Convex Geometry

Convex Sets

A set $C \subset \mathbf{E}$ is said to be convex if

$$
x, y \in C \text { and } \lambda \in[0,1] \Longrightarrow(1-\lambda) x+\lambda y \in C .
$$

That is, C contains all line segments connecting points in C.

Convex Sets

A set $C \subset \mathbf{E}$ is said to be convex if

$$
x, y \in C \text { and } \lambda \in[0,1] \Longrightarrow(1-\lambda) x+\lambda y \in C .
$$

That is, C contains all line segments connecting points in C.

Examples:

- Subspaces and affine sets
- Half spaces $\{x \mid\langle a, x\rangle \leq \beta\}$ for all $a \in \mathbf{E} \backslash\{0\}$ and $\beta \in \mathbf{R}$.
- The unit ball $\mathbb{B}:=\{x \mid\|x\| \leq 1\}$ and $\operatorname{intr}(\mathbb{B})$.
- The unit simplex

$$
\Delta_{n}:=\left\{\lambda \in \mathbf{R}^{n}: \sum_{i=1}^{n} \lambda_{i}=1, \lambda \geq 0\right\} .
$$

Convexity Preserving Operations

Let $\mathcal{A} \in \mathbf{L}(\mathbf{E}, \mathbf{Y})$. If $C_{1}, C_{2} \subset \mathbf{E}$ and $K \subset \mathbf{Y}$ are all convex, then so are the sets

- Intersection: $C_{1} \cap C_{2}$
- Scalar Multiplication: $\mathbf{R}_{+} K$ and $\lambda K \quad \forall \lambda \in \mathbf{R}$
- Addition: $C_{1}+C_{2}$
- Linear Image/Preimage: $\mathcal{A} C_{1}$ and $\mathcal{A}^{-1} K$
- Products: $C_{1} \times K$
- Closure and Interior: $\mathrm{cl} K$ and $\operatorname{intr} K$
- Non-negative sums: Let $Q \subset \mathbf{E}$ be convex and $\lambda_{1}, \lambda_{2} \in \mathbf{R}_{+}$.

Then

$$
\lambda_{1} Q+\lambda_{2} Q=\left(\lambda_{1}+\lambda_{2}\right) Q
$$

Polyhedra and Spectrahedra

A convex polyhedron is any set of the form

$$
Q=\left\{x \in \mathbf{R}^{n}: A x \geq c\right\}
$$

for some $A \in \mathbf{R}^{m \times n}$ and $c \in \mathbf{R}^{m}$.
Equivalently, we may write Q as an intersection of finitely many half-spaces or as the preimage $A^{-1}\left(c+\mathbf{R}_{+}^{n}\right)$. Hence, a convex polyhedron is convex.

Polyhedra and Spectrahedra

A convex polyhedron is any set of the form

$$
Q=\left\{x \in \mathbf{R}^{n}: A x \geq c\right\}
$$

for some $A \in \mathbf{R}^{m \times n}$ and $c \in \mathbf{R}^{m}$.
Equivalently, we may write Q as an intersection of finitely many half-spaces or as the preimage $A^{-1}\left(c+\mathbf{R}_{+}^{n}\right)$. Hence, a convex polyhedron is convex.

More generally, a spectrahedron is any set of the form

$$
Q=\left\{x \in \mathbf{R}^{n}: x_{1} A_{1}+x_{2} A_{2}+\ldots+x_{n} A_{n} \succeq C\right\}
$$

for some matrices $A_{i} \in \mathbf{S}^{m}$ and $C \in \mathbf{S}^{n}$. Equivalently, we may write Q as the preimage $\mathcal{A}^{-1}\left(C+\mathbf{S}_{+}^{n}\right)$ for the linear map $\mathcal{A}(x)=\sum_{i=1}^{n} x_{i} A_{i}$.

Spectrahedra

There are many more spectrahedra than polyhedra. For example, the elliptope is given by

$$
\left\{(x, y, z) \in \mathbf{R}^{3}:\left(\begin{array}{ccc}
1 & x & y \\
x & 1 & z \\
y & z & 1
\end{array}\right) \succeq 0\right\}
$$

Figure: The elliptope

Convex Hulls and Convex Combinations

Convex Combinations: A point $x \in \mathbf{E}$ is a convex combination of points $x_{1}, \ldots, x_{k} \in \mathbf{E}$ if it can be written as $x=\sum_{i=1}^{k} \lambda_{i} x_{i}$ for some $\lambda \in \Delta_{k}$.
A convex combination $x=\sum_{i=1}^{k} \lambda_{i} x_{i}$ can be viewed as a weighted average of the points x_{1}, \ldots, x_{k} with $\lambda_{1}, \ldots, \lambda_{k}$ as the corresponding weights.

Given a set $X \subset \mathbf{E}$, one can show that the set of all such convex combinations of points in X,

$$
\left\{\sum_{i=1}^{k} \lambda_{i} x_{i} \mid k \in \mathbb{N}, \lambda \in \Delta_{k}, x_{1}, \ldots, x_{k} \in X\right\}
$$

equals the convex hull of the set $X, \operatorname{conv}(X)$, i.e. the intersection of all convex sets containing X. Here $\mathbb{N}:=\{1,2, \ldots\}$ is the set of natural numbers.

Carathéodory's Theorem

Let $Q \subset \mathbf{E}$, where \mathbf{E} is an n-dimensional Euclidean space. Then each point $x \in \operatorname{conv}(Q)$ can be written as a convex combination of $n+1$ or fewer points in Q.

Carathéodory's Theorem

Let $Q \subset \mathbf{E}$, where \mathbf{E} is an n-dimensional Euclidean space. Then each point $x \in \operatorname{conv}(Q)$ can be written as a convex combination of $n+1$ or fewer points in Q.

Proof: Let $x \in \operatorname{conv}(Q)$.

1) WLOG

$$
\bar{k}:=\inf \left\{k \in \mathbb{N} \mid x=\sum_{i=1}^{k} \lambda_{i} x_{i}, x_{1}, \ldots, x_{k} \in Q, \lambda \in \Delta_{k}\right\}>n+1
$$

Carathéodory's Theorem

Let $Q \subset \mathbf{E}$, where \mathbf{E} is an n-dimensional Euclidean space. Then each point $x \in \operatorname{conv}(Q)$ can be written as a convex combination of $n+1$ or fewer points in Q.

Proof: Let $x \in \operatorname{conv}(Q)$.

1) WLOG

$$
\bar{k}:=\inf \left\{k \in \mathbb{N} \mid x=\sum_{i=1}^{k} \lambda_{i} x_{i}, x_{1}, \ldots, x_{k} \in Q, \lambda \in \Delta_{k}\right\}>n+1
$$

2) $\exists x_{1}, \ldots, x_{\bar{k}} \in Q, \lambda \in \Delta_{\bar{k}}$ s.t. $x=\sum_{i=1}^{\bar{k}} \lambda_{i} x_{i}$ and $\lambda>0$.

Carathéodory's Theorem

Let $Q \subset \mathbf{E}$, where \mathbf{E} is an n-dimensional Euclidean space. Then each point $x \in \operatorname{conv}(Q)$ can be written as a convex combination of $n+1$ or fewer points in Q.

Proof: Let $x \in \operatorname{conv}(Q)$.

1) WLOG

$$
\bar{k}:=\inf \left\{k \in \mathbb{N} \mid x=\sum_{i=1}^{k} \lambda_{i} x_{i}, x_{1}, \ldots, x_{k} \in Q, \lambda \in \Delta_{k}\right\}>n+1
$$

2) $\exists x_{1}, \ldots, x_{\bar{k}} \in Q, \lambda \in \Delta_{\bar{k}}$ s.t. $x=\sum_{i=1}^{\bar{k}} \lambda_{i} x_{i}$ and $\lambda>0$.
3) Since $\bar{k}>n+1, \exists \mu_{i}, i=2, \ldots, \bar{k}$ not all 0 s.t.

$$
\left\{\mu_{2}, \ldots, \mu_{\bar{k}}\right\}: 0=\sum_{i=2}^{\bar{k}} \mu_{i}\left(x_{i}-x_{1}\right)=\left(\sum_{i=2}^{\bar{k}} \mu_{i} x_{i}\right)-\left(\sum_{i=2}^{\bar{k}} \mu_{i}\right) x_{1} .
$$

Carathéodory's Theorem

Let $Q \subset \mathbf{E}$, where \mathbf{E} is an n-dimensional Euclidean space. Then each point $x \in \operatorname{conv}(Q)$ can be written as a convex combination of $n+1$ or fewer points in Q.

Proof: Let $x \in \operatorname{conv}(Q)$.

1) WLOG

$$
\bar{k}:=\inf \left\{k \in \mathbb{N} \mid x=\sum_{i=1}^{k} \lambda_{i} x_{i}, x_{1}, \ldots, x_{k} \in Q, \lambda \in \Delta_{k}\right\}>n+1
$$

2) $\exists x_{1}, \ldots, x_{\bar{k}} \in Q, \lambda \in \Delta_{\bar{k}}$ s.t. $x=\sum_{i=1}^{\bar{k}} \lambda_{i} x_{i}$ and $\lambda>0$.
3) Since $\bar{k}>n+1, \exists \mu_{i}, i=2, \ldots, \bar{k}$ not all 0 s.t.

$$
\begin{aligned}
& \left\{\mu_{2}, \ldots, \mu_{\bar{k}}\right\}: 0=\sum_{i=2}^{\bar{k}} \mu_{i}\left(x_{i}-x_{1}\right)=\left(\sum_{i=2}^{\bar{k}} \mu_{i} x_{i}\right)-\left(\sum_{i=2}^{\bar{k}} \mu_{i}\right) x_{1} . \\
& \text { 4) } \mu_{1}:=-\sum_{i=2}^{\bar{k}} \mu_{i} \Longrightarrow \sum_{i=1}^{\bar{k}} \mu_{i} x_{i}=0, \quad \sum_{i=1}^{\bar{k}} \mu_{i}=0, \mu \notin \mathbf{R}_{-}^{\bar{k}} .
\end{aligned}
$$

Carathéodory's Theorem

Let $Q \subset \mathbf{E}$, where \mathbf{E} is an n-dimensional Euclidean space. Then each point $x \in \operatorname{conv}(Q)$ can be written as a convex combination of $n+1$ or fewer points in Q.

Proof: Let $x \in \operatorname{conv}(Q)$.

1) WLOG

$$
\bar{k}:=\inf \left\{k \in \mathbb{N} \mid x=\sum_{i=1}^{k} \lambda_{i} x_{i}, x_{1}, \ldots, x_{k} \in Q, \lambda \in \Delta_{k}\right\}>n+1
$$

2) $\exists x_{1}, \ldots, x_{\bar{k}} \in Q, \lambda \in \Delta_{\bar{k}}$ s.t. $x=\sum_{i=1}^{\bar{k}} \lambda_{i} x_{i}$ and $\lambda>0$.
3) Since $\bar{k}>n+1, \exists \mu_{i}, i=2, \ldots, \bar{k}$ not all 0 s.t.
$\left\{\mu_{2}, \ldots, \mu_{\bar{k}}\right\}: 0=\sum_{i=2}^{\bar{k}} \mu_{i}\left(x_{i}-x_{1}\right)=\left(\sum_{i=2}^{\bar{k}} \mu_{i} x_{i}\right)-\left(\sum_{i=2}^{\bar{k}} \mu_{i}\right) x_{1}$.
4) $\mu_{1}:=-\sum_{i=2}^{\bar{k}} \mu_{i} \Longrightarrow \sum_{i=1}^{\bar{k}} \mu_{i} x_{i}=0, \quad \sum_{i=1}^{\bar{k}} \mu_{i}=0, \mu \notin \mathbf{R}_{-}^{\bar{k}}$.
5) $\forall \alpha \in \mathbf{R}, x=\sum_{i=1}^{\bar{k}}\left(\lambda_{i}-\alpha \mu_{i}\right) x_{i}$ and $\sum_{i=1}^{\bar{k}}\left(\lambda_{i}-\alpha \mu_{i}\right)=1$.

Carathéodory's Theorem

Let $Q \subset \mathbf{E}$, where \mathbf{E} is an n-dimensional Euclidean space. Then each point $x \in \operatorname{conv}(Q)$ can be written as a convex combination of $n+1$ or fewer points in Q.

Proof: Let $x \in \operatorname{conv}(Q)$.

1) WLOG

$$
\bar{k}:=\inf \left\{k \in \mathbb{N} \mid x=\sum_{i=1}^{k} \lambda_{i} x_{i}, x_{1}, \ldots, x_{k} \in Q, \lambda \in \Delta_{k}\right\}>n+1
$$

2) $\exists x_{1}, \ldots, x_{\bar{k}} \in Q, \lambda \in \Delta_{\bar{k}}$ s.t. $x=\sum_{i=1}^{\bar{k}} \lambda_{i} x_{i}$ and $\lambda>0$.
3) Since $\bar{k}>n+1, \exists \mu_{i}, i=2, \ldots, \bar{k}$ not all 0 s.t.
$\left\{\mu_{2}, \ldots, \mu_{\bar{k}}\right\}: 0=\sum_{i=2}^{\bar{k}} \mu_{i}\left(x_{i}-x_{1}\right)=\left(\sum_{i=2}^{\bar{k}} \mu_{i} x_{i}\right)-\left(\sum_{i=2}^{\bar{k}} \mu_{i}\right) x_{1}$.
4) $\mu_{1}:=-\sum_{i=2}^{\bar{k}} \mu_{i} \Longrightarrow \sum_{i=1}^{\bar{k}} \mu_{i} x_{i}=0, \quad \sum_{i=1}^{\bar{k}} \mu_{i}=0, \mu \notin \mathbf{R}_{-}^{\bar{k}}$.
5) $\forall \alpha \in \mathbf{R}, x=\sum_{i=1}^{\bar{k}}\left(\lambda_{i}-\alpha \mu_{i}\right) x_{i}$ and $\sum_{i=1}^{\bar{k}}\left(\lambda_{i}-\alpha \mu_{i}\right)=1$.
6) $\bar{\alpha}:=\inf \left\{\alpha \mid \lambda_{i}-\alpha \mu_{i} \geq 0, i=1, \ldots \bar{k}\right\}>0$ and WLOG
$\lambda_{\bar{k}}-\bar{\alpha} \mu_{\bar{k}}=0$ so $x=\sum_{i=1}^{\bar{k}-1} \bar{\lambda}_{i} x_{i}, \bar{\lambda} \in \Delta_{\bar{k}-1}$, where
$\bar{\lambda}_{i}:=\lambda_{i}-\alpha \mu_{i}, i=1, \ldots, \bar{k}-1$. Contradiction.

Relative interior and Boundary

The relative interior of a set $Q \subset \mathbf{E}$, denoted ri Q, is the interior of Q relative to aff (Q). That is,

$$
\text { ri } Q:=\left\{x \in Q: \exists \epsilon>0 \text { s.t. } B_{\epsilon}(x) \cap \operatorname{aff} Q \subseteq Q\right\} .
$$

The relative boundary of Q is defined by $\operatorname{rb} Q:=(\operatorname{cl} Q) \backslash(\operatorname{ri} Q)$.

Relative interior and Boundary

The relative interior of a set $Q \subset \mathbf{E}$, denoted ri Q, is the interior of Q relative to aff (Q). That is,

$$
\text { ri } Q:=\left\{x \in Q: \exists \epsilon>0 \text { s.t. } B_{\epsilon}(x) \cap \operatorname{aff} Q \subseteq Q\right\} .
$$

The relative boundary of Q is defined by $\operatorname{rb} Q:=(\operatorname{cl} Q) \backslash(\operatorname{ri} Q)$.
The subspace parallel to aff Q is denoted par Q. Observe that since par $Q=\operatorname{aff} Q-x$ for all $x \in \operatorname{aff} Q$, it easily follows that

$$
B_{\epsilon}(x) \cap \operatorname{aff} Q=x+B_{\epsilon}(0) \cap \operatorname{par} Q
$$

for all $x \in \operatorname{aff} Q$.

Relative interior and Boundary

The relative interior of a set $Q \subset \mathbf{E}$, denoted ri Q, is the interior of Q relative to aff (Q). That is,

$$
\text { ri } Q:=\left\{x \in Q: \exists \epsilon>0 \text { s.t. } B_{\epsilon}(x) \cap \operatorname{aff} Q \subseteq Q\right\} .
$$

The relative boundary of Q is defined by $\operatorname{rb} Q:=(\operatorname{cl} Q) \backslash(\operatorname{ri} Q)$.
The subspace parallel to aff Q is denoted par Q. Observe that since par $Q=\operatorname{aff} Q-x$ for all $x \in \operatorname{aff} Q$, it easily follows that

$$
B_{\epsilon}(x) \cap \operatorname{aff} Q=x+B_{\epsilon}(0) \cap \operatorname{par} Q
$$

for all $x \in \operatorname{aff} Q$.
$[Q=\{x\}] \Longrightarrow[\operatorname{aff} Q=\{x\}, \quad \operatorname{par} Q=\{0\}, \quad Q=\operatorname{ri} Q \quad$ and $\quad \operatorname{rb} Q=\emptyset]$

Relative interior and Boundary

The relative interior of a set $Q \subset \mathbf{E}$, denoted ri Q, is the interior of Q relative to aff (Q). That is,

$$
\text { ri } Q:=\left\{x \in Q: \exists \epsilon>0 \text { s.t. } B_{\epsilon}(x) \cap \operatorname{aff} Q \subseteq Q\right\} .
$$

The relative boundary of Q is defined by $\operatorname{rb} Q:=(\operatorname{cl} Q) \backslash(\operatorname{ri} Q)$.
The subspace parallel to aff Q is denoted par Q. Observe that since $\operatorname{par} Q=\operatorname{aff} Q-x$ for all $x \in \operatorname{aff} Q$, it easily follows that

$$
B_{\epsilon}(x) \cap \operatorname{aff} Q=x+B_{\epsilon}(0) \cap \operatorname{par} Q
$$

for all $x \in \operatorname{aff} Q$.

$$
\begin{gathered}
{[Q=\{x\}] \Longrightarrow[\operatorname{aff} Q=\{x\}, \quad \operatorname{par} Q=\{0\}, \quad Q=\operatorname{ri} Q \quad \text { and } \quad \operatorname{rb} Q=\emptyset]} \\
{[Q=\mathbf{E}] \Longrightarrow[\operatorname{aff} Q=\mathbf{E}, \quad \operatorname{par} Q=\mathbf{E}, \quad Q=\operatorname{ri} Q \quad \text { and } \quad \operatorname{rb} Q=\emptyset]}
\end{gathered}
$$

Relative interior and Boundary

The relative interior of a set $Q \subset \mathbf{E}$, denoted ri Q, is the interior of Q relative to aff (Q). That is,

$$
\text { ri } Q:=\left\{x \in Q: \exists \epsilon>0 \text { s.t. } B_{\epsilon}(x) \cap \operatorname{aff} Q \subseteq Q\right\} .
$$

The relative boundary of Q is defined by $\operatorname{rb} Q:=(\operatorname{cl} Q) \backslash(\operatorname{ri} Q)$.
The subspace parallel to aff Q is denoted par Q. Observe that since $\operatorname{par} Q=\operatorname{aff} Q-x$ for all $x \in \operatorname{aff} Q$, it easily follows that

$$
B_{\epsilon}(x) \cap \operatorname{aff} Q=x+B_{\epsilon}(0) \cap \operatorname{par} Q
$$

for all $x \in \operatorname{aff} Q$.
$[Q=\{x\}] \Longrightarrow[\operatorname{aff} Q=\{x\}, \quad \operatorname{par} Q=\{0\}, \quad Q=\operatorname{ri} Q \quad$ and $\quad \operatorname{rb} Q=\emptyset]$ $[Q=\mathbf{E}] \Longrightarrow[\operatorname{aff} Q=\mathbf{E}, \quad \operatorname{par} Q=\mathbf{E}, \quad Q=\operatorname{ri} Q \quad$ and $\quad \operatorname{rb} Q=\emptyset]$

Theorem: For any nonempty convex set $Q \subset \mathbf{E}$, the relative interior ri Q is nonempty.

Relative interior and Boundary

Proof: WLOG $0 \in Q$ so aff $Q=\operatorname{span}(Q)=\operatorname{par} Q$ is a subspace, set $k=\operatorname{dim}(\operatorname{aff} Q)$.

Let d_{1}, \ldots, d_{k} be a basis for aff Q and define $\mathcal{A} \in \mathbf{L}\left(\mathbf{R}^{k}, \mathbf{E}\right)$ by $\mathcal{A} \lambda:=\sum_{i=1}^{k} \lambda_{i} d_{i}$ so that $\operatorname{aff} Q=\operatorname{ran} \mathcal{A}$.

Consequently, \mathcal{A} maps the open set $\Omega:=\left\{\lambda \in \mathbf{R}_{++}^{d} \mid \sum_{i=1}^{k} \lambda_{i}<1\right\}$ onto a subset of aff Q that is open relative to the subspace aff $Q(\mathcal{A}$ is a linear isomorphism between \mathbf{R}^{k} and aff Q). Consequently, $\mathcal{A} \Omega$ is open relative to aff Q.

Observe that $\forall \lambda \in \Omega, \mathcal{A} \lambda=\left(\sum_{i=1}^{k} \lambda_{i} d_{i}\right)+\left(1-\sum_{i=1}^{k} \lambda_{i}\right) \cdot 0 \in Q$ by convexity. Hence $\mathcal{A} \Omega \subset Q$ implying $\mathcal{A} \Omega \subset$ ri Q.

Access Theorem for Convex Sets

Theorem: Let $Q \subset \mathbf{E}$ be convex. Then $x \in \operatorname{ri} Q$ if and only if $\forall y \in \operatorname{cl} Q,[x, y) \subset \operatorname{ri} Q$.

Proof: (\Leftrightarrow) Trivial. (\Rightarrow) Let $y \in \operatorname{cl} Q, x \in \operatorname{ri} Q$, and $\epsilon>0$ be such that $B_{\epsilon}(x) \cap$ aff $Q \subset Q$. Then, for $x \in \operatorname{ri} Q$ and $\lambda \in(0,1]$, convexity tells us that

$$
\begin{aligned}
Q & \supset \lambda\left(B_{\epsilon}(x) \cap \operatorname{aff} Q\right)+(1-\lambda) y \\
& =\lambda\left(x+B_{\epsilon}(0) \cap \operatorname{par} Q\right)+(1-\lambda) y \\
& =\lambda x+(1-\lambda) y+\lambda B_{\epsilon}(0) \cap \operatorname{par} Q \\
& =B_{(\lambda \epsilon)}((1-\lambda) x+\lambda y) \cap \operatorname{aff} Q . \quad \text { pic }
\end{aligned}
$$

Access Theorem for Convex Sets

Theorem: Let $Q \subset \mathbf{E}$ be convex. Then $x \in \operatorname{ri} Q$ if and only if $\forall y \in \operatorname{cl} Q,[x, y) \subset \operatorname{ri} Q$.

Proof: (\Leftarrow) Trivial. (\Rightarrow) Let $y \in \operatorname{cl} Q, x \in \operatorname{ri} Q$, and $\epsilon>0$ be such that $B_{\epsilon}(x) \cap$ aff $Q \subset Q$. Then, for $x \in \operatorname{ri} Q$ and $\lambda \in(0,1]$, convexity tells us that

$$
\begin{aligned}
Q & \supset \lambda\left(B_{\epsilon}(x) \cap \operatorname{aff} Q\right)+(1-\lambda) y \\
& =\lambda\left(x+B_{\epsilon}(0) \cap \operatorname{par} Q\right)+(1-\lambda) y \\
& =\lambda x+(1-\lambda) y+\lambda B_{\epsilon}(0) \cap \operatorname{par} Q \\
& =B_{(\lambda \epsilon)}((1-\lambda) x+\lambda y) \cap \operatorname{aff} Q . \quad \text { pic }
\end{aligned}
$$

Corollaries:

1) For any nonempty convex set Q in \mathbf{E},

$$
\operatorname{cl}(\operatorname{ri} Q)=\operatorname{cl} Q \quad \text { and } \quad \operatorname{ri}(\operatorname{cl} Q))=\operatorname{ri} Q .
$$

2) $x \in \operatorname{ri} Q \Longleftrightarrow \forall y \in Q \exists \bar{\lambda}>1$ s.t. $y+\lambda(x-y) \in Q \quad \forall \lambda \in(0, \bar{\lambda}]$.
3) $\operatorname{intr}\left(Q+[\operatorname{par} Q]^{\perp}\right)=\operatorname{ri} Q+[\operatorname{par} Q]^{\perp}$.

Linear Images of the Relative Interior

Theorem: Let $Q \subset \mathbf{E}$ be convex and $A \in \mathbf{L}[\mathbf{E}, \mathbf{Y}]$. Then ri $(A Q)=A($ ri $Q)$ and $\operatorname{cl}(A Q) \supset A(\operatorname{cl} Q)$.

Proof: The closure inclusion follows from continuity. Next observe that

$$
\operatorname{cl} A(\operatorname{ri} Q) \supset A(\operatorname{cl~ri} Q)=A(\operatorname{cl} Q) \supset A Q \supset A(\operatorname{ri} Q)
$$

Hence, $A Q$ and $A($ ri $Q)$ have the same closure and relative interior which tells us that ri $(A Q) \subset A($ ri $Q)$. For the reverse inclusion, let $z \in A(\operatorname{ri} Q)$ and $y \in \operatorname{ri} Q$ such that $z=A y$. Then for all $w \in Q,[y, w) \subset Q$ which implies that for all $x \in A Q,[A y, x) \subset A Q$. That is, $z=A y \in \operatorname{ri} A Q$ which establishes the reverse inclusion.

The Relative Interior of the Sum

Let $Q_{1}, Q_{2} \subset \mathbf{E}$ be convex and $\alpha, \beta \in \mathbf{R}$, then

$$
\operatorname{ri}\left(\alpha Q_{1}+\beta Q_{2}\right)=\alpha \operatorname{ri} Q_{1}+\beta \operatorname{ri} Q_{2}
$$

Proof: Let $A \in \mathbf{L}[\mathbf{E} \times \mathbf{E}, \mathbf{E}]$ be given by $A(x, y):=\alpha x+\beta y$. Then

$$
\begin{aligned}
\text { ri }\left(\alpha Q_{1}+\beta Q_{2}\right) & =\text { ri } A\left(Q_{1} \times Q_{2}\right) \\
& =A \operatorname{ri}\left(Q_{1} \times Q_{2}\right) \\
& \stackrel{\text { why? }}{=} A\left(\text { ri } Q_{1} \times \operatorname{ri} Q_{2}\right) \\
& =\alpha \text { ri } Q_{1}+\beta \text { ri } Q_{2}
\end{aligned}
$$

Separation Theorems

Separation theorems allow us to analyze the geometry of a convex set $Q \subset \mathbf{X}$ by studying how the elements of the dual space \mathbf{X}^{*} act on Q. This is the essence of duality theory which provides the foundation of convex analysis.

In a Euclidean space, separation theorems can built on the notion of the distance to a set. Given a set $X \subset \mathbf{E}$, we define the distance to X by

$$
\operatorname{dist}(z \mid X):=\inf _{x \in X}\|x-z\| \quad\left(=d_{X}(z)\right)
$$

If X is closed and nonempty, then, for all $z \in \mathbf{E}$, there is a $x \in X$ such that $\|z-x\|=\operatorname{dist}(z \mid X)$. We call the set of such closest points in X to z the projection of z onto X and write

$$
\operatorname{proj}_{X}(y):=\left\{x \in X: d_{Q}(y)=\|x-y\|\right\}
$$

The Projection Theorem for Convex Sets

For any nonempty, closed, convex set $Q \subset \mathbf{E}$, the set $\operatorname{proj}_{Q}(y)$ is a singleton. Moreover, the closest point $z \in Q$ to y is characterized by the property:

$$
\langle y-z, x-z\rangle \leq 0 \quad \text { for all } x \in Q .
$$

Proof: If $z \in Q$ satisfies (\diamond), then, for all $x \in Q$,

$$
\|y-x\|^{2}=\|y-z\|^{2}+2\langle y-z, z-x\rangle+\|z-x\|^{2} \geq\|y-z\|^{2}
$$

with equality if and only if $z=x$. Hence, (\diamond) implies z is the unique element of $\operatorname{proj}_{Q}(y)$.

It remains to show that any $z \in \operatorname{proj}_{Q}(y)$ must satisfy (\diamond). Define $\varphi(x):=\frac{1}{2}\|y-x\|^{2}$ so that $\nabla \varphi(x)=x-y$. If $z \in \operatorname{proj}_{Q}(y)$, then, for all $x \in Q$,
$\varphi^{\prime}(z ; x-z)=\lim _{t \downarrow 0} \frac{\varphi(z+t(x-z))-\varphi(z)}{t} \geq 0 \quad$ as $z+t(x-z) \in Q, t \in[0,1]$.
So for all $x \in Q, 0 \leq \varphi^{\prime}(z ; x-z)=\langle\nabla \varphi(z), x-z\rangle=\langle z-y, x-z\rangle$, which is (\diamond).

Strict Separation Theorem

Consider a nonempty, closed, convex set $Q \subset \mathbf{E}$ and a point $y \notin Q$. Then there exists a nonzero vector $z \in \mathbf{E}$ and a number $\beta \in \mathbf{R}$ satisfying

$$
\langle z, x\rangle \leq \beta<\langle z, y\rangle \quad \text { for all } x \in Q .
$$

Strict Separation Theorem

Consider a nonempty, closed, convex set $Q \subset \mathbf{E}$ and a point $y \notin Q$. Then there exists a nonzero vector $z \in \mathbf{E}$ and a number $\beta \in \mathbf{R}$ satisfying

$$
\langle z, x\rangle \leq \beta<\langle z, y\rangle \quad \text { for all } x \in Q
$$

Proof: Fix a point $y \notin Q$ and define the nonzero vector $z:=y-\operatorname{proj}_{Q}(y)$. Then for any $x \in Q$, the condition

$$
\left\langle z, x-\operatorname{proj}_{Q}(y)\right\rangle \leq 0 \quad \text { for all } x \in Q
$$

yields

$$
\begin{aligned}
\langle z, x\rangle \leq\left\langle z, \operatorname{proj}_{Q}(y)\right\rangle & =\langle z, y\rangle+\left\langle z, \operatorname{proj}_{Q}(y)-y\right\rangle \\
& =\langle z, y\rangle-\|z\|^{2}<\langle z, y\rangle
\end{aligned}
$$

as claimed, where $\beta:=\left\langle z, \operatorname{proj}_{Q}(y)\right\rangle$.

Supporting Hyperplanes to Points on the Relative

 BoundaryTheorem: Let $Q \subset \mathbf{E}$ be convex with $\bar{x} \in \operatorname{rb} Q$. Then there exists $\bar{z} \in \mathbf{E}$ such that

$$
\langle\bar{z}, x\rangle \leq\langle\bar{z}, \bar{x}\rangle \forall x \in \operatorname{cl} Q \text { and }\langle\bar{z}, x\rangle<\langle\bar{z}, \bar{x}\rangle \forall x \in \operatorname{ri} Q .
$$

Proof: Set $\widehat{Q}:=Q+[\operatorname{par} Q]^{\perp}$. Then $\operatorname{intr} \widehat{Q}=\operatorname{ri} Q+[\operatorname{par} Q]^{\perp}=\operatorname{ri} \widehat{Q}$. Since $\bar{x} \in \operatorname{rb} Q, Q$ is not a single point and not all of \mathbf{E} so $\widehat{Q} \neq \mathbf{E}$. Hence, there exists $\left\{x_{k}\right\} \subset \mathbf{E} \backslash \operatorname{cl} \widehat{Q}$ with $x_{k} \rightarrow x$. Let $\left\{z_{k}\right\} \subset \mathbf{E}$ be such that $\left\|z_{k}\right\|=1$ and $\left\langle z_{k}, y\right\rangle \leq\left\langle z_{k}, x_{k}\right\rangle$ for all $y \in \widehat{Q}, k \in \mathbb{N}$. WLOG (why?) there is a $\bar{z} \in \mathbf{E}$ with $\|\bar{z}\|=1$ such that $z_{k} \rightarrow \bar{z}$. Taking the limit, we have

$$
\langle\bar{z}, y\rangle \leq\left\langle\bar{z}, x_{k}\right\rangle \forall y \in \operatorname{cl} \widehat{Q} \text { and }\langle\bar{z}, y\rangle<\left\langle\bar{z}, x_{k}\right\rangle \forall y \in \operatorname{intr} \widehat{Q} .
$$

Since $Q \subset \widehat{Q}$ and ri $Q \subset \operatorname{intr} Q$, the result follows.

Dual Description of Convex Sets

Theorem: Given a nonempty set $Q \subset \mathbf{E}$, define the set of halfspaces

$$
\mathcal{F}_{Q}:=\{(a, b) \in \mathbf{E} \times \mathbf{R}:\langle a, x\rangle \leq b \quad \text { for all } x \in Q\}
$$

Then equality holds:

$$
\begin{equation*}
\operatorname{cl} \operatorname{conv}(Q)=\bigcap_{(a, b) \in \mathcal{F}_{Q}}\{x \in \mathbf{E}:\langle a, x\rangle \leq b\} \tag{1}
\end{equation*}
$$

Cones and Convex Cones

A set $K \subseteq \mathbf{E}$ is called a cone if the inclusion $\lambda K \subset K$ holds for any $\lambda \geq 0$.

In \mathbf{R}^{2}, the union of the x and y axes is a cone:

$$
\{(x, 0) \mid x \in \mathbf{R}\} \cup\{(0, y) \mid y \in \mathbf{R}\}
$$

\mathbf{R}_{+}^{n} and \mathbf{S}_{+}^{n} are cones.

Theorem: A cone $K \subset \mathbf{E}$ is convex if and only if $K=K+K$.

Proposition: If $\subset \mathbf{E}$ is a convex cone, then aff $K=K-K$.

Cones and Polarity

The polar cone of a cone $K \subset \mathbf{E}$ is the set

$$
K^{\circ}:=\{v \in \mathbf{E}:\langle v, x\rangle \leq 0 \text { for all } x \in K\} .
$$

Figure: Polar cone

Cones and Polarity

The polar cone of a cone $K \subset \mathbf{E}$ is the set

$$
K^{\circ}:=\{v \in \mathbf{E}:\langle v, x\rangle \leq 0 \text { for all } x \in K\} .
$$

Figure: Polar cone
Polarity generalizes the notion of perpendicular subspaces: if S is a subspace, then $S^{\circ}=S^{\perp}$.

Cones and Polarity

The polar cone of a cone $K \subset \mathbf{E}$ is the set

$$
K^{\circ}:=\{v \in \mathbf{E}:\langle v, x\rangle \leq 0 \text { for all } x \in K\} .
$$

Figure: Polar cone
Polarity generalizes the notion of perpendicular subspaces: if S is a subspace, then $S^{\circ}=S^{\perp}$.

Theorem: [The Moreau Decomposition] Let $K \subset \mathbf{E}$ be a non-empty closed convex cone. Then for every $y \in \mathbf{E}$ there exists a unique pair $y_{1} \in K$ and $y_{2} \in K^{\circ}$ such that $y=y_{1}+y_{2}$ with $\left\langle y_{1}, y_{2}\right\rangle=0$.

The Lineality of a Cone

Given a closed convex cone $K \subset \mathbf{E}$. The lineality of K, denoted $\operatorname{lin} L$, is the largest subspace contained in K.

The cone K is said to be pointed if $K \cap(-K)=\{0\}$, or equivalently, $\operatorname{lin} K=\{0\}$.

Show that $K^{\circ} \subset(\operatorname{lin} K)^{\perp}$.

Properties of the Polar

- For any nonempty cone $K \subset \mathbf{E},\left(K^{\circ}\right)^{\circ}=\operatorname{cl} \operatorname{conv}(K)$.
- For any $\mathcal{A} \in \mathbf{L}[\mathbf{E}, \mathbf{Y}]$ and any nonempty cone $K \subset \mathbf{Y}$,

$$
(\mathcal{A} K)^{\circ}=\left(\mathcal{A}^{*}\right)^{-1} K^{\circ} .
$$

- For any two nonempty cones $K_{1}, K_{2} \subset \mathbf{E},\left(K_{1}+K_{2}\right)^{\circ}=K_{1}^{\circ} \cap K_{2}^{\circ}$.
- Let $Q \subset \mathbf{E}$. We define the polar of Q to be the set

$$
Q^{\circ}:=\{z \mid\langle z, x\rangle \leq 1 \forall x \in Q\} .
$$

It is easy to see that if Q is a cone, this notion of polar coincides with cone polarity.

- For any nonempty $Q \subset \mathbf{E},\left(Q^{\circ}\right)^{\circ}=\operatorname{cl} \operatorname{conv}(Q \cup\{0\})$.
- If \mathbb{B}_{ρ} is the closed unit ball for some norm ρ, then $\mathbb{B}_{\rho}^{\circ}$ is the closed unit ball for its dual norm ρ^{*}, i.e. $\mathbb{B}_{\rho^{*}}=\mathbb{B}_{\rho}^{\circ}$.

Visualizing the Polar of a Convex Set

Let $0 \in Q \subset \mathbf{E}$ and let K be the cone generated by $Q \times\{1\} \subset \mathbf{E} \times \mathbf{R}$, that is

$$
K=\{(\lambda x, \lambda) \in \mathbf{E} \times \mathbf{R}: x \in Q, \lambda \geq 0\} .
$$

Since Q contains the origin, the polar cone K° is contained in $\mathbf{E} \times \mathbf{R}_{-}$. Then

$$
Q^{\circ}:=\left\{x \in \mathbf{E}:(x,-1) \in K^{\circ}\right\}
$$

The Tangent Cone

The tangent cone to a set $Q \subset \mathbf{E}$ at a point $\bar{x} \in Q$ is the set

$$
T_{Q}(\bar{x}):=\left\{\lim _{i \rightarrow \infty} \tau_{i}^{-1}\left(x_{i}-\bar{x}\right): x_{i} \rightarrow \bar{x} \text { in } Q, \tau_{i} \searrow 0\right\}
$$

The Tangent Cone

The tangent cone to a set $Q \subset \mathbf{E}$ at a point $\bar{x} \in Q$ is the set

$$
T_{Q}(\bar{x}):=\left\{\lim _{i \rightarrow \infty} \tau_{i}^{-1}\left(x_{i}-\bar{x}\right): x_{i} \rightarrow \bar{x} \text { in } Q, \tau_{i} \searrow 0\right\}
$$

Proposition: If $Q \subset \mathbf{E}$ is convex, then

$$
T_{Q}(\bar{x})=\operatorname{cl} \mathbf{R}_{+}(Q-\bar{x}) \quad \forall x \in Q
$$

The Tangent Cone

The tangent cone to a set $Q \subset \mathbf{E}$ at a point $\bar{x} \in Q$ is the set

$$
T_{Q}(\bar{x}):=\left\{\lim _{i \rightarrow \infty} \tau_{i}^{-1}\left(x_{i}-\bar{x}\right): x_{i} \rightarrow \bar{x} \text { in } Q, \tau_{i} \searrow 0\right\} .
$$

Proposition: If $Q \subset \mathbf{E}$ is convex, then

$$
T_{Q}(\bar{x})=\operatorname{cl} \mathbf{R}_{+}(Q-\bar{x}) \quad \forall x \in Q
$$

Corollary: If $Q \subset \mathbf{E}$ is polyhedral convex, then

$$
T_{Q}(\bar{x})=\mathbf{R}_{+}(Q-\bar{x}) \quad \forall \bar{x} \in Q
$$

The Normal Cone

The normal cone to a set $Q \subset \mathbf{E}$ at a point $\bar{x} \in Q$ is the set

$$
N_{Q}(\bar{x}):=\{v \in \mathbf{E}:\langle v, x-\bar{x}\rangle \leq o(\|x-\bar{x}\|) \quad \text { as } x \rightarrow \bar{x} \text { in } Q\},
$$

i.e., $v \in N_{Q}(\bar{x})$ if and only if

$$
\limsup _{x \rightarrow \bar{x}}^{Q} \frac{\langle v, x-\bar{x}\rangle}{\|x-\bar{x}\|} \leq 0
$$

where the notation $x \xrightarrow{Q} \bar{x}$ means that x tends to \bar{x} in Q.

The Normal Cone

The normal cone to a set $Q \subset \mathbf{E}$ at a point $\bar{x} \in Q$ is the set

$$
N_{Q}(\bar{x}):=\{v \in \mathbf{E}:\langle v, x-\bar{x}\rangle \leq o(\|x-\bar{x}\|) \quad \text { as } x \rightarrow \bar{x} \text { in } Q\},
$$

i.e., $v \in N_{Q}(\bar{x})$ if and only if

$$
\limsup _{x \rightarrow \bar{x}}^{Q_{\bar{x}}} \frac{\langle v, x-\bar{x}\rangle}{\|x-\bar{x}\|} \leq 0
$$

where the notation $x \xrightarrow{Q} \bar{x}$ means that x tends to \bar{x} in Q.

Figure: Illustration of the tangent and normal cones for nonconvex sets.

$N_{Q}(\bar{x})=\left(T_{Q}(\bar{x})\right)^{\circ}$

Lemma: For any set $Q \subset \mathbf{E}$ and a point $\bar{x} \in Q$, the polarity relationship holds:

$$
N_{Q}(\bar{x})=\left(T_{Q}(\bar{x})\right)^{\circ} .
$$

$$
N_{Q}(\bar{x})=\left(T_{Q}(\bar{x})\right)^{\circ}
$$

Lemma: For any set $Q \subset \mathbf{E}$ and a point $\bar{x} \in Q$, the polarity relationship holds:

$$
N_{Q}(\bar{x})=\left(T_{Q}(\bar{x})\right)^{\circ} .
$$

Corrolary: If $Q \subset \mathbf{E}$ is convex, then

$$
N_{Q}(\bar{x})=\{z \mid\langle z, x-b x\rangle \leq 0 \forall x \in Q\} .
$$

$$
N_{Q}(\bar{x})=\left(T_{Q}(\bar{x})\right)^{\circ}
$$

Lemma: For any set $Q \subset \mathbf{E}$ and a point $\bar{x} \in Q$, the polarity relationship holds:

$$
N_{Q}(\bar{x})=\left(T_{Q}(\bar{x})\right)^{\circ} .
$$

Corrolary: If $Q \subset \mathbf{E}$ is convex, then

$$
N_{Q}(\bar{x})=\{z \mid\langle z, x-b x\rangle \leq 0 \forall x \in Q\} .
$$

Corrolary: Let $Q \subset \mathbf{E}$ be convex with $\bar{x} \in Q$. Then $v \in N_{Q}(\bar{x})$ if and only if $\bar{x}=\operatorname{proj}_{Q}(\bar{x}+\lambda v)$ for some (or all) $\lambda>0$.

$$
N_{Q}(\bar{x})=\left(T_{Q}(\bar{x})\right)^{\circ}
$$

Lemma: For any set $Q \subset \mathbf{E}$ and a point $\bar{x} \in Q$, the polarity relationship holds:

$$
N_{Q}(\bar{x})=\left(T_{Q}(\bar{x})\right)^{\circ} .
$$

Corrolary: If $Q \subset \mathbf{E}$ is convex, then

$$
N_{Q}(\bar{x})=\{z \mid\langle z, x-b x\rangle \leq 0 \forall x \in Q\} .
$$

Corrolary: Let $Q \subset \mathbf{E}$ be convex with $\bar{x} \in Q$. Then $v \in N_{Q}(\bar{x})$ if and only if $\bar{x}=\operatorname{proj}_{Q}(\bar{x}+\lambda v)$ for some (or all) $\lambda>0$.

Corrolary: Let $Q \subset \mathbf{E}$ be convex with $\bar{x} \in Q$. Then $v \in N_{Q}(\bar{x})$ if and only if $\bar{x} \in \operatorname{argmax}_{x \in Q}\langle v, x\rangle$.

