatorname{dom} f$, then f is differentiable at \bar{x} with $\nabla f(\bar{x})=v$.

Proof: For $d \in \operatorname{pardom} f, f^{\prime}(\bar{x} ; d)=\langle v, d\rangle$ is linear on the subspace par $\operatorname{dom} f$. Hence, f is Gateaux differentiable relative to aff $\operatorname{dom} f$ with Gateaux derivative v.

Computing the Subdifferential

Proposition: Let $Q \subset \mathbf{E}$ be a nonempty closed convex set. Then

$$
\partial \delta_{Q}(x)= \begin{cases}\emptyset & , x \notin Q \\ N_{Q}(x) & , x \in Q\end{cases}
$$

Computing the Subdifferential

Proposition: Let $Q \subset \mathbf{E}$ be a nonempty closed convex set. Then

$$
\partial \delta_{Q}(x)= \begin{cases}\emptyset & , x \notin Q \\ N_{Q}(x) & , x \in Q\end{cases}
$$

Note that this result implies that $N_{Q}(x)=[\operatorname{par} Q]^{\perp}$ when $x \in \operatorname{ri} Q$ since δ_{Q} is differentiable on ri Q relative to the affine manifold aff Q with derivative $\nabla_{\text {aff }} \delta_{Q}(x)=0$ for $x \in \operatorname{ri} Q$.

Computing the Subdifferential

Proposition: Let $Q \subset \mathbf{E}$ be a nonempty closed convex set. Then

$$
\partial \delta_{Q}(x)= \begin{cases}\emptyset & , x \notin Q \\ N_{Q}(x) & , x \in Q\end{cases}
$$

Note that this result implies that $N_{Q}(x)=[\operatorname{par} Q]^{\perp}$ when $x \in \operatorname{ri} Q$ since δ_{Q} is differentiable on ri Q relative to the affine manifold aff Q with derivative $\nabla_{\text {aff }} \delta_{Q}(x)=0$ for $x \in \operatorname{ri} Q$.

Proof: Given $\bar{x} \in Q$ and $v \in N_{Q}(\bar{x})$, we have

$$
\langle v, x-\bar{x}\rangle \leq 0 \quad \forall x \in Q .
$$

Computing the Subdifferential

Proposition: Let $Q \subset \mathbf{E}$ be a nonempty closed convex set. Then

$$
\partial \delta_{Q}(x)= \begin{cases}\emptyset & , x \notin Q \\ N_{Q}(x) & , x \in Q\end{cases}
$$

Note that this result implies that $N_{Q}(x)=[\operatorname{par} Q]^{\perp}$ when $x \in \operatorname{ri} Q$ since δ_{Q} is differentiable on ri Q relative to the affine manifold aff Q with derivative $\nabla_{\text {aff }} \delta_{Q}(x)=0$ for $x \in \operatorname{ri} Q$.

Proof: Given $\bar{x} \in Q$ and $v \in N_{Q}(\bar{x})$, we have

$$
\delta_{Q}(\bar{x})+\langle v, x-\bar{x}\rangle \leq \delta_{Q}(x) \forall x \in \mathbf{E} .
$$

Computing the Subdifferential

Proposition: Let $Q \subset \mathbf{E}$ be a nonempty closed convex set. Then

$$
\partial \delta_{Q}^{*}(x)=\underset{v \in Q}{\operatorname{argmax}}\langle v, x\rangle .
$$

Proof: For any closed proper convex function f, we have shown that

$$
\partial f(x)=\left\{v \mid f^{*}(v)+f(x) \leq\langle v, x\rangle\right\} .
$$

Since both δ_{Q} and δ_{Q}^{*} are closed proper convex, we have

$$
\partial \delta_{Q}^{*}(x)=\left\{v \mid \delta_{Q}(v)+\delta_{Q}^{*}(x) \leq\langle v, x\rangle\right\}=\underset{v \in Q}{\operatorname{argmax}}\langle v, x\rangle .
$$

The Subdifferential of a Norm

Corollary: Let $\|\cdot\|$ be any norm on \mathbf{E} with closed unit ball \mathbb{B}. Then

$$
\partial\|x\|= \begin{cases}\mathbb{B}^{\circ} & , x=0 \\ \left\{v \mid\|v\|_{*}=1 \text { and }\langle v, x\rangle=\|x\|\right\} & , x \neq 0\end{cases}
$$

Proof: The result follows since $\|\cdot\|=\delta_{\mathbb{B}^{\circ}}^{*}(\cdot)$ where $\|\cdot\|_{*}$ is the dual norm for $\|\cdot\|$ whose closed unit ball is \mathbb{B}.

Computing Conjugates

Computing the conjugate f^{*} at v reduces to solving for x in the equation $v \in \partial f(x)$.

To see this, observe that

$$
f^{*}(v)=\sup _{x}[\langle v, x\rangle-f(x)]=-\inf _{x}[f(x)-\langle v, x\rangle] .
$$

Since $f(x)-\langle v, x\rangle$ is convex, we need only solve $0 \in \partial[f-\langle v, \cdot\rangle](x)=\partial f(x)-v$ for x, then plug this x back into $\langle v, x\rangle-f(x)$ to find $f^{*}(v)$. This is especially useful when f is differentiable on its domain.

Computing Conjugates

Computing the conjugate f^{*} at v reduces to solving for x in the equation $v \in \partial f(x)$.

To see this, observe that

$$
f^{*}(v)=\sup _{x}[\langle v, x\rangle-f(x)]=-\inf _{x}[f(x)-\langle v, x\rangle] .
$$

Since $f(x)-\langle v, x\rangle$ is convex, we need only solve $0 \in \partial[f-\langle v, \cdot\rangle](x)=\partial f(x)-v$ for x, then plug this x back into $\langle v, x\rangle-f(x)$ to find $f^{*}(v)$. This is especially useful when f is differentiable on its domain.

Example: $f(x)=e^{x}$. Then $v=\nabla f(x)=e^{x}$ iff $x=\ln v$, in which case

$$
f^{*}(v)=\langle v, \ln v\rangle-f(\ln v)= \begin{cases}v \ln v-v & , v>0 \\ +\infty & , v \leq 0\end{cases}
$$

Computing Conjugates

Computing the conjugate f^{*} at v reduces to solving for x in the equation $v \in \partial f(x)$.

To see this, observe that

$$
f^{*}(v)=\sup _{x}[\langle v, x\rangle-f(x)]=-\inf _{x}[f(x)-\langle v, x\rangle] .
$$

Since $f(x)-\langle v, x\rangle$ is convex, we need only solve $0 \in \partial[f-\langle v, \cdot\rangle](x)=\partial f(x)-v$ for x, then plug this x back into $\langle v, x\rangle-f(x)$ to find $f^{*}(v)$. This is especially useful when f is differentiable on its domain.

Example: $f(x)=e^{x}$. Then $v=\nabla f(x)=e^{x}$ iff $x=\ln v$, in which case

$$
f^{*}(v)=\langle v, \ln v\rangle-f(\ln v)= \begin{cases}v \ln v-v & , v>0 \\ +\infty & , v \leq 0\end{cases}
$$

Check $f^{* *}(x)=e^{x}$.

Computing Conjugates: Dual Operations

General formulas for conjugates of convex functions generated from other convex functions using convexity preserving operations are very powerful tools in applications.

Computing Conjugates: Dual Operations

General formulas for conjugates of convex functions generated from other convex functions using convexity preserving operations are very powerful tools in applications.

Example: What is $(\lambda f)^{*}$ when $\lambda>0$ and f proper convex?

Computing Conjugates: Dual Operations

General formulas for conjugates of convex functions generated from other convex functions using convexity preserving operations are very powerful tools in applications.

Example: What is $(\lambda f)^{*}$ when $\lambda>0$ and f proper convex?

$$
\begin{aligned}
(\lambda f)^{*}(v) & =\sup _{x}\langle v, x\rangle-\lambda f(x) \\
& =\lambda \sup _{x}\left\langle\frac{v}{\lambda}, x\right\rangle-f(x) \\
& =\lambda f^{*}\left(\frac{v}{\lambda}\right)
\end{aligned}
$$

That is, the dual operation to multiplying a function by a positive scalar is epi-multiplication.

What is $(\lambda f(\cdot / \lambda))^{*}$ for $\lambda>0$?

$$
\begin{aligned}
(\lambda f(\cdot / \lambda))^{*}(v) & =\sup _{x}[\langle v, x\rangle-\lambda f(x / \lambda)] \\
& =\lambda \sup _{x}[\langle v, x / \lambda\rangle-f(x / \lambda)] \\
& =\lambda \sup _{z}[\langle v, z\rangle-f(z)] \\
& =\lambda f^{*}(v)
\end{aligned}
$$

What is $\left(f_{1} \square f_{2}\right)^{*}$?

$$
\begin{aligned}
\left(f_{1} \square f_{2}\right)^{*}(v) & =\sup _{x}\left[\langle v, x\rangle-\inf _{x=x_{1}+x_{2}}\left[f_{1}\left(x_{1}\right)+f_{2}\left(x_{2}\right)\right]\right] \\
& =\sup _{x} \sup _{x=x_{1}+x_{2}}\left[\langle v, x\rangle-\left(f_{1}\left(x_{1}\right)+f_{2}\left(x_{2}\right)\right)\right] \\
& =\sup _{x_{1}, x_{2}}\left[\left\langle v, x_{1}+x_{2}\right\rangle-f_{1}\left(x_{1}\right)-f_{2}\left(x_{2}\right)\right] \\
& \left.=\sup _{x_{1}, x_{2}}\left[\left\langle v, x_{1}\right\rangle-f_{1}\left(x_{1}\right)\right)+\left(\left\langle v, x_{2}\right\rangle-f_{2}\left(x_{1} 2\right)\right)\right] \\
& =\sup _{x_{1}}\left[\left\langle v, x_{1}\right\rangle-f_{1}\left(x_{1}\right)\right]+\sup _{x_{2}}\left[\left\langle v, x_{2}\right\rangle-f_{2}\left(x_{2}\right)\right] \\
& =f_{1}^{*}(v)+f_{2}^{*}(v)
\end{aligned}
$$

What is $\left(f_{1}+f_{2}\right)^{*}$?

The first point to consider By the bi-conjugacy theorm,

$$
\begin{aligned}
\left(\operatorname{cl} f_{1}+\operatorname{cl} f_{2}\right)^{*} & =\left(\left(f_{1}^{*}\right)^{*}+\left(f_{2}^{*}\right)^{*}\right)^{*} \\
& =\left(\left(f_{1}^{*} \square f_{2}^{*}\right)^{*}\right)^{*} \\
& =\operatorname{cl}\left(f_{1}^{*} \square f_{2}^{*}\right)
\end{aligned}
$$

What is $\left(f_{1}+f_{2}\right)^{*} ?$

The first point to consider By the bi-conjugacy theorm,

$$
\begin{aligned}
\left(\operatorname{cl} f_{1}+\operatorname{cl} f_{2}\right)^{*} & =\left(\left(f_{1}^{*}\right)^{*}+\left(f_{2}^{*}\right)^{*}\right)^{*} \\
& =\left(\left(f_{1}^{*} \square f_{2}^{*}\right)^{*}\right)^{*} \\
& =\operatorname{cl}\left(f_{1}^{*} \square f_{2}^{*}\right)
\end{aligned}
$$

It can be shown that if $\left(\right.$ ri dom $\left.f_{1}\right) \cap\left(\right.$ ri dom $\left.f_{2}\right) \neq \emptyset$, then the closure operation can be removed from the above equivalence, i.e.

$$
\left(f_{1}+f_{2}\right)^{*}=f_{1}^{*} \square f_{2}^{*}
$$

Application: Distance to a Convex Cone

Let $K \subset \mathbf{E}$ be a closed convex cone and let $\|\cdot\|$ be any norm on \mathbf{E} with closed unit ball \mathbb{B}. Then

$$
\begin{aligned}
\operatorname{dist}(z \mid K) & =\inf _{y \in K}\|z-y\| \\
& =\inf _{y}\|z-y\|+\delta_{K}(y) \\
& =\inf _{y} \delta_{\mathbb{B}^{\circ}}^{*}(z-y)+\delta_{K^{\circ}}^{*}(y)=\left(\delta_{\mathbb{B}^{\circ}}^{*} \square \delta_{K^{\circ}}^{*}\right)(z) .
\end{aligned}
$$

Application: Distance to a Convex Cone

Let $K \subset \mathbf{E}$ be a closed convex cone and let $\|\cdot\|$ be any norm on \mathbf{E} with closed unit ball \mathbb{B}. Then

$$
\begin{aligned}
\operatorname{dist}(z \mid K) & =\inf _{y \in K}\|z-y\| \\
& =\inf _{y}\|z-y\|+\delta_{K}(y) \\
& =\inf _{y} \delta_{\mathbb{B}^{\circ}}^{*}(z-y)+\delta_{K^{\circ}}^{*}(y)=\left(\delta_{\mathbb{B}^{\circ}}^{*} \square \delta_{K^{\circ}}^{*}\right)(z) .
\end{aligned}
$$

Consequently,

$$
\begin{aligned}
\operatorname{dist}(\cdot \mid K)^{*} & =\left(\delta_{\mathbb{B}^{\circ}}^{*} \square \delta_{K^{\circ}}^{*}\right)^{*} \\
& =\delta_{\mathbb{B}^{\circ}}^{* *}+\delta_{K^{\circ}}^{* *} \\
& =\delta_{\mathbb{B}^{\circ}}+\delta_{K^{\circ}}=\delta_{\mathbb{B}^{\circ} \cap K^{\circ}} .
\end{aligned}
$$

Application: Distance to a Convex Cone

Let $K \subset \mathbf{E}$ be a closed convex cone and let $\|\cdot\|$ be any norm on \mathbf{E} with closed unit ball \mathbb{B}. Then

$$
\begin{aligned}
\operatorname{dist}(z \mid K) & =\inf _{y \in K}\|z-y\| \\
& =\inf _{y}\|z-y\|+\delta_{K}(y) \\
& =\inf _{y} \delta_{\mathbb{B}^{\circ}}^{*}(z-y)+\delta_{K^{\circ}}^{*}(y)=\left(\delta_{\mathbb{B}^{\circ}}^{*} \square \delta_{K^{\circ}}^{*}\right)(z) .
\end{aligned}
$$

Consequently,

Therefore,

$$
\begin{aligned}
\operatorname{dist}(\cdot \mid K)^{*} & =\left(\delta_{\mathbb{B}^{\circ}}^{*} \square \delta_{K^{\circ}}^{*}\right)^{*} \\
& =\delta_{\mathbb{B}^{\circ}}^{* *}+\delta_{K^{\circ}}^{* *} \\
& =\delta_{\mathbb{B}^{\circ}}+\delta_{K^{\circ}}=\delta_{\mathbb{B}^{\circ} \cap K^{\circ}} .
\end{aligned}
$$

$$
\operatorname{dist}(z \mid K)=\delta_{\mathbb{B}^{\circ} \cap K^{\circ}}^{*}(z)
$$

An Alternative Approach to the Subdifferential

Eventually, we would like to extend the notion of subdifferential beyond convex functions. One proposal is to define the (regular) subdifferential by the inequality

$$
\hat{\partial} f(x):=\{v \mid f(x)+\langle v, y-x\rangle \leq f(y)+o(\|y-x\|)\} .
$$

Proposition: Let $f: \mathbf{E} \rightarrow \overline{\mathbf{R}}$ be proper convex. Then, for all $x \in \operatorname{dom} \partial f(x), \hat{\partial} f(x)=\partial f(x)$.
Proof: Clearly, $\partial f(x) \subset \hat{\partial} f(x)$, so let $v \in \hat{\partial} f(x)$. Then, for all $d \in \mathbf{E}$ and $t>0$,

$$
\langle v, d\rangle \leq \frac{f(x+t d)-f(x)}{t}+\frac{o(t\|d\|)}{t}
$$

and so $\langle v, d\rangle \leq f^{\prime}(x ; d)=\delta_{\partial f(x)}^{*}(d)$. Therefore, $v \partial f(x)$.
For this reason, from now on we simply denote $\hat{\partial} f(x)$ by $\partial f(x)$ and call $\partial f(x)$ even when f is not necessarily convex. Again, $\operatorname{dom} \partial f:=\{x \mid \partial f(x) \neq \emptyset\}$

A simple subdifferential calculus rule

Proposition: Let $h: \mathbf{E} \rightarrow \overline{\mathbf{R}}$ be proper convex and $g: \mathbf{E} \rightarrow \overline{\mathbf{R}}$ be convex and differentiable on the open set U. Then, for all $x \in U \cap \operatorname{dom} \partial h, \partial(h+g)(x)=\partial h(x)+\nabla g(x)$.

Proof: We have already shown that $\partial g(x)=\{\nabla g(x)\}$ for all $x \in U$.
Given $x \in U \cap \operatorname{dom} \partial h$ and $v \in \partial h(x)$, we have

$$
\left.\begin{array}{rl}
h(x)+\langle v, y-x\rangle & \leq h(y) \\
)+\langle\nabla g(x), y-x\rangle & \leq g(y)
\end{array}\right\} \forall y \in \mathbf{E}
$$

Adding these inequalities shows that $\partial h(x)+\nabla g(x) \subset \partial(h+g)(x)$.
Next let $w \in \partial(h+g)(x)$. Then

$$
\begin{aligned}
h(x)+g(x)+\langle w, y-x\rangle & \leq h(y)+g(y) \\
& =h(y)+g(x)+\langle\nabla g(x), y-x\rangle+o(\|y-x\|) .
\end{aligned}
$$

Hence,

$$
h(x)+\langle w-\nabla g(x), y-x\rangle \leq h(y)+o(\|y-x\|) \forall y \in \mathbf{E},
$$

which implies that $w-\nabla g(x) \in \partial h(x)$.

Strong Convexity

Definition: A function $f: \mathbf{E} \rightarrow \overline{\mathbf{R}}$ is called μ-strongly convex (with $\mu \geq 0$) if the perturbed function $x \mapsto f(x)-\frac{\mu}{2}\|x\|^{2}$ is convex.

Theorem: Let $f: \mathbf{E} \rightarrow \overline{\mathbf{R}}$ be a μ-strongly convex function. Then for any $x \in \mathbf{E}$ and $v \in \partial f(x)$, the estimate holds:

$$
f(y) \geq f(x)+\langle v, y-x\rangle+\frac{\mu}{2}\|y-x\|^{2} \quad \text { for all } y \in \mathbf{E} .
$$

Proof: Apply the subdifferential inequality to the convex function $g:=f-\frac{\mu}{2}\|\cdot\|^{2}$.

Strong Convexity

Definition: A function $f: \mathbf{E} \rightarrow \overline{\mathbf{R}}$ is called μ-strongly convex (with $\mu \geq 0$) if the perturbed function $x \mapsto f(x)-\frac{\mu}{2}\|x\|^{2}$ is convex.

Theorem: Let $f: \mathbf{E} \rightarrow \overline{\mathbf{R}}$ be a μ-strongly convex function. Then for any $x \in \mathbf{E}$ and $v \in \partial f(x)$, the estimate holds:

$$
f(y) \geq f(x)+\langle v, y-x\rangle+\frac{\mu}{2}\|y-x\|^{2} \quad \text { for all } y \in \mathbf{E} .
$$

Proof: Apply the subdifferential inequality to the convex function $g:=f-\frac{\mu}{2}\|\cdot\|^{2}$.

Corollary: Any proper, closed, μ-strongly convex function $f: \mathbf{E} \rightarrow \overline{\mathbf{R}}$ is coercive and has a unique minimizer x satisfying

$$
f(y)-f(x) \geq \frac{\mu}{2}\|y-x\|^{2} \quad \text { for all } y \in \mathbf{E}
$$

The Moreau Envelope

Definition: For any function $f: \mathbf{E} \rightarrow \overline{\mathbf{R}}$ and real $\alpha>0$, define the Moreau envelope and the proximal map, respectively:

$$
\begin{aligned}
f_{\alpha}(x) & :=\left(f \square\left(\frac{1}{2 \alpha}\|\cdot\|^{2}\right)\right)(x)=\min _{y} f(y)+\frac{1}{2 \alpha}\|x-y\|^{2} \\
\operatorname{prox}_{\alpha f}(x) & :=\underset{y}{\operatorname{argmin}} f(y)+\frac{1}{2 \alpha}\|x-y\|^{2} .
\end{aligned}
$$

Recall that epi $f_{\alpha}=\operatorname{epi} f+\operatorname{epi}\left(\frac{1}{2 \alpha}\|\cdot\|^{2}\right)$.

The Huber Function and Soft-Threshholding

For $f(x)=|x|$,

$$
f_{\alpha}(x)=\left\{\begin{array}{ll}
\frac{1}{2 \alpha}|x|^{2} & \text { if }|x| \leq \alpha \\
|x|-\frac{1}{2} \alpha & \text { otherwise }
\end{array}\right\}, \quad \operatorname{prox}_{\alpha f}(x)=\left\{\begin{array}{ll}
x-\alpha & \text { if } x \geq \alpha \\
0 & \text { if }|x| \leq \alpha \\
x+\alpha & \text { if } x \leq-\alpha
\end{array}\right\}
$$

The Huber Function and Soft-Threshholding

For $f(x)=|x|$,

$$
f_{\alpha}(x)=\left\{\begin{array}{ll}
\frac{1}{2 \alpha}|x|^{2} & \text { if }|x| \leq \alpha \\
|x|-\frac{1}{2} \alpha & \text { otherwise }
\end{array}\right\}, \quad \operatorname{prox}_{\alpha f}(x)=\left\{\begin{array}{ll}
x-\alpha & \text { if } x \geq \alpha \\
0 & \text { if }|x| \leq \alpha \\
x+\alpha & \text { if } x \leq-\alpha
\end{array}\right\}
$$

(a) epi $|\cdot|_{\alpha}=$ epi $|\cdot|+\operatorname{epi} \frac{1}{2}|\cdot|^{2}$
(b) $\operatorname{gph}\left(\operatorname{prox}_{\alpha|\cdot|}\right)$

Figure: Moreau envelope and the proximal map of $|\cdot|$.

The Distance Function

Let $Q \subset \mathbf{E}$ be closed convex. Then

$$
\begin{aligned}
\left(\delta_{Q}\right)_{\alpha}(x) & =\left(\delta_{Q \square} \frac{1}{2 \alpha}\|\cdot\|^{2}\right)(x) \\
& =\inf _{y \in Q} \frac{1}{2 \alpha}\|x-y\|^{2} \\
& =\frac{1}{2 \alpha} d_{Q}^{2}(x)
\end{aligned}
$$

and

$$
\operatorname{prox}_{\alpha \delta_{Q}}(x)=\operatorname{proj}_{Q}(x)
$$

Prox is 1-Lipschitz

Theorem: Let $f: \mathbf{E} \rightarrow \overline{\mathbf{R}}$ be proper, closed, cvx. Then the set $\operatorname{prox}_{f}(x)$ is a singleton for every point $x \in \mathbf{E}$. Moreover, $\left\|\operatorname{prox}_{f}(x)-\operatorname{prox}_{f}(y)\right\|^{2} \leq\left\langle\operatorname{prox}_{f}(x)-\operatorname{prox}_{f}(y), x-y\right\rangle \quad \forall x, y \in \mathbf{E}$.

Prox is 1-Lipschitz

Theorem: Let $f: \mathbf{E} \rightarrow \overline{\mathbf{R}}$ be proper, closed, cvx. Then the set $\operatorname{prox}_{f}(x)$ is a singleton for every point $x \in \mathbf{E}$. Moreover,

$$
\left\|\operatorname{prox}_{f}(x)-\operatorname{prox}_{f}(y)\right\|^{2} \leq\left\langle\operatorname{prox}_{f}(x)-\operatorname{prox}_{f}(y), x-y\right\rangle \quad \forall x, y \in \mathbf{E} .
$$

Proof: The map $z \mapsto f(z)+\frac{1}{2}\|z-x\|^{2}$ is proper, closed, and 1 -strongly cvx, and hence $\operatorname{prox}_{f}(x)$ is the unique minimizer. Since $h(y):=f(y)+\frac{1}{2}\|y-x\|^{2}$ is 1 -strongly cvx, for $x, y \in \mathbf{E}$,

$$
\begin{aligned}
f\left(x^{+}\right)+\frac{1}{2}\left\|x^{+}-x\right\|^{2} \leq & \left(f\left(y^{+}\right)+\frac{1}{2}\left\|y^{+}-x\right\|^{2}\right)-\frac{1}{2}\left\|y^{+}-x^{+}\right\|^{2} \\
= & f\left(y^{+}\right)+\frac{1}{2}\left\|y^{+}-y\right\|^{2}-\frac{1}{2}\left\|y^{+}-x^{+}\right\|^{2} \\
& +\frac{1}{2}\left\|y^{+}-x\right\|^{2}-\frac{1}{2}\left\|y^{+}-y\right\|^{2} \\
\leq & \left(f\left(x^{+}\right)+\frac{1}{2}\left\|x^{+}-y\right\|^{2}\right)-\left\|y^{+}-x^{+}\right\|^{2} \\
& +\frac{1}{2}\left\|y^{+}-x\right\|^{2}-\frac{1}{2}\left\|y^{+}-y\right\|^{2},
\end{aligned}
$$

so

$$
\begin{aligned}
\left\|y^{+}-x^{+}\right\|^{2} & \leq \frac{1}{2}\left(\left\|x^{+}-y\right\|^{2}-\left\|y^{+}-y\right\|^{2}+\left\|y^{+}-x\right\|^{2}-\left\|x^{+}-x\right\|^{2}\right) \\
& =\left\langle x^{+}-y^{+}, x-y\right\rangle \leq\left\|y^{+}-x^{+}\right\|\|x-y\|
\end{aligned}
$$

The Moreau Decomposition

Theorem: For any proper, closed, convex function $f: \mathbf{E} \rightarrow \overline{\mathbf{R}}$,

$$
\operatorname{prox}_{f}(x)+\operatorname{prox}_{f^{\star}}(x)=x \quad \forall x \in \mathbf{E}
$$

Proof Using the definition of the proximal map,

$$
\begin{aligned}
z=\operatorname{prox}_{f}(x) & \Longleftrightarrow 0 \in \partial\left(f+\frac{1}{2}\|\cdot-x\|^{2}\right)(z) \\
& \Longleftrightarrow x-z \in \partial f(z) \\
& \Longleftrightarrow z \in \partial f^{\star}(x-z) \\
& \Longleftrightarrow 0 \in \partial f^{\star}(x-z)-z \\
& \Longleftrightarrow 0 \in \partial\left(f^{\star}+\frac{1}{2}\|\cdot-x\|^{2}\right)(x-z) \\
& \Longleftrightarrow x-z=\operatorname{prox}_{f^{\star}}(x)
\end{aligned}
$$

∇f_{α} is Lipschitz continuous with parameter α^{-1}

Theorem: Let $f: \mathbf{E} \rightarrow \overline{\mathbf{R}}$ be closed proper convex. Then the envelope f_{α} is continuously differentiable on \mathbf{E} with gradient

$$
\nabla f_{\alpha}(x)=\alpha^{-1}\left(x-\operatorname{prox}_{\alpha f}(x)\right)
$$

Consequently ∇f_{α} is α^{-1}-smooth.

Proof:Take $\alpha=1$, then

$$
\begin{aligned}
z \in \partial f_{\alpha}(x) & \Longleftrightarrow x \in \partial\left(f \square \frac{1}{2}\|\cdot\|^{2}\right)^{\star}(z) \\
& \Longleftrightarrow x \in \partial\left(f^{\star}+\left(\frac{1}{2}\|\cdot\|^{2}\right)^{\star}\right)(z) \\
& \Longleftrightarrow x \in \partial f^{\star}(z)+z \\
& \Longleftrightarrow \quad 0 \in \partial\left(f^{\star}+\frac{1}{2}\|\cdot-x\|^{2}\right)(z) \\
& \Longleftrightarrow z=\operatorname{prox}_{f^{\star}}(x) \\
& \Longleftrightarrow z=x-\operatorname{prox}_{f}(x)
\end{aligned}
$$

For $\alpha \neq 1$, use the identity $\alpha f_{\alpha}=(\alpha f)_{1}$.

Baillon-Haddad Theorem

Theorem: A proper, closed, convex function $f: \mathbf{E} \rightarrow \overline{\mathbf{R}}$ is μ-strongly convex if and only if the conjugate f^{\star} is μ^{-1}-smooth.

Proof: (\Longrightarrow) Suppose that f is μ-strongly convex and define the convex function $g(x):=f(x)-\frac{\mu}{2}\|x\|^{2}$. We may then write

$$
f^{\star}=\left(g+\frac{\mu}{2}\|\cdot\|^{2}\right)^{\star}=g^{\star} \square \frac{1}{2 \mu}\|\cdot\|^{2} .
$$

The right-hand-side is simply the Moreau envelope of g^{\star} with parameter μ, and is therefore μ^{-1}-smooth.

Baillon-Haddad Theorem

(\Longleftarrow) Suppose f^{*} is μ^{-1}-smooth, and set $h:=f^{*}$ and $\beta:=\mu^{-1}$ so that h is β-smooth. We know that h is β-smooth is equivalent to

$$
0 \leq\langle\nabla h(x)-\nabla h(y), x-y\rangle \leq \beta\|x-y\|^{2} .
$$

Set $g:=\frac{\beta}{2}\|\cdot\|-h$. Then

$$
\langle\nabla g(y)-\nabla g(x), y-x\rangle=\beta\|y-x\|^{2}-\langle\nabla h(y)-\nabla h(x), y-x\rangle \geq 0 .
$$

Hence, g is cvx. Note that

$$
\begin{aligned}
h(y)=\frac{\beta}{2}\|y\|^{2}-g(y) & =\frac{\beta}{2}\|y\|^{2}-g^{\star \star}(y)=\frac{\beta}{2}\|y\|^{2}-\sup _{x}\left\{\langle y, x\rangle-g^{\star}(x)\right\} \\
& =\inf _{x}\left[\frac{\beta}{2}\|y\|^{2}-\langle y, x\rangle+g^{\star}(x)\right],
\end{aligned}
$$

$$
\stackrel{\text { so }}{h^{\star}(z)}=\sup _{y}\{\langle z, y\rangle-h(y)\}
$$

$$
=\sup _{y}\left[\langle z, y\rangle-\inf _{x}\left\{\frac{\beta}{2}\|y\|^{2}-\langle y, x\rangle+g^{\star}(x)\right\}\right]
$$

$$
=\sup _{x} \sup _{y}\left[\langle z, y\rangle-\frac{\beta}{2}\|y\|^{2}+\langle y, x\rangle-g^{\star}(x)\right]
$$

$$
=\sup _{x}\left[\sup _{y}\left\{\langle z+x, y\rangle-\frac{\beta}{2}\|y\|^{2}\right\}-g^{\star}(x)\right]=\sup _{x} \frac{1}{2 \beta}\|z+x\|^{2}-g^{\star}(x) \text {. }
$$

So $h^{\star}(z)-\frac{1}{2 \beta}\|z\|^{2}=\sup _{x}\left[\frac{1}{\beta}\langle z, x\rangle+\frac{1}{2 \beta}\|x\|^{2}-g^{\star}(x)\right]$ is cvx.

Subgradient Dominance Theorem

Theorem: Any proper, closed, α-strongly convex function $f: \mathbf{E} \rightarrow \overline{\mathbf{R}}$ satisfies the subgradient dominance condition:

$$
f(x)-\min f \leq \frac{1}{\alpha}\|v\|^{2} \quad \text { for all } x \in \mathbf{E}, v \in \partial f(x)
$$

Proof: Let \bar{x} be a minimizer of f. Fix any $x \in \mathbf{E}$ and $v \in \partial f(x)$. We compute

$$
\begin{aligned}
f(x)-f(\bar{x}) \leq\langle v, x-\bar{x}\rangle & \leq\|v\| \cdot\|x-\bar{x}\| \\
& =\|v\| \cdot\left\|\nabla f^{\star}(v)-\nabla f^{\star}(0)\right\| \leq \frac{1}{\alpha}\|v\|^{2} .
\end{aligned}
$$

The Normal Cone to the Epigraph

Proposition: Let $f: \mathbf{E} \rightarrow \overline{\mathbf{R}}$ be proper convex. Then, for all $\bar{x} \in \operatorname{dom} \partial f, \partial f(\bar{x})=\left\{v \mid(v,-1) \in N_{\text {epi } f}(\bar{x}, f(\bar{x}))\right\}$.

Proof:

$$
\begin{aligned}
(v,-1) \in N_{\mathrm{epi}} f(x, f(x)) & \Longleftrightarrow\langle(v,-1),(x, f(x))-(\bar{x}, f(\bar{x}))\rangle \leq 0 \forall x \in \operatorname{dom} f \\
& \Longleftrightarrow f(\bar{x})+\langle v, x-\bar{x}\rangle \leq f(x) \forall x \in \operatorname{dom} f \\
& \Longleftrightarrow f(\bar{x})+\langle v, x-\bar{x}\rangle \leq f(x) \forall x \in \mathbf{E}
\end{aligned}
$$

Outer Semicontinuity of the Subdifferential

An important property of the subdifferential is that it is outer semicontinuous.

Definition: A multivalued mapping $T: \mathbf{X} \rightrightarrows \mathbf{Y}$ is said to be outer semicontinuous on its domain, $\operatorname{dom} T:=\{x \mid T(x) \neq \emptyset\}$, if for every point $(\bar{x}, \bar{y}) \in(\operatorname{dom} T) \times \mathbf{Y}$ and every sequence $\left\{\left(x_{i}, y_{i}\right)\right\} \subset \mathbf{X} \times \mathbf{Y}$ with $\left(x_{i}, y_{i}\right) \rightarrow(\bar{x}, \bar{y})$ with $y_{i} \in T\left(x_{i}\right)$ for all i it must be the case that $\bar{y} \in T(\bar{x})$.

Theorem: Let $f: \mathbf{E} \rightarrow \overline{\mathbf{R}}$ be proper convex. Then ∂f is outer semicontinuous on $\operatorname{dom} \partial f$.
Proof: Let $(\bar{x}, \bar{y}) \in(\operatorname{dom} \partial f) \times \mathbf{E}$ and $\left\{\left(x_{i}, y_{i}\right)\right\} \subset(\operatorname{dom} \partial f) \times \mathbf{E}$ be such that $\left(x_{i}, y_{i}\right) \rightarrow(\bar{x}, \bar{y})$ with $y_{i} \in \partial f\left(x_{i}\right)$ for all i. We must show $\bar{y} \in \partial f(\bar{x})$. By construction,

$$
\operatorname{cl} f\left(x_{i}\right)+\left\langle y_{i}, x-x_{i}\right\rangle \leq f(x) \quad \forall x \in \mathbf{E} .
$$

Hence, given $x \in \mathbf{E}$, using the lower semicontinuity of $\mathrm{cl} f$, we may take the limit in this inequality to find that

$$
\operatorname{cl} f(\bar{x})+\langle\bar{y}, x-\bar{x}\rangle \leq f(x) \quad \forall x \in \mathbf{E} .
$$

Hence, $\bar{y} \in \partial(\operatorname{cl} f)(\bar{x})=\partial f(\bar{x})$, where the equality follows since $\bar{x} \in \operatorname{dom} \partial f$.

