Convex Analysis

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Functions Taking Infinite Values

We consider functions f mapping \mathbf{E} to the extended-real-line $\overline{\mathbf{R}} = \mathbf{R} \cup \{\pm \infty\}.$

Care must be taken when working with $\pm \infty$. In particular, we set $0 \cdot \pm \infty = 0$ and will be careful to avoid the expressions $(+\infty) + (-\infty)$ throughout.

Since the primary focus of our discussion is convex functions, there is a bias between $+\infty$ and $-\infty$.

Given $f: \mathbf{E} \to \overline{R}$, the effective domain and epigraph of f are

dom
$$f := \{x \in \mathbf{E} : f(x) < +\infty\},$$

epi $f := \{(x, r) \in \mathbf{E} \times \mathbf{R} : f(x) \le r\},$

respectively.

A function $f: \mathbf{E} \to \overline{\mathbf{R}}$ is called *proper* if it never takes the value $-\infty$ and dom $f \neq \emptyset$.

Epigraphs

Figure: Epigraph and effective domain of the function whose value is $\max\{-x, \frac{1}{2}x^2\}$ for $x \in [-1, 1]$ and $+\infty$ elsewhere.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

Epigraphs

Figure: Epigraph and effective domain of the function whose value is $\max\{-x, \frac{1}{2}x^2\}$ for $x \in [-1, 1]$ and $+\infty$ elsewhere.

Lemma: A function $f : \mathbf{E} \to \overline{\mathbf{R}}$ is closed (lsc) if and only if epi f is a closed set.

うして ふゆ く は く は く む く し く

Convex Functions

We say that the function $f: \mathbf{E} \to \overline{\mathbf{R}}$ is convex if epi f is a convex set.

Convex Functions

We say that the function $f : \mathbf{E} \to \overline{\mathbf{R}}$ is convex if epi f is a convex set.

Lemma: $f: \mathbf{E} \to \overline{\mathbf{R}}$ is **convex** if and only if

 $f(\lambda x + (1-\lambda)y) \leq \lambda f(x) + (1-\lambda)f(y) \qquad \forall \, x,y \in \mathbf{E} \text{ and } \lambda \in (0,1).$

Convex Functions

We say that the function $f : \mathbf{E} \to \overline{\mathbf{R}}$ is convex if epi f is a convex set.

Lemma: $f: \mathbf{E} \to \overline{\mathbf{R}}$ is **convex** if and only if

 $f(\lambda x + (1-\lambda)y) \leq \lambda f(x) + (1-\lambda)f(y) \qquad \forall \, x,y \in \mathbf{E} \text{ and } \lambda \in (0,1).$

Lemma: If $f : \mathbf{E} \to \overline{\mathbf{R}}$ is convex, then, for all $r \in \mathbf{R}$ the set $\{x \mid f(x) \leq r\}$ is convex.

3 Special Functions for $Q \subset \mathbf{E}$

The *indicator function* for Q:

$$\delta_Q(x) := \begin{cases} 0 & , \ x \in Q, \\ +\infty & , \ x \notin Q. \end{cases}$$

The support function for Q:

$$\delta_Q^*(x) := \sup_{v \in Q} \langle v, x \rangle \; .$$

The gauge function for Q:

$$\gamma_Q(x) := \inf \{\lambda \in \mathbf{R}_+ \, | \, x \in \lambda Q \}$$
.

3 Special Functions for $Q \subset \mathbf{E}$

The *indicator function* for Q:

$$\delta_Q(x) := \begin{cases} 0 & , \ x \in Q, \\ +\infty & , \ x \notin Q. \end{cases}$$

The support function for Q:

$$\delta_Q^*(x) := \sup_{v \in Q} \langle v, x \rangle \; .$$

The gauge function for Q:

$$\gamma_Q(x) := \inf \left\{ \lambda \in \mathbf{R}_+ \, | \, x \in \lambda Q \right\} \,.$$

(1) If $\mathbb{B} \subset \mathbf{E}$ is the closed unit ball for the norm $\|\cdot\|$, then $\|\cdot\| = \delta^*_{\mathbb{B}^\circ} = \gamma_{\mathbb{B}}.$

3 Special Functions for $Q \subset \mathbf{E}$

The *indicator function* for Q:

$$\delta_Q(x) := \begin{cases} 0 & , \ x \in Q, \\ +\infty & , \ x \notin Q. \end{cases}$$

The support function for Q:

$$\delta_Q^*(x) := \sup_{v \in Q} \langle v, x \rangle \; .$$

The gauge function for Q:

$$\gamma_Q(x) := \inf \left\{ \lambda \in \mathbf{R}_+ \, | \, x \in \lambda Q \right\} \,.$$

(1) If B ⊂ E is the closed unit ball for the norm ||·||, then ||·|| = δ^{*}_B∘ = γ_B.
(2) If K ⊂ E is a closed convex cone, then δ^{*}_{K°} = δ_K = γ_K.

Epigraphical Perspective

In our study of functions $f : \mathbf{E} \to \overline{\mathbf{R}}$ we take an epigraphical perspective, that is, we study properties of a function by studying properties of its epigraph.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Epigraphical Perspective

In our study of functions $f : \mathbf{E} \to \overline{\mathbf{R}}$ we take an epigraphical perspective, that is, we study properties of a function by studying properties of its epigraph.

For example, a function is closed (lsc) if its epigraph is a closed set. Similarly, a function is convex if its epigraph is a convex set.

The primary advantages of this perspective is that it allows us to discover properties of functions through properties of sets.

うして ふゆ く は く は く む く し く

Epigraphical Perspective

In our study of functions $f : \mathbf{E} \to \overline{\mathbf{R}}$ we take an epigraphical perspective, that is, we study properties of a function by studying properties of its epigraph.

For example, a function is closed (lsc) if its epigraph is a closed set. Similarly, a function is convex if its epigraph is a convex set.

The primary advantages of this perspective is that it allows us to discover properties of functions through properties of sets.

A key observation in this regard is the fact that for every $x \in \operatorname{dom} f$,

 $f(x) = \inf_{(x,\mu) \in \operatorname{epi} f} \mu \; .$

Epigraphs that are Cones

What are the functions whose epigraphs are cones?

Epigraphs that are Cones

What are the functions whose epigraphs are cones?

For $\lambda > 0$, $\lambda \text{epi } f = \text{epi } f$, i.e., if $(x, \mu) \in \text{epi } f$ so is $(\lambda x, \lambda \mu)$ for all $\lambda \ge 0$. Hence, we can relate the values of $f(\lambda x)$ to those of f(x) as follows: for $\lambda > 0$,

$$\begin{split} f(\lambda x) &= \inf_{(\lambda x, \lambda \mu) \in \operatorname{epi} f} \lambda \mu \\ &= \lambda \inf_{(x, \mu) \in \lambda^{-1} \operatorname{epi} f} \mu \\ &= \lambda \inf_{(x, \mu) \in \operatorname{epi} f} \mu \\ &= \lambda f(x) \; . \end{split}$$

From this, it is easy to show that epi f is a cone if and only if $f(\lambda x) = \lambda f(x)$ for all $x \in \text{dom } f$ and $\lambda \ge 0$.

Such functions are called *positively homogeneous*.

Epigraphs that are Convex Cones

If epi f is a convex cone, what can be said about f?

We have already shown that f must be positively homogeneous. But convexity tells us that epi f = epi f + epi f, i.e., for every pair $(x, \mu), (y, \tau) \in \text{epi } f$ we have

$$(x,\mu) + (y,\tau) = (x+y,\mu+\tau) \in \operatorname{epi} f.$$

Consequently,

 $\{\mu+\tau\,|\,(x,\mu),(y,\tau)\in {\rm epi}\,f\,\}\subset\{\omega\,|\,(x+y,\omega)\in {\rm epi}\,f\,\},$ and so, for all $x,y\in {\rm dom}\,f,$

$$\begin{split} f(x+y) &= \inf_{(x+y,\omega)\in \operatorname{epi} f} \omega \leq \inf_{(x,\mu),(y,\tau)\in \operatorname{epi} f} \mu + \tau \\ &= \left(\inf_{(x,\mu)\in \operatorname{epi} f} \mu \right) + \left(\inf_{(y,\tau)\in \operatorname{epi} f} \tau \right) = f(x) + f(y). \end{split}$$

Since this inequality trivially holds if either x or y is not in dom f, $f(x+y) \leq f(x) + f(y) \quad \forall x, y \in \mathbf{E}.$ Such functions are called *subadditive*. Hence functions whose epigraphs are convex cones are both positively homogeneous and subadditive. Such functions are called *sublinear*.

Exercise

1) Show that a the epigraph of a positively homogeneous function is a cone.

2) Show that the epigraph of a sublinear function is a convex cone.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Support Functions are Sublinear

Let $S \subset \mathbf{E}$ be nonempty and consider the support function $\delta^*_S(x) = \sup_{v \in S} \langle v, x \rangle.$

positive homogeneity: $\lambda \geq 0$,

$$\begin{split} \delta_{S}^{*}(\lambda x) &= \sup \left\{ \langle \lambda x, v \rangle \, | \, v \in S \right\} = \lambda \sup \left\{ \langle x, v \rangle \, | \, v \in S \right\} \\ &= \lambda \delta^{*}(x \, | \, S) \quad \forall \, \lambda \geq 0. \end{split}$$

subadditivity: $x^1, x^2 \in \mathbf{E}$,

$$\begin{split} \delta_{S}^{*}(x^{1}+x^{2}) &= \sup\left\{\left\langle x^{1}+x^{2}, v\right\rangle | v \in S\right\} \\ &= \sup\left\{\left\langle x^{1}, v^{1}\right\rangle + \left\langle x^{2}, v^{2}\right\rangle | v^{1}=v^{2} \in S\right\} \\ &\leq \sup\left\{\left\langle x^{1}, v^{1}\right\rangle + \left\langle x^{2}, v^{2}\right\rangle | v^{1}, v^{2} \in S\right\} \\ &\leq \sup\left\{\left\langle x^{1}, v^{1}\right\rangle | v^{1} \in S\right\} + \sup\left\{\left\langle x^{2}, v^{2}\right\rangle | v^{2} \in S\right\} \\ &= \delta^{*}(x^{1} | S) + \delta^{*}(x^{2} | S) \,. \end{split}$$

Support Functions are Sublinear

Let $S \subset \mathbf{E}$ be nonempty and consider the support function $\delta^*_S(x) = \sup_{v \in S} \langle v, x \rangle.$

positive homogeneity: $\lambda \geq 0$,

$$\begin{split} \delta_{S}^{*}(\lambda x) &= \sup \left\{ \langle \lambda x, v \rangle \, | \, v \in S \right\} = \lambda \sup \left\{ \langle x, v \rangle \, | \, v \in S \right\} \\ &= \lambda \delta^{*}(x \, | \, S) \quad \forall \, \lambda \geq 0. \end{split}$$

subadditivity: $x^1, x^2 \in \mathbf{E}$,

$$\begin{split} \delta_{S}^{*}(x^{1}+x^{2}) &= \sup\left\{\left\langle x^{1}+x^{2}, v\right\rangle | v \in S\right\} \\ &= \sup\left\{\left\langle x^{1}, v^{1}\right\rangle + \left\langle x^{2}, v^{2}\right\rangle | v^{1}=v^{2} \in S\right\} \\ &\leq \sup\left\{\left\langle x^{1}, v^{1}\right\rangle + \left\langle x^{2}, v^{2}\right\rangle | v^{1}, v^{2} \in S\right\} \\ &\leq \sup\left\{\left\langle x^{1}, v^{1}\right\rangle | v^{1} \in S\right\} + \sup\left\{\left\langle x^{2}, v^{2}\right\rangle | v^{2} \in S\right\} \\ &= \delta^{*}(x^{1} | S) + \delta^{*}(x^{2} | S) \,. \end{split}$$

Are sublinear functions support functions?

(ロ)、(型)、(E)、(E)、 E) の(の)

Convexity and Optimization

Strict Convexity: A convex function $f : \mathbf{E} \to \overline{\mathbf{R}}$ is said to be *strictly convex* if $f((1-\lambda)x+\lambda y) < (1-\lambda)f(x) + \lambda f(y) \quad \forall x, y \in \text{dom } f, \ \lambda \in (0,1) \text{ with } x \neq y.$

Theorem: Let $f: \mathbf{E} \to \overline{\mathbf{R}}$ be convex. If $\overline{x} \in \text{dom } f$ is a local solution to the problem min f(x), then \overline{x} is a global optimal solution. Moreover, if f is strictly convex, then the global optimal solution is unique.

うして ふゆ く は く は く む く し く

Convexity and Optimization

Proof: If $f(\bar{x}) = -\infty$ we are done, so assume that $-\infty < f(\bar{x})$. Suppose there is a $\hat{x} \in \mathbf{R}^n$ with $f(\hat{x}) < f(\bar{x})$. Let $\epsilon > 0$ be such that $f(\bar{x}) \leq f(x)$ whenever $||x - \bar{x}|| \leq \epsilon$. Set $\lambda := \epsilon (2||\bar{x} - \hat{x}||)^{-1}$ and $x_{\lambda} := \bar{x} + \lambda(\hat{x} - \bar{x})$. Then $||x_{\lambda} - \bar{x}|| \leq \epsilon/2$ and $f(x_{\lambda}) \leq (1 - \lambda)f(\bar{x}) + \lambda f(\hat{x}) < f(\bar{x})$. This contradiction implies no such \hat{x} exists.

うして ふゆ く は く は く む く し く

Convexity and Optimization

Proof: If $f(\bar{x}) = -\infty$ we are done, so assume that $-\infty < f(\bar{x})$. Suppose there is a $\hat{x} \in \mathbf{R}^n$ with $f(\hat{x}) < f(\bar{x})$. Let $\epsilon > 0$ be such that $f(\bar{x}) \le f(x)$ whenever $||x - \bar{x}|| \le \epsilon$. Set $\lambda := \epsilon (2||\bar{x} - \hat{x}||)^{-1}$ and $x_{\lambda} := \bar{x} + \lambda(\hat{x} - \bar{x})$. Then $||x_{\lambda} - \bar{x}|| \le \epsilon/2$ and $f(x_{\lambda}) \le (1 - \lambda)f(\bar{x}) + \lambda f(\hat{x}) < f(\bar{x})$. This contradiction implies no such \hat{x} exists

This contradiction implies no such \hat{x} exists.

To see the second statement in the theorem, let x^1 and x^2 be distinct global minimizers of f. Then, for $\lambda \in (0, 1)$,

$$f((1 - \lambda)x^1 + \lambda x^2) < (1 - \lambda)f(x^1) + \lambda f(x^2) = f(x^1)$$
,

which contradicts the assumption that x^1 is a global minimizer.

Theorem: Let $f : \mathbf{E} \to \overline{\mathbf{R}}$ be convex and let $x \in \text{dom } f$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

(1) Given $d \in \mathbf{E}$ the difference quotient $\frac{f(x+td)-f(x)}{t}$ is a non-decreasing function of t on $(0, +\infty)$.

Theorem: Let $f : \mathbf{E} \to \overline{\mathbf{R}}$ be convex and let $x \in \text{dom } f$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

(1) Given $d \in \mathbf{E}$ the difference quotient $\frac{f(x+td)-f(x)}{t}$ is a non-decreasing function of t on $(0, +\infty)$.

(2) For all
$$d \in \mathbf{E}$$
, $f'(x; d)$ exists with
 $f'(x; d) := \inf_{t>0} \frac{f(x+td) - f(x)}{t}$

Theorem: Let $f : \mathbf{E} \to \overline{\mathbf{R}}$ be convex and let $x \in \text{dom } f$.

(1) Given
$$d \in \mathbf{E}$$
 the difference quotient

$$\frac{f(x+td)-f(x)}{t}$$
is a non-decreasing function of t on $(0, +\infty)$.

(2) For all
$$d \in \mathbf{E}$$
, $f'(x; d)$ exists with
 $f'(x; d) := \inf_{t>0} \frac{f(x+td) - f(x)}{t}$

(3) The "subdifferential inequality" holds for all $x \in \text{dom } f$: $f(x) + f'(x : y - x) \le f(y) \quad \forall y \in \mathbf{E}.$

Theorem: Let $f : \mathbf{E} \to \overline{\mathbf{R}}$ be convex and let $x \in \text{dom } f$.

(1) Given
$$d \in \mathbf{E}$$
 the difference quotient

$$\frac{f(x+td)-f(x)}{t}$$
is a non-decreasing function of t on $(0, +\infty)$.

(2) For all
$$d \in \mathbf{E}$$
, $f'(x; d)$ exists with
 $f'(x; d) := \inf_{t>0} \frac{f(x+td) - f(x)}{t}$.

(3) The "subdifferential inequality" holds for all $x \in \text{dom } f$: $f(x) + f'(x : y - x) \le f(y) \quad \forall y \in \mathbf{E}.$

(4) The function $f'(x; \cdot)$ is sublinear. In particular, $f'(x; \cdot)$ is a convex function for all $x \in \text{dom } f$.

 $t \mapsto (f(x+td) - f(x))/t$ nondecreasing for t > 0

Let $x \in \text{dom } f$ and $d \in \mathbf{E}$. If $x + td \notin \text{dom } f$ for all t > 0, the result follows. So assume that

$$0 < \bar{t} = \sup\{t : x + td \in \operatorname{dom} f\}.$$

Let $0 < t_1 < t_2 < \bar{t}$. Then

$$\begin{aligned} f(x+t_1d) &= f\left(x + \left(\frac{t_1}{t_2}\right)t_2d\right) \\ &= f\left[\left(1 - \left(\frac{t_1}{t_2}\right)\right)x + \left(\frac{t_1}{t_2}\right)(x+t_2d)\right] \\ &\leq \left(1 - \frac{t_1}{t_2}\right)f(x) + \left(\frac{t_1}{t_2}\right)f(x+t_2d) \\ &= f(x) + t_1\frac{f(x+t_2d) - f(x)}{t_2}. \end{aligned}$$

Hence

$$\frac{f(x+t_1d) - f(x)}{t_1} \le \frac{f(x+t_2d) - f(x)}{t_2}.$$

 $f'(x;d) = \inf_{t>0} (f(x+td) - f(x))/t$

(2) If $x + td \notin \text{dom } f$ for all t > 0, then the result is obviously true.

So assume there is a $\overline{t} > 0$ such that $x + td \in \text{dom } f$ for all $t \in (0, \overline{t}]$. Since

$$f'(x;d) := \lim_{t \downarrow 0} \frac{f(x+td) - f(x)}{t}$$

and the difference quotient in the limit is non-decreasing in t on $(0, +\infty)$, the limit is necessarily given by the infimum of the difference quotient. This infimum always exists and so f'(x; d) always exists and is given by the infimum.

(3) The subdifferential inequality follows from (2) by taking d := y - x and t = 1 in the infimum:

$$f'(x; y - x) \le f(y) - f(x).$$

$f'(x; \cdot)$ is sublinear

Positive homogeneity: $f'(x; \alpha d) = \alpha \lim_{t \downarrow 0} \frac{f(x+(t\alpha)d)-f(x)}{(t\alpha)} = \alpha f'(x; d).$ Subadditivity:

$$\begin{aligned} f'(x; u + v) &= \lim_{t \downarrow 0} \frac{f(x + t(u + v)) - f(x)}{t} \\ &= \lim_{t \downarrow 0} \frac{f(x + \frac{t}{2}(u + v)) - f(x)}{t/2} \\ &= \lim_{t \downarrow 0} 2\frac{f(\frac{1}{2}(x + tu) + \frac{1}{2}(x + tv)) - f(x)}{t} \\ &\leq \lim_{t \downarrow 0} 2\frac{\frac{1}{2}f(x + tu) + \frac{1}{2}f(x + tv) - f(x)}{t} \\ &= \lim_{t \downarrow 0} \frac{f(x + tu) - f(x)}{t} + \frac{f(x + tv) - f(x)}{t} \\ &= f'(x; u) + f(x; v) . \end{aligned}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ → □ ● ● ● ●

Convexity and Optimality

Theorem: Let $f : \mathbf{E} \to \mathbf{R} \cup \{+\infty\}$ be convex, $\Omega \subset \mathbf{E}$ convex, $\bar{x} \in \text{dom } f \cap \Omega$. Then \bar{x} solves $\min_{x \in \Omega} f(x)$ if and only if $f'(\bar{x}; y - \bar{x}) \ge 0$ for all $y \in \Omega$.

Proof: (\Rightarrow) Let $y \in \Omega$ so that $\bar{x} + t(y - \bar{x}) \in \Omega$ for all $t \in [0, 1]$. Then $f(\bar{x}) \leq f(\bar{x} + t(y - \bar{x}))$ for all $t \in [0, 1]$. Therefore, $f'(\bar{x}; y - \bar{x}) = \lim_{t \downarrow 0} t^{-1}(f(\bar{x} + t(y - \bar{x})) - f(\bar{x})) \geq 0.$

(⇐) For
$$y \in \Omega$$
,
 $0 \le f'(\bar{x}; y - \bar{x}) = \inf_{t>0} \frac{f(x+t(y-\bar{x})-f(x))}{t} \stackrel{(t=1)}{\le} f(y) - f(\bar{x}).$

Convexity and Optimality

Theorem: Let $f : \mathbf{E} \to \mathbf{R} \cup \{+\infty\}$ be convex, $\Omega \subset \mathbf{E}$ convex, $\bar{x} \in \text{dom } f \cap \Omega$. Then \bar{x} solves $\min_{x \in \Omega} f(x)$ if and only if $f'(\bar{x}; y - \bar{x}) \ge 0$ for all $y \in \Omega$.

Proof: (\Rightarrow) Let $y \in \Omega$ so that $\bar{x} + t(y - \bar{x}) \in \Omega$ for all $t \in [0, 1]$. Then $f(\bar{x}) \leq f(\bar{x} + t(y - \bar{x}))$ for all $t \in [0, 1]$. Therefore, $f'(\bar{x}; y - \bar{x}) = \lim_{t \downarrow 0} t^{-1}(f(\bar{x} + t(y - \bar{x})) - f(\bar{x})) \geq 0.$

(⇐) For
$$y \in \Omega$$
,
 $0 \le f'(\bar{x}; y - \bar{x}) = \inf_{t>0} \frac{f(x+t(y-\bar{x})-f(x))}{t} \stackrel{(t=1)}{\le} f(y) - f(\bar{x}).$

Corollary: If f is differentiable at \bar{x} , \bar{x} solves $\min_{x \in \Omega} f(x)$ if and only if $-\nabla f(\bar{x}) \in N_{\Omega}(\bar{x})$.

Proof: $0 \le f'(\bar{x}; y - \bar{x}) = \langle \nabla f(\bar{x}), y - \bar{x} \rangle$ for all $y \in \Omega$ iff $-\nabla f(\bar{x}) \in N_{\Omega}(\bar{x}).$

Differential Tests for Convexity

The following are equivalent for a C^1 -smooth function $f: U \to \mathbf{R}$ defined on a convex open set $U \subset \mathbf{E}$.

- (a) (convexity) f is convex.
- (b) (gradient inequality) $f(y) \ge f(x) + \langle \nabla f(x), y x \rangle$ for all $x, y \in U$.
- (c) **(monotonicity)** $\langle \nabla f(y) \nabla f(x), y x \rangle \ge 0$ for all $x, y \in U$.

If f is C^2 -smooth, then the following property can be added to the list:

(d) The relation $\nabla^2 f(x) \succeq 0$ holds for all $x \in U$.

Examples of Convex Functions

(1) Given a self-adjoint linear operator $\mathcal{A} \colon \mathbf{E} \to \mathbf{E}$, a point $c \in \mathbf{E}$, and $b \in \mathbf{R}$ the quadratic function $f(x) = \frac{1}{2} \langle \mathcal{A}x, x \rangle + \langle c, x \rangle + b$ is convex if and only if \mathcal{A} is positive semidefinite.

(2) (Boltzmann-Shannon entropy)

$$f(x) = \begin{cases} x \log x & \text{if } x > 0\\ 0 & \text{if } x = 0\\ +\infty & \text{if } x < 0 \end{cases}$$

(3) (Fermi-Dirac entropy)

$$f(x) = \begin{cases} x \log(x) + (1-x) \log(1-x) & \text{if } x \in (0,1) \\ 0 & \text{if } x \in \{-1,1\} \\ +\infty & \text{otherwise} \end{cases}$$

うして ふゆ く は く は く む く し く

Examples of Convex Functions

(4) (Hellinger)

$$f(x) = \begin{cases} -\sqrt{1-x^2} & \text{if } x \in [-1,1] \\ +\infty & \text{otherwise} \end{cases}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

(5) (Exponential) $f(x) = e^x$

(6) (Log-exp)
$$f(x) = \log(1 + e^x)$$

Bounds for β -Smooth Convex Functions

Let $f : \mathbf{E} \to \overline{\mathbf{R}}$. TFAE (the following are equivalent)

(1) f is β -smooth.

(2)
$$0 \le f(y) - f(x) - \langle \nabla f(x), y - x \rangle \le \frac{\beta}{2} ||x - y||^2$$

(3)
$$f(x) + \langle \nabla f(x), y - x \rangle + \frac{1}{2\beta} \| \nabla f(x) - \nabla f(y) \|^2 \le f(y)$$

(4)
$$\frac{1}{\beta} \|\nabla f(x) - \nabla f(y)\|^2 \le \langle \nabla f(x) - \nabla f(y), x - y \rangle$$

(5)
$$0 \le \langle \nabla f(x) - \nabla f(y), x - y \rangle \le \beta ||x - y||^2$$

Epigraphical Operations

Recall that for a convex function f and $x \in \text{dom } f$,

 $f(x) = \inf_{(x,\mu) \in \operatorname{epi} f} \mu$.

This construction fact can be extended to by defining the lower envelope for any subset Q of $\mathbf{E} \times \mathbf{R}$:

Figure: Lower envelope of Q.

Hence epi $E_Q = Q + (\{0\} \times \mathbf{R}_+)$ when the infimum is attained when finite.

うして ふゆ く は く は く む く し く

Example: $\lambda \text{epi} f, \ \lambda > 0$

Epi-multiplication

$$\inf_{(x,r)\in\lambda \text{epi}\,f} r = \inf\left\{r \,\middle|\, (\lambda^{-1}x,\lambda^{-1}r) \in \text{epi}\,f\right\}$$
$$= \lambda \inf\left\{\lambda^{-1}r \,\middle|\, (\lambda^{-1}x,\lambda^{-1}r) \in \text{epi}\,f\right\}$$

$$= \lambda \inf \left\{ \tau \, \big| \, (\lambda^{-1}x, \tau) \in \operatorname{epi} f \right\}$$

}

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$= \lambda f(x/\lambda).$$

Example: $epi f_1 + epi f_2$

Epi-addition or infimal convolution

 $\inf_{(x,r)\in \text{epi}\,f_1\,+\,\text{epi}\,f_2} r = \inf \left\{ r \,|\, (x,r) = (x_1,r_1) + (x_2,r_2), \ (x_i,r_i) \in \text{epi}\,f_i \right\}$

$$= \inf \{ r_1 + r_2 \,|\, (y, r_1) \in \operatorname{epi} f_1, \ (x - y, r_2) \in \operatorname{epi} f_2 \}$$

$$= \inf_{y} \inf_{r_1, r_2} \{ r_1 + r_2 \,|\, (y, r_1) \in \operatorname{epi} f_1, \ (x - y, r_2) \in \operatorname{epi} f_2 \}$$

$$= \inf_{y} f_1(y) + f_2(x-y)$$

$$=:(f_1\Box f_2)(x)$$
.

Inverse Linear Image

Let $A \in \mathbf{L}[\mathbf{Y}, \mathbf{E}]$. Recall $E_Q(x) := \inf_{(x,r) \in Q} r$. What is E_Q when $Q = [A \times I] epi f$?

$$E_Q(x) = \inf \left\{ r \, | \, x = Ay, \ (y, r) \in \operatorname{epi} f \right\}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$= \inf_{x = Ay} \inf_{(y,r) \in \operatorname{epi} f} r$$

$$= \inf_{x=Ay} f(y) \; .$$

Infimal Projection

Let $g : \mathbf{E} \times \mathbf{Y} \to \overline{\mathbf{R}}$ and consider the projection $P \in \mathbf{L}[\mathbf{E} \times \mathbf{Y} \times \mathbf{R}]$ given by P(x, y) = x.

What is $E_{[P \times I] epig}$?

$$\begin{split} E_{[P \times I] \text{epi}\,g}(x) &= \inf \left\{ \mu \, | \, x = P(z,y), \, \, (z,y,\mu) \in \text{epi}\,g \right\} \\ &= \inf_{x = P(z,y)} g(z,y) \\ &= \inf_{y} g(x,y) \ . \end{split}$$

The Perspective mapping

4

Let $Q := \mathbf{R}_+(\{1\} \times \operatorname{epi} f)$. What is $E_Q(\lambda, x)$ for $\lambda \ge 0$?

It is straightforward to show that $E_Q(\lambda, x) = +\infty$ if $\lambda < 0$ and that $E_Q(0, x) = 0$. So we suppose $0 < \lambda$.

$$E_Q(\lambda, x) = \inf \{r \mid (\lambda, x, r) \in \mathbf{R}_+(\{1\} \times \operatorname{epi} f)\}$$

= $\inf \{r \mid \exists \tau \ge 0 \text{ s.t. } (\lambda, x, r) \in \tau(\{1\} \times \operatorname{epi} f)\}$
= $\inf \{r \mid (x, r) \in \lambda \operatorname{epi} f\}$
= $\inf \{r \mid (\lambda^{-1}x, \lambda^{-1}r) \in \operatorname{epi} f\}$
= $\lambda \inf \{\lambda^{-1}r \mid (\lambda^{-1}x, \lambda^{-1}r) \in \operatorname{epi} f\}$
= $\lambda f(\lambda^{-1}x)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Relative interiors of sets in a product space

Theorem: Let $Q \subset \mathbf{X} \times \mathbf{Y}$. For each $x \in \mathbf{X}$ set $Q_x := \{y \in \mathbf{Y} \mid (x, y) \in Q\}$ and $D := \{x \in \mathbf{X} \mid Q_x \neq \emptyset\}$. Then

$$(x,y) \in \operatorname{ri} Q \iff x \in \operatorname{ri} D \text{ and } y \in \operatorname{ri} Q_x.$$

pic

うして ふゆ く は く は く む く し く

Proof: Let $\mathcal{P}(x, y) = x$ be the projection of $\mathbf{X} \times \mathbf{Y}$ onto \mathbf{X} , and set $\mathcal{A}_x := \{x\} \times \mathbf{Y}$. Then $\mathcal{P}Q = D$, so ri $D = \text{ri } \mathcal{P}Q = \mathcal{P}\text{ri } Q$. Hence, $(x, y) \in \text{ri } Q$ iff $x \in \text{ri } D$ and

$$(x,y) \in \mathcal{A}_x \cap \operatorname{ri} Q = \operatorname{ri} (\mathcal{A}_x \cap Q) = \operatorname{ri} (\{x\} \times Q_x) = \{x\} \times \operatorname{ri} Q_x .$$

So, $(x, y) \in \operatorname{ri} Q$ if and only if $x \in \operatorname{ri} D$ and $y \in \operatorname{ri} Q_x$.

$\operatorname{riepi} f$

Lemma: Let $f : \mathbf{E} \to \overline{\mathbf{R}}$ be convex. Then

 $\operatorname{ri epi} f = \{(x, \mu) \mid x \in \operatorname{ri dom} f \text{ and } f(x) < \mu\}.$

Proof: Apply the previous result to $epi f \subset \mathbf{E} \times \mathbf{R}$.

Then
$$D = \operatorname{dom} f$$
 and $(\operatorname{epi} f)_x = \{\mu \in \mathbf{R} \mid f(x) \le \mu\}.$

Clearly, ri (epi f)_x = { $\mu \in \mathbf{R} | f(x) < \mu$ }, which gives the result.

Local Boundedness of Cvx Func.s on ridom

Theorem: Let $f : \mathbf{E} \to \overline{\mathbf{R}}$ be convex. Then, $\forall \bar{x} \in \mathrm{ri\,dom\,} f$, there is a cvx nbhd U of \bar{x} and an M > 0 s.t. $U \cap \mathrm{aff\,dom\,} f \subset \mathrm{ri\,dom\,} f$ and $f(x) \leq M \quad \forall x \in U \cap \mathrm{aff\,dom\,} f$.

Proof: Let $\bar{x} \in \text{ridom } f$ and let u_1, \ldots, u_n be an orthonormal basis for **E** with u_1, \ldots, u_k an orthonormal basis for par dom f. Then $B_1 := \text{intr conv} \{ \pm u_i \mid i = 1, \ldots, n \}$ is a sym. open nghd of the origin. Let $\epsilon > 0$ be s.t.

 $\bar{x} + \epsilon B_1 \cap \text{par dom } f = (\bar{x} + \epsilon B_1) \cap \text{aff dom } f \subset \text{ri dom } f.$ Set $U := \bar{x} + \epsilon B_1$. Then, for every $x \in \bar{x} + \epsilon B_1 \cap \text{par dom } f,$ $\exists \lambda_i, \mu_i \ge 0, \ i = 1, \dots, n \text{ with } \sum_{i=1}^k (\lambda_i + \mu_i) = 1$

such that

 $x = \bar{x} + \epsilon \left[\sum_{j=1}^{k} \lambda_i u_i + \mu_i(-u_i)\right] = \sum_{j=1}^{k} \lambda_i(\bar{x} + \epsilon u_i) + \mu_i(\bar{x} - \epsilon u_i).$ Therefore,

$$f(x) \le \sum_{j=1}^{k} \lambda_i f(\bar{x} + \epsilon u_i) + \sum_{j=1}^{k} \mu_i f(\bar{x} - \epsilon u_i)$$
$$\le \max \left\{ f(\bar{x} \pm \epsilon u_i) \, | \, i = 1, \dots, k \right\} =: M.$$

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Local Lip. Cont. of Cvx Func.s on ridom

Theorem: Let $f : \mathbf{E} \to \overline{\mathbf{R}}$ be convex. Then for every $\overline{x} \in \operatorname{ridom} f$ there is an $\epsilon > 0$ s.t. f is Lip. cont. on $B_{\epsilon}(\bar{x}) \cap \text{aff dom } f$. **Proof:** Set D := par dom f. Let $\epsilon > 0$ and M > 0 be such that $B_{2\epsilon}(\bar{x}) \cap \text{aff dom } f \subset \text{ri dom } f \text{ with } f(x) < M \ \forall x \in B_{2\epsilon}(\bar{x}) \cap \text{aff dom } f.$ Set $h(x) := (2M)^{-1} [f(x + \bar{x}) - f(\bar{x})]$. If h is Lip. cont. on D near 0, then f is Lip. cont. on aff dom f near \bar{x} . Observe that h(0) = 0 and $h(x) \leq 1$ for all $x \in B_{2\epsilon}(0) \cap D$. Moreover, for every $x \in B_{2\epsilon}(0) \cap D$, $0 = h(0) = h(\frac{1}{2}x - \frac{1}{2}x) < \frac{1}{2}h(x) + \frac{1}{2}h(-x)$ so that $-1 \leq -h(x) \leq h(-x)$. That is, $-1 \leq h(x) \leq 1$ for all $x \in B_{2\epsilon} \cap D$. For $x, y \in B_{\epsilon}(0) \cap D$ with $x \neq y$ set $\alpha := ||x - y||$ and $\beta := \epsilon/\alpha$. Define $w := y + \beta(y - x) \in B_{2\epsilon} \cap D$. Then $y = (1+\beta)^{-1}[w+\beta x] = \frac{1}{1+\beta}w + \frac{\beta}{1+\beta}x.$

The convexity of h implies that

$$\begin{split} h(y) - h(x) &\leq \frac{1}{1+\beta} h(w) + \frac{\beta}{1+\beta} h(x) - h(x) = \frac{1}{1+\beta} [h(w) - h(x)] \\ &\leq \frac{2}{1+\beta} = \frac{2}{\alpha+\epsilon} \|x - y\| \leq 2\epsilon^{-1} \|x - y\| \,. \end{split}$$

Symmetric in x and y implies the local Lip. cont. of h.

Supporting hyperplanes to epigraphs

We apply the following separation theorem to epi f.

Theorem: Let $Q \subset \mathbf{E}$ be convex with $\overline{x} \in \operatorname{rb} Q$. Then there exists $\overline{z} \in \mathbf{E}$ such that $\langle \overline{z}, x \rangle \leq \langle \overline{z}, \overline{x} \rangle \ \forall x \in \operatorname{cl} Q \text{ and } \langle \overline{z}, x \rangle < \langle \overline{z}, \overline{x} \rangle \ \forall x \in \operatorname{ri} Q$.

うして ふゆ く は く は く む く し く

Supporting hyperplanes to epigraphs

We apply the following separation theorem to epi f.

Theorem: Let $Q \subset \mathbf{E}$ be convex with $\overline{x} \in \operatorname{rb} Q$. Then there exists $\overline{z} \in \mathbf{E}$ such that $\langle \overline{z}, x \rangle \leq \langle \overline{z}, \overline{x} \rangle \ \forall x \in \operatorname{cl} Q \text{ and } \langle \overline{z}, x \rangle < \langle \overline{z}, \overline{x} \rangle \ \forall x \in \operatorname{ri} Q$.

Theorem: Let $f : \mathbf{E} \to \overline{\mathbf{R}}$ be proper convex and let $\overline{x} \in \operatorname{ridom} f$. Then there is a $v \in \mathbf{E}$ such that

$$\sup_{x} [\langle v, x \rangle - f(x)] \le \langle v, \bar{x} \rangle - f(\bar{x}).$$

Supporting hyperplanes to epigraphs

Proof: Since $\bar{x} \in \operatorname{ridom} f$, f is cont. at \bar{x} relative to dom f and so cl $f(\bar{x}) = f(\bar{x})$. In particular, $(\bar{x}, f(\bar{x})) \in \operatorname{rb} \operatorname{epi} f$. Hence, there exists $(w, \tau) \in \mathbf{E} \times \mathbf{R}$ s.t.

$$\begin{split} \langle (w,\tau),\,(x,\mu)\rangle &\leq \langle (w,\tau),\,(\bar{x},f(\bar{x}))\rangle \,\,\forall \,(x,\mu)\in \operatorname{cl}\operatorname{epi} f \text{ and} \\ \langle (w,\tau),\,(x,\mu)\rangle &< \langle (w,\tau),\,(\bar{x},f(\bar{x}))\rangle \,\,\forall \,(x,\mu)\in\operatorname{ri}\operatorname{epi} f \,. \end{split}$$

Hence,

$$\langle w, x - \bar{x} \rangle + \tau(\mu - f(\bar{x})) < 0 \quad \forall x \in \operatorname{ridom} f, \ \mu > f(x).$$

Taking $x = \bar{x}$, we see that $\tau < 0$. Dividing by $|\tau|$ and setting $v = w/|\tau|$ and $\mu = f(x)$, we obtain

$$\langle v, x \rangle - f(x) \le \langle v, \bar{x} \rangle - f(\bar{x}) \quad \forall x \in \operatorname{dom} f.$$

The result follows since if $x \notin \text{dom } f$ then the above inequality is trivially true.

The Subgradient Inequality

Theorem: Let $f : \mathbf{E} \to \overline{\mathbf{R}}$ be proper convex and let $\overline{x} \in \text{ridom } f$. Then there is a $v \in \mathbf{E}$ such that

$$f(\bar{x}) + \langle v, x - \bar{x} \rangle \le f(x) \quad \forall x \in \mathbf{E}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The Subgradient Inequality

Theorem: Let $f : \mathbf{E} \to \overline{\mathbf{R}}$ be proper convex and let $\overline{x} \in \operatorname{ridom} f$. Then there is a $v \in \mathbf{E}$ such that

$$f(\bar{x}) + \langle v, x - \bar{x} \rangle \le f(x) \quad \forall x \in \mathbf{E}.$$

Proof: The Theorem tells us that there exist $v \in \mathbf{E}$ such that $\langle v, x \rangle - f(x) \leq \langle v, \bar{x} \rangle - f(\bar{x}) \quad \forall x \in \mathbf{E}$, which gives the result.

うして ふゆ く は く は く む く し く

The Subdifferential

Definition: Let $f : \mathbf{E} \to \overline{\mathbf{R}}$ be convex and let $\overline{x} \in \text{dom } f$. We say that f is subdifferentiable at \overline{x} if there exists $v \in \mathbf{E}$ such that

$$f(\bar{x}) + \langle v, x - \bar{x} \rangle \le f(x) \quad \forall x \in \mathbf{E}.$$

We call v a *subgradient* for f at \bar{x} . The set of all subgradients at \bar{x} is called the *subdifferential* of f at \bar{x} , denoted

$$\partial f(\bar{x}) := \{ v \, | \, f(\bar{x}) + \langle v, \, x - \bar{x} \rangle \le f(x) \quad \forall \, x \in \mathbf{E} \, \}.$$

うして ふゆ く 山 マ ふ し マ う く し マ

For $x \notin \text{dom } f$, we define $\partial f(x) = \emptyset$. The domain of ∂f is $\text{dom } \partial f := \{x \mid \partial f(x) \neq \emptyset\}.$

The Subdifferential

Definition: Let $f : \mathbf{E} \to \overline{\mathbf{R}}$ be convex and let $\overline{x} \in \text{dom } f$. We say that f is subdifferentiable at \overline{x} if there exists $v \in \mathbf{E}$ such that

$$f(\bar{x}) + \langle v, x - \bar{x} \rangle \le f(x) \quad \forall x \in \mathbf{E}.$$

We call v a *subgradient* for f at \bar{x} . The set of all subgradients at \bar{x} is called the *subdifferential* of f at \bar{x} , denoted

$$\partial f(\bar{x}) := \{ v \, | \, f(\bar{x}) + \langle v, \, x - \bar{x} \rangle \le f(x) \quad \forall \, x \in \mathbf{E} \, \}.$$

For $x \notin \text{dom } f$, we define $\partial f(x) = \emptyset$. The domain of ∂f is $\text{dom } \partial f := \{x \mid \partial f(x) \neq \emptyset\}.$

Properties:

- (1) ri dom $f \subset \operatorname{dom} \partial f \subset \operatorname{dom} f$
- (2) $\partial f(x)$ is a nonempty closed convex set for all $x \in \operatorname{ridom} f$.
- (3) If $x \in \operatorname{intr} \operatorname{dom} f$, then $\partial f(x)$ is compact.

Optimization and the Subdifferential

Theorem: Let $f : \mathbf{E} \to \overline{\mathbf{R}}$ be proper convex. Then $\overline{x} \in \mathbf{E}$ is a global solution to min f(x) if and only if $0 \in \partial f(\overline{x})$.

Proof: Apply the subgradient inequality:

$$f(\bar{x}) + \langle v, x - \bar{x} \rangle \le f(x) \quad \forall x \in \mathbf{E}.$$

The Convex Conjugate

Recall that by applying the separation theorem to the epigraph of a proper convex function f, we found that for every $\bar{x} \in \text{ri dom } f$ there exists $v \in \mathbf{E}$ such that

$$\delta_{\text{epi}\,f}^{*}(v,-1) = \sup_{x \in \text{dom}\,f} [\langle v, x \rangle - f(x)]$$
$$= \sup_{x} [\langle v, x \rangle - f(x)]$$
$$\leq \langle v, \bar{x} \rangle - f(\bar{x}).$$

This relationship indicates that $f^* : \mathbf{E} \to \overline{\mathbf{R}}$ given by

$$f^*(v) := \sup_x [\langle v, x \rangle - f(x)]$$

うして ふゆ く 山 マ ふ し マ う く し マ

plays a special in our study of convex functions.

We call f^* the convex conjugate of f.

The Convex Conjugate

Recall that by applying the separation theorem to the epigraph of a proper convex function f, we found that for every $\bar{x} \in \text{ri dom } f$ there exists $v \in \mathbf{E}$ such that

$$\delta_{\text{epi}\,f}^*(v,-1) = \sup_{x \in \text{dom}\,f} [\langle v, x \rangle - f(x)]$$
$$= \sup_x [\langle v, x \rangle - f(x)]$$
$$\leq \langle v, \bar{x} \rangle - f(\bar{x}).$$

This relationship indicates that $f^* : \mathbf{E} \to \overline{\mathbf{R}}$ given by

$$f^*(v) := \sup_x [\langle v, x \rangle - f(x)]$$

plays a special in our study of convex functions.

We call f^* the convex conjugate of f.

Note that $f^* = (\operatorname{cl} f)^*$ since $\delta^*_{\operatorname{epi} f} = \delta^*_{\operatorname{cl} \operatorname{epi} f}$.

The Bi-Conjugate and the Subdiffential

$$f^*(v) := \sup_{x} [\langle v, x \rangle - f(x)] = \delta^*_{\operatorname{epi} f}(v, -1) = \delta^*_{\operatorname{epi} \operatorname{cl} f}(v, -1)$$

By definition, f^* is a closed proper convex function whenever f is a proper convex function.

Theorem: [Fenchel-Young Inequality] Let $f : \mathbf{E} \to \overline{\mathbf{R}}$ be a proper convex function. Then

$$f^*(v) + f(x) \ge f^*(v) + \operatorname{cl} f(x) \ge \langle v, x \rangle \quad \forall \ x, v \in \mathbf{E}$$

うしゃ 本理 そう キャット マックタイ

with equality throughout if and only if $v \in \partial f(x)$.

The Bi-Conjugate and the Subdiffential Consequently, for all $x \in \mathbf{E}$,

$$\operatorname{cl} f(x) \ge \sup_{v \in \operatorname{dom} f^*} [\langle v, x \rangle - f^*(v)]$$
$$= \sup_{v} [\langle v, x \rangle - f^*(v)]$$
$$= (f^*)^*(x).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The Bi-Conjugate and the Subdiffential Consequently, for all $x \in \mathbf{E}$,

$$\operatorname{cl} f(x) \ge \sup_{v \in \operatorname{dom} f^*} [\langle v, x \rangle - f^*(v)]$$
$$= \sup_{v} [\langle v, x \rangle - f^*(v)]$$
$$= (f^*)^*(x).$$

Therefore,

$$\operatorname{cl} f(x) + f^*(v) \ge (f^*)^*(x) + f^*(v) \ge \langle v, x \rangle \quad \forall \ x, v \in \mathbf{E}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

with equality throughout iff $x \in \partial f^*(v)$ iff $v \in \partial \operatorname{cl} f(x)$.

The Bi-Conjugate and the Subdiffential Consequently, for all $x \in \mathbf{E}$,

$$\operatorname{cl} f(x) \ge \sup_{v \in \operatorname{dom} f^*} [\langle v, x \rangle - f^*(v)]$$
$$= \sup_{v} [\langle v, x \rangle - f^*(v)]$$
$$= (f^*)^*(x).$$

Therefore,

$$\operatorname{cl} f(x) + f^*(v) \ge (f^*)^*(x) + f^*(v) \ge \langle v, x \rangle \quad \forall \ x, v \in \mathbf{E}$$

with equality throughout iff $x \in \partial f^*(v)$ iff $v \in \partial \operatorname{cl} f(x)$. **Theorem:** For every proper convex function $f : \mathbf{E} \to \overline{\mathbf{R}}$, $\operatorname{cl} f = (f^*)^* = f^{**}, \ (\partial(\operatorname{cl} f))^{-1} = \partial f^*$,

and

$$\partial(\operatorname{cl} f)(x) = \{v | \operatorname{cl} f(x) + f^*(v) \leq \langle v, x \rangle \},\$$
with $\partial(\operatorname{cl} f)(x) = \partial f(x)$ whenever $x \in \operatorname{dom} \partial f$.
Proof: $\operatorname{cl} f$ coincides with f on $\operatorname{ri} \operatorname{dom} f = \operatorname{ri} \operatorname{dom} (\operatorname{cl} f)$ and $\operatorname{ri} \operatorname{dom} f \subset \operatorname{dom} \partial f$.

Let $Q \subset \mathbf{E}$ be nonempty closed and convex. Then

$$(\delta_Q(\cdot))^*(v) = \sup_x [\langle v, x \rangle - \delta_Q(x)] = \delta_Q^*(x).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Let $Q \subset \mathbf{E}$ be nonempty closed and convex. Then

$$(\delta_Q(\cdot))^*(v) = \sup_x [\langle v, x \rangle - \delta_Q(x)] = \delta_Q^*(x).$$

Recall that support functions are subadditive. We now address the question of whether a proper subadditive function can be written as a support function.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ ()

Let $f: \mathbf{E} \to \overline{\mathbf{R}}$ be proper subadditive. Then, for $\lambda > 0$,

$$f^{*}(v) = \sup_{\substack{x \in \text{dom } f}} [\langle v, x \rangle - f(x)]$$

=
$$\sup_{\substack{x \in \text{dom } f}} [\langle v, \lambda x \rangle - f(\lambda x)]$$

=
$$\lambda \sup_{\substack{x \in \text{dom } f}} [\langle v, x \rangle - f(x)] = \lambda f^{*}(v).$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ りへぐ

Therefore, $f^*(v) = 0$ for all $v \in \text{dom } f^*$ and so $f^* = \delta_{\text{dom } f^*}$.

Since f is proper convex, $\operatorname{cl} f = f^{**} = \delta^*_{\operatorname{dom} f^*}$.

Theorem: The class closed proper subadditive functions on **E** equals the class of support functions on **E**. In particular, if $f : \mathbf{E} \to \overline{\mathbf{R}}$ is closed proper subadditive, then f is the support function of the set dom $f^* = \{v \mid \langle v, x \rangle \leq f(x) \; \forall x \in \mathbf{E}\}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Theorem: The class closed proper subadditive functions on **E** equals the class of support functions on **E**. In particular, if $f : \mathbf{E} \to \overline{\mathbf{R}}$ is closed proper subadditive, then f is the support function of the set dom $f^* = \{v \mid \langle v, x \rangle \leq f(x) \; \forall x \in \mathbf{E}\}.$

Proof: Since f is positively homogeneous,
dom
$$f^* = \{v \mid \exists \mu > 0 \text{ s.t. } f^*(v) \le \mu\}$$

 $= \{v \mid \exists \mu > 0 \text{ s.t. } \langle v, x \rangle - f(x) \le \mu \ \forall x \in \mathbf{E}\}$
 $= \{v \mid \exists \mu > 0 \text{ s.t. } \langle v, \lambda x \rangle - f(\lambda x) \le \mu \ \forall x \in \mathbf{E}, \lambda > 0\}$
 $= \{v \mid \exists \mu > 0 \text{ s.t. } \langle v, x \rangle - f(x) \le \frac{\mu}{\lambda} \ \forall x \in \mathbf{E}, \lambda > 0\}$
 $= \{v \mid \langle v, x \rangle - f(x) \le 0 \ \forall x \in \mathbf{E}\}.$

The result follows since we have shown that $f = \delta^*_{\text{dom } f^*}$.

$f'(x; \cdot)$ and ∂f

Theorem: Let $f : \mathbf{E} \to \overline{\mathbf{R}}$ be a proper convex function and let $\overline{x} \in \operatorname{dom} \partial f$. Then the closure of $f'(\overline{x}; \cdot)$ is $\delta^*(\cdot | \partial f(\overline{x}))$. Moreover, if $\overline{x} \in \operatorname{ridom} f$, then $f'(\overline{x}; \cdot)$ is closed and proper.

Proof: Let $v \in \partial f(\bar{x})$ and let φ be the closure of $f'(\bar{x}; \cdot)$. Then, for t > 0 and $d \in \mathbf{E}$, $\langle v, d \rangle \leq \frac{f(\bar{x}+td)-f(\bar{x})}{t}$ so $\langle v, d \rangle \leq f'(\bar{x}; d)$. Hence $f'(\bar{x}; \cdot)$ is proper, and φ is closed proper and subadditive. Therefore, φ is the support function of the set

$$\{ v \mid \langle v, d \rangle \leq \varphi(d) \; \forall d \in \mathbf{E} \} = \left\{ v \mid \langle v, d \rangle \leq \frac{f(\bar{x} + td) - f(\bar{x})}{t} \; \forall, d \in \mathbf{E}, t > 0 \right\}$$

$$= \left\{ v \mid f(\bar{x}) + \langle v, d \rangle \leq f(\bar{x} + d) \; \forall, d \in \mathbf{E} \right\}$$

$$= \left\{ v \mid f(\bar{x}) + \langle v, x - \bar{x} \rangle \leq f(x) \; \forall, x \in \mathbf{E} \right\}$$

$$= \partial f(\bar{x}).$$

If $\bar{x} \in \operatorname{ri} \operatorname{dom} f$, then dom $f'(\bar{x}; \cdot) = \operatorname{par} \operatorname{dom} f = \operatorname{ri} \operatorname{dom} f'(\bar{x}; \cdot)$ so that $f'(\bar{x}; \cdot)$ is locally Lip. on its domain and so closed and proper.

$\partial f(x) = \{v\}$ implies differentiability

Corollary: Let $f : \mathbf{E} \to \overline{\mathbf{R}}$ be a proper convex function. If $\overline{x} \in \operatorname{dom} \partial f$, then $(\operatorname{par} \operatorname{dom} f)^{\perp} \subset \partial f(\overline{x})$.

Proof: Let $v \in \partial f(\bar{x})$ and $w \in (\operatorname{par} \operatorname{dom} f)^{\perp}$. Then for every $y \in \operatorname{dom} f$, $f(\bar{x}) + \langle v + w, y - x \rangle = f(\bar{x}) + \langle v, y - x \rangle < f(y)$.

Corollary: Let $f : \mathbf{E} \to \overline{\mathbf{R}}$ be a proper convex function. If $\bar{x} \in \operatorname{dom} \partial f$ is such that $\partial f(\bar{x}) = \{v\} + (\operatorname{par} \operatorname{dom} f)^{\perp}$, then f is differentiable relative to the affine manifold $S := \operatorname{aff} \operatorname{dom} f$ with gradient $\nabla_S f(\bar{x}) = v$. In particular, if $\bar{x} \in \operatorname{intr} \operatorname{dom} f$, then f is differentiable at \bar{x} with $\nabla f(\bar{x}) = v$.

Proof: For $d \in \text{par} \text{ dom } f$, $f'(\bar{x}; d) = \langle v, d \rangle$ is linear on the subspace par dom f. Hence, f is Gateaux differentiable relative to aff dom f with Gateaux derivative v.

Proposition: Let $Q \subset \mathbf{E}$ be a nonempty closed convex set. Then

$$\partial \delta_Q(x) = \begin{cases} \emptyset & , \ x \notin Q, \\ N_Q(x) & , \ x \in Q. \end{cases}$$

Proposition: Let $Q \subset \mathbf{E}$ be a nonempty closed convex set. Then

$$\partial \delta_Q(x) = \begin{cases} \emptyset & , \ x \notin Q, \\ N_Q(x) & , \ x \in Q. \end{cases}$$

Note that this result implies that $N_Q(x) = [\operatorname{par} Q]^{\perp}$ when $x \in \operatorname{ri} Q$ since δ_Q is differentiable on $\operatorname{ri} Q$ relative to the affine manifold aff Q with derivative $\nabla_{\operatorname{aff} Q} \delta_Q(x) = 0$ for $x \in \operatorname{ri} Q$.

うして ふゆ く 山 マ ふ し マ う く し マ

Proposition: Let $Q \subset \mathbf{E}$ be a nonempty closed convex set. Then

$$\partial \delta_Q(x) = \begin{cases} \emptyset & , \ x \notin Q, \\ N_Q(x) & , \ x \in Q. \end{cases}$$

Note that this result implies that $N_Q(x) = [\operatorname{par} Q]^{\perp}$ when $x \in \operatorname{ri} Q$ since δ_Q is differentiable on $\operatorname{ri} Q$ relative to the affine manifold aff Q with derivative $\nabla_{\operatorname{aff} Q} \delta_Q(x) = 0$ for $x \in \operatorname{ri} Q$.

Proof: Given $\bar{x} \in Q$ and $v \in N_Q(\bar{x})$, we have

$$\langle v, x - \bar{x} \rangle \le 0 \quad \forall x \in Q .$$

Proposition: Let $Q \subset \mathbf{E}$ be a nonempty closed convex set. Then

$$\partial \delta_Q(x) = \begin{cases} \emptyset & , \ x \notin Q, \\ N_Q(x) & , \ x \in Q. \end{cases}$$

Note that this result implies that $N_Q(x) = [\operatorname{par} Q]^{\perp}$ when $x \in \operatorname{ri} Q$ since δ_Q is differentiable on $\operatorname{ri} Q$ relative to the affine manifold aff Q with derivative $\nabla_{\operatorname{aff} Q} \delta_Q(x) = 0$ for $x \in \operatorname{ri} Q$.

Proof: Given $\bar{x} \in Q$ and $v \in N_Q(\bar{x})$, we have

$$\delta_Q(\bar{x}) + \langle v, x - \bar{x} \rangle \le \delta_Q(x) \ \forall x \in \mathbf{E}$$
.

Proposition: Let $Q \subset \mathbf{E}$ be a nonempty closed convex set. Then

$$\partial \delta^*_Q(x) = \operatorname*{argmax}_{v \in Q} \langle v, x \rangle \; .$$

Proof: For any closed proper convex function f, we have shown that

$$\partial f(x) = \{ v \, | \, f^*(v) + f(x) \le \langle v, \, x \rangle \} \; .$$

Since both δ_Q and δ_Q^* are closed proper convex, we have

$$\partial \delta_Q^*(x) = \left\{ v \left| \delta_Q(v) + \delta_Q^*(x) \le \langle v, x \rangle \right. \right\} = \underset{v \in Q}{\operatorname{argmax}} \left\langle v, x \right\rangle \,.$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ りへぐ

The Subdifferential of a Norm

Corollary: Let $\|\cdot\|$ be any norm on **E** with closed unit ball \mathbb{B} . Then

$$\partial \|x\| = \begin{cases} \mathbb{B}^{\circ} &, x = 0, \\ \{v \,|\, \|v\|_{*} = 1 \text{ and } \langle v, x \rangle = \|x\| \} &, x \neq 0. \end{cases}$$

Proof: The result follows since $\|\cdot\| = \delta^*_{\mathbb{B}^\circ}(\cdot)$ where $\|\cdot\|_*$ is the dual norm for $\|\cdot\|$ whose closed unit ball is \mathbb{B} .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

Computing Conjugates

Computing the conjugate f^* at v reduces to solving for x in the equation $v \in \partial f(x)$.

To see this, observe that

$$f^*(v) = \sup_x [\langle v, x \rangle - f(x)] = -\inf_x [f(x) - \langle v, x \rangle].$$

Since $f(x) - \langle v, x \rangle$ is convex, we need only solve $0 \in \partial [f - \langle v, \cdot \rangle](x) = \partial f(x) - v$ for x, then plug this x back into $\langle v, x \rangle - f(x)$ to find $f^*(v)$. This is especially useful when f is differentiable on its domain.

うして ふゆ く 山 マ ふ し マ う く し マ

Computing Conjugates

Computing the conjugate f^* at v reduces to solving for x in the equation $v \in \partial f(x)$.

To see this, observe that

 $f^*(v) = \sup_x [\langle v, x \rangle - f(x)] = -\inf_x [f(x) - \langle v, x \rangle].$ Since $f(x) - \langle v, x \rangle$ is convex, we need only solve $0 \in \partial [f - \langle v, \cdot \rangle](x) = \partial f(x) - v$ for x, then plug this x back into $\langle v, x \rangle - f(x)$ to find $f^*(v)$. This is especially useful when f is differentiable on its domain.

Example: $f(x) = e^x$. Then $v = \nabla f(x) = e^x$ iff $x = \ln v$, in which case

$$f^{*}(v) = \langle v, \ln v \rangle - f(\ln v) = \begin{cases} v \ln v - v & , v > 0, \\ +\infty & , v \le 0 \end{cases}$$

Computing Conjugates

Computing the conjugate f^* at v reduces to solving for x in the equation $v \in \partial f(x)$.

To see this, observe that

 $f^*(v) = \sup_x [\langle v, x \rangle - f(x)] = -\inf_x [f(x) - \langle v, x \rangle].$ Since $f(x) - \langle v, x \rangle$ is convex, we need only solve $0 \in \partial [f - \langle v, \cdot \rangle](x) = \partial f(x) - v$ for x, then plug this x back into $\langle v, x \rangle - f(x)$ to find $f^*(v)$. This is especially useful when f is differentiable on its domain.

Example: $f(x) = e^x$. Then $v = \nabla f(x) = e^x$ iff $x = \ln v$, in which case

$$f^*(v) = \langle v, \ln v \rangle - f(\ln v) = \begin{cases} v \ln v - v &, v > 0, \\ +\infty &, v \le 0. \end{cases}$$

Check $f^{**}(x) = e^x$.

Computing Conjugates: Dual Operations

General formulas for conjugates of convex functions generated from other convex functions using convexity preserving operations are very powerful tools in applications.

・ロト・日本・モン・モン・ ヨー うへぐ

Computing Conjugates: Dual Operations

General formulas for conjugates of convex functions generated from other convex functions using convexity preserving operations are very powerful tools in applications.

Example: What is $(\lambda f)^*$ when $\lambda > 0$ and f proper convex?

Computing Conjugates: Dual Operations

General formulas for conjugates of convex functions generated from other convex functions using convexity preserving operations are very powerful tools in applications.

Example: What is $(\lambda f)^*$ when $\lambda > 0$ and f proper convex?

$$\begin{aligned} (\lambda f)^*(v) &= \sup_x \langle v, x \rangle - \lambda f(x) \\ &= \lambda \sup_x \left\langle \frac{v}{\lambda}, x \right\rangle - f(x) \\ &= \lambda f^*(\frac{v}{\lambda}) \end{aligned}$$

That is, the dual operation to multiplying a function by a positive scalar is epi-multiplication.

What is $(\lambda f(\cdot/\lambda))^*$ for $\lambda > 0$?

$$(\lambda f(\cdot/\lambda))^*(v) = \sup_x [\langle v, x \rangle - \lambda f(x/\lambda)]$$

$$= \lambda \sup_{x} [\langle v, x/\lambda \rangle - f(x/\lambda)]$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$$= \lambda \sup_{z} [\langle v, z \rangle - f(z)]$$

 $= \lambda f^*(v) \ .$

What is $(f_1 \square f_2)^*$?

$$(f_{1} \square f_{2})^{*}(v) = \sup_{x} [\langle v, x \rangle - \inf_{x=x_{1}+x_{2}} [f_{1}(x_{1}) + f_{2}(x_{2})]]$$

$$= \sup_{x} \sup_{x=x_{1}+x_{2}} [\langle v, x \rangle - (f_{1}(x_{1}) + f_{2}(x_{2}))]$$

$$= \sup_{x_{1},x_{2}} [\langle v, x_{1} + x_{2} \rangle - f_{1}(x_{1}) - f_{2}(x_{2})]$$

$$= \sup_{x_{1},x_{2}} [(\langle v, x_{1} \rangle - f_{1}(x_{1})) + (\langle v, x_{2} \rangle - f_{2}(x_{1}2))]$$

$$= \sup_{x_{1}} [\langle v, x_{1} \rangle - f_{1}(x_{1})] + \sup_{x_{2}} [\langle v, x_{2} \rangle - f_{2}(x_{2})]$$

$$= f_{1}^{*}(v) + f_{2}^{*}(v)$$

(ロト (個) (E) (E) (E) (の)

What is
$$(f_1 + f_2)^*$$
?

The first point to consider By the bi-conjugacy theorm,

$$(\operatorname{cl} f_1 + \operatorname{cl} f_2)^* = ((f_1^*)^* + (f_2^*)^*)^*$$

$$= ((f_1^* \square f_2^*)^*)^*$$

$$= \operatorname{cl}\left(f_1^* \Box f_2^*\right)$$

What is
$$(f_1 + f_2)^*$$
?

The first point to consider By the bi-conjugacy theorm,

$$(\operatorname{cl} f_1 + \operatorname{cl} f_2)^* = ((f_1^*)^* + (f_2^*)^*)^*$$

$$= ((f_1^* \square f_2^*)^*)^*$$

$$= \operatorname{cl}\left(f_1^* \Box f_2^*\right)$$

It can be shown that if $(\operatorname{ri} \operatorname{dom} f_1) \cap (\operatorname{ri} \operatorname{dom} f_2) \neq \emptyset$, then the closure operation can be removed from the above equivalence, i.e.

$$(f_1 + f_2)^* = f_1^* \Box f_2^*.$$

Application: Distance to a Convex Cone

Let $K \subset \mathbf{E}$ be a closed convex cone and let $\|\cdot\|$ be any norm on \mathbf{E} with closed unit ball \mathbb{B} . Then $\operatorname{dist}(z \mid K) = \inf_{y \in K} \|z - y\|$ $= \inf_{y} \|z - y\| + \delta_{K}(y)$ $= \inf_{y} \delta_{\mathbb{B}^{\circ}}^{*}(z - y) + \delta_{K^{\circ}}^{*}(y) = (\delta_{\mathbb{B}^{\circ}}^{*} \Box \delta_{K^{\circ}}^{*})(z).$

うして ふゆ く 山 マ ふ し マ う く し マ

Application: Distance to a Convex Cone

Let $K \subset \mathbf{E}$ be a closed convex cone and let $\|\cdot\|$ be any norm on **E** with closed unit ball \mathbb{B} . Then $\operatorname{dist}\left(z \mid K\right) = \inf_{y \in K} \left\|z - y\right\|$ $= \inf_{y} \|z - y\| + \delta_K(y)$ $= \inf_{\mathcal{A}} \delta^*_{\mathbb{B}^\circ}(z-y) + \delta^*_{K^\circ}(y) = (\delta^*_{\mathbb{B}^\circ} \square \delta^*_{K^\circ})(z).$ Consequently, dist $(\cdot |K)^* = (\delta^*_{\mathbb{R}^\circ} \square \delta^*_{K^\circ})^*$ $=\delta^{**}_{\mathbb{R}^{\circ}}+\delta^{**}_{K^{\circ}}$ $= \delta_{\mathbb{R}^{\circ}} + \delta_{K^{\circ}} = \delta_{\mathbb{R}^{\circ} \cap K^{\circ}}.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ◇◇◇

Application: Distance to a Convex Cone

Let $K \subset \mathbf{E}$ be a closed convex cone and let $\|\cdot\|$ be any norm on **E** with closed unit ball \mathbb{B} . Then $\operatorname{dist}\left(z \mid K\right) = \inf_{y \in K} \left\|z - y\right\|$ $= \inf_{y} \|z - y\| + \delta_K(y)$ $= \inf_{\mathcal{B}^{\circ}} \delta^*_{\mathbb{B}^{\circ}}(z-y) + \delta^*_{K^{\circ}}(y) = (\delta^*_{\mathbb{B}^{\circ}} \square \delta^*_{K^{\circ}})(z).$ Consequently, $\operatorname{dist}\left(\cdot |K\right)^* = (\delta_{\mathbb{R}^\circ}^* \square \delta_{K^\circ}^*)^*$ $=\delta^{**}_{\mathbb{R}^{\circ}}+\delta^{**}_{K^{\circ}}$ $= \delta_{\mathbb{R}^\circ} + \delta_{K^\circ} = \delta_{\mathbb{R}^\circ \cap K^\circ}.$ Therefore, dist $(\gamma \mid K) = \delta^*$ (7)

dist
$$(z | K) = \delta^*_{\mathbb{B}^\circ \cap K^\circ}(z)$$
.

・ロト ・ 同 ・ ・ ヨ ト ・ ヨ ・ うへの

An Alternative Approach to the Subdifferential

Eventually, we would like to extend the notion of subdifferential beyond convex functions. One proposal is to define the (regular) subdifferential by the inequality

$$\hat{\partial}f(x) := \{ v \mid f(x) + \langle v, y - x \rangle \le f(y) + o(\|y - x\|) \} .$$

Proposition: Let $f : \mathbf{E} \to \overline{\mathbf{R}}$ be proper convex. Then, for all $x \in \operatorname{dom} \partial f(x), \, \hat{\partial} f(x) = \partial f(x).$

Proof: Clearly, $\partial f(x) \subset \hat{\partial} f(x)$, so let $v \in \hat{\partial} f(x)$. Then, for all $d \in \mathbf{E}$ and t > 0,

$$\langle v, d \rangle \leq \frac{f(x+td) - f(x)}{t} + \frac{o(t \, \|d\|)}{t},$$

and so $\langle v, d \rangle \leq f'(x; d) = \delta^*_{\partial f(x)}(d)$. Therefore, $v \partial f(x)$.

For this reason, from now on we simply denote $\hat{\partial}f(x)$ by $\partial f(x)$ and call $\partial f(x)$ even when f is not necessarily convex. Again, dom $\partial f := \{x \mid \partial f(x) \neq \emptyset\}$

A simple subdifferential calculus rule

Proposition: Let $h : \mathbf{E} \to \overline{\mathbf{R}}$ be proper convex and $g : \mathbf{E} \to \overline{\mathbf{R}}$ be convex and differentiable on the open set U. Then, for all $x \in U \cap \operatorname{dom} \partial h, \partial(h+g)(x) = \partial h(x) + \nabla g(x).$

Proof: We have already shown that $\partial g(x) = \{\nabla g(x)\}$ for all $x \in U$. Given $x \in U \cap \operatorname{dom} \partial h$ and $v \in \partial h(x)$, we have

$$\begin{array}{c} h(x) + \langle v, y - x \rangle \leq h(y) \\ g(x) + \langle \nabla g(x), y - x \rangle \leq g(y) \end{array} \} \quad \forall \, y \in \mathbf{E} \ .$$

Adding these inequalities shows that $\partial h(x) + \nabla g(x) \subset \partial (h+g)(x)$.

Next let
$$w \in \partial(h+g)(x)$$
. Then
 $h(x) + g(x) + \langle w, y - x \rangle \leq h(y) + g(y)$
 $= h(y) + g(x) + \langle \nabla g(x), y - x \rangle + o(||y - x||).$

うして ふゆ く 山 マ ふ し マ う く し マ

Hence,

 $h(x) + \langle w - \nabla g(x), y - x \rangle \le h(y) + o(\|y - x\|) \ \forall y \in \mathbf{E},$ which implies that $w - \nabla g(x) \in \partial h(x).$

Strong Convexity

Definition: A function $f: \mathbf{E} \to \overline{\mathbf{R}}$ is called μ -strongly convex (with $\mu \ge 0$) if the perturbed function $x \mapsto f(x) - \frac{\mu}{2} ||x||^2$ is convex.

Theorem: Let $f: \mathbf{E} \to \overline{\mathbf{R}}$ be a μ -strongly convex function. Then for any $x \in \mathbf{E}$ and $v \in \partial f(x)$, the estimate holds:

$$f(y) \ge f(x) + \langle v, y - x \rangle + \frac{\mu}{2} ||y - x||^2$$
 for all $y \in \mathbf{E}$.

Proof: Apply the subdifferential inequality to the convex function $g := f - \frac{\mu}{2} \|\cdot\|^2$.

Strong Convexity

Definition: A function $f: \mathbf{E} \to \overline{\mathbf{R}}$ is called μ -strongly convex (with $\mu \ge 0$) if the perturbed function $x \mapsto f(x) - \frac{\mu}{2} ||x||^2$ is convex.

Theorem: Let $f: \mathbf{E} \to \overline{\mathbf{R}}$ be a μ -strongly convex function. Then for any $x \in \mathbf{E}$ and $v \in \partial f(x)$, the estimate holds:

$$f(y) \ge f(x) + \langle v, y - x \rangle + \frac{\mu}{2} ||y - x||^2$$
 for all $y \in \mathbf{E}$.

Proof: Apply the subdifferential inequality to the convex function $g := f - \frac{\mu}{2} \| \cdot \|^2$.

Corollary: Any proper, closed, μ -strongly convex function $f: \mathbf{E} \to \overline{\mathbf{R}}$ is coercive and has a unique minimizer x satisfying

$$f(y) - f(x) \ge \frac{\mu}{2} ||y - x||^2$$
 for all $y \in \mathbf{E}$.

The Moreau Envelope

Definition: For any function $f: \mathbf{E} \to \overline{\mathbf{R}}$ and real $\alpha > 0$, define the *Moreau envelope* and the *proximal map*, respectively:

$$f_{\alpha}(x) := \left(f_{\Box}(\frac{1}{2\alpha} \| \cdot \|^2) \right)(x) = \min_{y} f(y) + \frac{1}{2\alpha} \|x - y\|^2$$
$$\operatorname{prox}_{\alpha f}(x) := \operatorname*{argmin}_{y} f(y) + \frac{1}{2\alpha} \|x - y\|^2.$$

うして ふゆ く 山 マ ふ し マ う く し マ

Recall that $\operatorname{epi} f_{\alpha} = \operatorname{epi} f + \operatorname{epi} \left(\frac{1}{2\alpha} \| \cdot \|^2 \right).$

The Huber Function and Soft-Threshholding

For
$$f(x) = |x|$$
,

$$f_{\alpha}(x) = \begin{cases} \frac{1}{2\alpha} |x|^2 & \text{if } |x| \le \alpha \\ |x| - \frac{1}{2}\alpha & \text{otherwise} \end{cases}, \quad \operatorname{prox}_{\alpha f}(x) = \begin{cases} x - \alpha & \text{if } x \ge \alpha \\ 0 & \text{if } |x| \le \alpha \\ x + \alpha & \text{if } x \le -\alpha \end{cases}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

The Huber Function and Soft-Threshholding

Figure: Moreau envelope and the proximal map of $|\cdot|$.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ うへで

The Distance Function

Let $Q \subset \mathbf{E}$ be closed convex. Then

$$(\delta_Q)_{\alpha}(x) = (\delta_Q \Box \frac{1}{2\alpha} \|\cdot\|^2)(x)$$
$$= \inf_{y \in Q} \frac{1}{2\alpha} \|x - y\|^2$$
$$= \frac{1}{2\alpha} d_Q^2(x)$$

and

$$\operatorname{prox}_{\alpha\delta_Q}(x) = \operatorname{proj}_Q(x).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Prox is 1-Lipschitz

Theorem: Let $f: \mathbf{E} \to \overline{\mathbf{R}}$ be proper, closed, cvx. Then the set $\operatorname{prox}_f(x)$ is a singleton for every point $x \in \mathbf{E}$. Moreover, $\|\operatorname{prox}_f(x) - \operatorname{prox}_f(y)\|^2 \leq \langle \operatorname{prox}_f(x) - \operatorname{prox}_f(y), x - y \rangle \quad \forall x, y \in \mathbf{E}.$

Prox is 1-Lipschitz

Theorem: Let $f: \mathbf{E} \to \overline{\mathbf{R}}$ be proper, closed, cvx. Then the set $\operatorname{prox}_f(x)$ is a singleton for every point $x \in \mathbf{E}$. Moreover, $\|\operatorname{prox}_{f}(x) - \operatorname{prox}_{f}(y)\|^{2} \leq \langle \operatorname{prox}_{f}(x) - \operatorname{prox}_{f}(y), x - y \rangle \quad \forall x, y \in \mathbf{E}.$ **Proof:** The map $z \mapsto f(z) + \frac{1}{2} ||z - x||^2$ is proper, closed, and 1-strongly cvx, and hence $\operatorname{prox}_f(x)$ is the unique minimizer. Since $h(y) := f(y) + \frac{1}{2} ||y - x||^2$ is 1-strongly cvx, for $x, y \in \mathbf{E}$, $f(x^{+}) + \frac{1}{2} \|x^{+} - x\|^{2} \le \left(f(y^{+}) + \frac{1}{2} \|y^{+} - x\|^{2}\right) - \frac{1}{2} \|y^{+} - x^{+}\|^{2}$ $= f(y^{+}) + \frac{1}{2} \|y^{+} - y\|^{2} - \frac{1}{2} \|y^{+} - x^{+}\|^{2}$ $+\frac{1}{2}||y^+ - x||^2 - \frac{1}{2}||y^+ - y||^2$ $\leq \left(f(x^{+}) + \frac{1}{2}\|x^{+} - y\|^{2}\right) - \|y^{+} - x^{+}\|^{2}$ $+\frac{1}{2}||y^+-x||^2-\frac{1}{2}||y^+-y||^2,$ SO $\|y^{+} - x^{+}\|^{2} \leq \frac{1}{2} \left(\|x^{+} - y\|^{2} - \|y^{+} - y\|^{2} + \|y^{+} - x\|^{2} - \|x^{+} - x\|^{2} \right)$ $= \langle x^{+} - y^{+}, x - y \rangle \leq \|y^{+} - x^{+}\| \|x - y\|.$

The Moreau Decomposition

Theorem: For any proper, closed, convex function $f: \mathbf{E} \to \overline{\mathbf{R}}$, $\operatorname{prox}_{f}(x) + \operatorname{prox}_{f^{\star}}(x) = x \quad \forall x \in \mathbf{E}.$

Proof Using the definition of the proximal map,

$$\begin{aligned} z = \operatorname{prox}_{f}(x) &\iff 0 \in \partial \left(f + \frac{1}{2} \| \cdot -x \|^{2} \right) (z) \\ &\iff x - z \in \partial f(z) \\ &\iff z \in \partial f^{\star}(x - z) \\ &\iff 0 \in \partial f^{\star}(x - z) - z \\ &\iff 0 \in \partial \left(f^{\star} + \frac{1}{2} \| \cdot -x \|^{2} \right) (x - z) \\ &\iff x - z = \operatorname{prox}_{f^{\star}}(x). \end{aligned}$$

∇f_{α} is Lipschitz continuous with parameter α^{-1}

Theorem: Let $f: \mathbf{E} \to \overline{\mathbf{R}}$ be closed proper convex. Then the envelope f_{α} is continuously differentiable on \mathbf{E} with gradient $\nabla f_{\alpha}(x) = \alpha^{-1}(x - \operatorname{prox}_{\alpha f}(x)).$ Consequently ∇f_{α} is α^{-1} -smooth.

Proof:Take
$$\alpha = 1$$
, then
 $z \in \partial f_{\alpha}(x) \iff x \in \partial (f \Box \frac{1}{2} \| \cdot \|^{2})^{*}(z)$
 $\iff x \in \partial \left(f^{*} + \left(\frac{1}{2} \| \cdot \|^{2}\right)^{*} \right)(z)$
 $\iff x \in \partial f^{*}(z) + z$
 $\iff 0 \in \partial (f^{*} + \frac{1}{2} \| \cdot -x \|^{2})(z)$
 $\iff z = \operatorname{prox}_{f^{*}}(x)$
 $\iff z = x - \operatorname{prox}_{f}(x),$
For $\alpha \neq 1$, use the identity $\alpha f_{\alpha} = (\alpha f)_{1}$.

Theorem: A proper, closed, convex function $f: \mathbf{E} \to \overline{\mathbf{R}}$ is μ -strongly convex if and only if the conjugate f^* is μ^{-1} -smooth.

Proof: (\implies) Suppose that f is μ -strongly convex and define the convex function $g(x) := f(x) - \frac{\mu}{2} ||x||^2$. We may then write

$$f^{\star} = \left(g + \frac{\mu}{2} \|\cdot\|^2\right)^{\star} = g^{\star} \Box \frac{1}{2\mu} \|\cdot\|^2.$$

うして ふゆ く 山 マ ふ し マ う く し マ

The right-hand-side is simply the Moreau envelope of g^* with parameter μ , and is therefore μ^{-1} -smooth.

Baillon-Haddad Theorem

(\Leftarrow) Suppose f^* is μ^{-1} -smooth, and set $h := f^*$ and $\beta := \mu^{-1}$ so that h is β -smooth. We know that h is β -smooth is equivalent to $0 < \langle \nabla h(x) - \nabla h(y), x - y \rangle < \beta ||x - y||^2$. Set $g := \frac{\beta}{2} \|\cdot\| - h$. Then $\langle \nabla q(y) - \nabla q(x), y - x \rangle = \beta ||y - x||^2 - \langle \nabla h(y) - \nabla h(x), y - x \rangle > 0.$ Hence, q is cvx. Note that $h(y) = \frac{\beta}{2} \|y\|^2 - g(y) = \frac{\beta}{2} \|y\|^2 - g^{\star\star}(y) = \frac{\beta}{2} \|y\|^2 - \sup\left\{ \langle y, x \rangle - g^{\star}(x) \right\}$ $= \inf \left[\frac{\beta}{2} \|y\|^2 - \langle y, x \rangle + g^{\star}(x)\right],$ SO $h^{\star}(z) = \sup_{y} \left\{ \langle z, y \rangle - h(y) \right\}$ $= \sup_{x} \left[\langle z, y \rangle - \inf_{x} \left\{ \frac{\beta}{2} \|y\|^{2} - \langle y, x \rangle + g^{\star}(x) \right\} \right]$ $= \sup \sup \left[\langle z, y \rangle - \frac{\beta}{2} \|y\|^2 + \langle y, x \rangle - g^{\star}(x) \right]$ $= \sup_{x} [\sup_{x} \left\{ \langle z + x, y \rangle - \frac{\beta}{2} \|y\|^2 \right\} - g^{\star}(x)] = \sup_{x} \frac{1}{2\beta} \|z + x\|^2 - g^{\star}(x).$ So $h^{\star}(z) - \frac{1}{2\beta} \|z\|^2 = \sup_x \left[\frac{1}{\beta} \langle z, x \rangle + \frac{1}{2\beta} \|x\|^2 - g^{\star}(x)\right]$ is cvx.

・ロト・西・・田・・日・・日・

Subgradient Dominance Theorem

Theorem: Any proper, closed, α -strongly convex function $f: \mathbf{E} \to \overline{\mathbf{R}}$ satisfies the subgradient dominance condition:

$$f(x) - \min f \le \frac{1}{\alpha} ||v||^2$$
 for all $x \in \mathbf{E}, v \in \partial f(x)$.

Proof: Let \bar{x} be a minimizer of f. Fix any $x \in \mathbf{E}$ and $v \in \partial f(x)$. We compute

$$f(x) - f(\bar{x}) \le \langle v, x - \bar{x} \rangle \le \|v\| \cdot \|x - \bar{x}\|$$
$$= \|v\| \cdot \|\nabla f^{\star}(v) - \nabla f^{\star}(0)\| \le \frac{1}{\alpha} \|v\|^{2}.$$

うして ふゆ く 山 マ ふ し マ う く し マ

The Normal Cone to the Epigraph

Proposition: Let $f : \mathbf{E} \to \overline{\mathbf{R}}$ be proper convex. Then, for all $\overline{x} \in \operatorname{dom} \partial f$, $\partial f(\overline{x}) = \{v \mid (v, -1) \in N_{\operatorname{epi} f}(\overline{x}, f(\overline{x}))\}.$

Proof:

$$(v, -1) \in N_{\text{epi}\,f}(x, f(x)) \iff \langle (v, -1), (x, f(x)) - (\bar{x}, f(\bar{x})) \rangle \le 0 \,\,\forall x \in \text{dom}\,f$$
$$\iff f(\bar{x}) + \langle v, x - \bar{x} \rangle \le f(x) \,\,\forall x \in \text{dom}\,f$$

$$\iff f(\bar{x}) + \langle v, x - \bar{x} \rangle \le f(x) \ \forall \, x \in \mathbf{E} \ .$$

Outer Semicontinuity of the Subdifferential

An important property of the subdifferential is that it is *outer semicontinuous*.

Definition: A multivalued mapping $T : \mathbf{X} \Rightarrow \mathbf{Y}$ is said to be *outer* semicontinuous on its domain, dom $T := \{x \mid T(x) \neq \emptyset\}$, if for every point $(\bar{x}, \bar{y}) \in (\text{dom } T) \times \mathbf{Y}$ and every sequence $\{(x_i, y_i)\} \subset \mathbf{X} \times \mathbf{Y}$ with $(x_i, y_i) \to (\bar{x}, \bar{y})$ with $y_i \in T(x_i)$ for all i it must be the case that $\bar{y} \in T(\bar{x})$.

Theorem: Let $f : \mathbf{E} \to \overline{\mathbf{R}}$ be proper convex. Then ∂f is outer semicontinuous on dom ∂f .

Proof: Let $(\bar{x}, \bar{y}) \in (\text{dom }\partial f) \times \mathbf{E}$ and $\{(x_i, y_i)\} \subset (\text{dom }\partial f) \times \mathbf{E}$ be such that $(x_i, y_i) \to (\bar{x}, \bar{y})$ with $y_i \in \partial f(x_i)$ for all *i*. We must show $\bar{y} \in \partial f(\bar{x})$. By construction,

 $\operatorname{cl} f(x_i) + \langle y_i, x - x_i \rangle \leq f(x) \quad \forall x \in \mathbf{E}$. Hence, given $x \in \mathbf{E}$, using the lower semicontinuity of $\operatorname{cl} f$, we may take the limit in this inequality to find that

$$\begin{split} &\operatorname{cl} f(\bar{x}) + \langle \overline{y}, \, x - \bar{x} \rangle \leq f(x) \quad \forall \, x \in \mathbf{E} \ . \\ &\operatorname{Hence}, \, \overline{y} \in \partial(\operatorname{cl} f)(\bar{x}) = \partial f(\bar{x}), \, \text{where the equality follows since} \\ & \overline{x} \in \operatorname{dom} \partial f. \end{split}$$