
Convex Geometry



Convex Sets

A set C ⊂ E is said to be convex if

x, y ∈ C and λ ∈ [0, 1] =⇒ (1− λ)x+ λy ∈ C.

That is, C contains all line segments connecting points in C.

Examples:

– Subspaces and affine sets

– Half spaces {x | 〈a, x〉 ≤ β } for all a ∈ E \ {0} and β ∈ R.

– The unit ball B := {x | ‖x‖ ≤ 1} and intr (B).

– The unit simplex
∆n := {λ ∈ Rn :

∑n
i=1 λi = 1, λ ≥ 0} .
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Convexity Preserving Operations

Let A ∈ L(E,Y). If C1, C2 ⊂ E and K ⊂ Y are all convex, then
so are the sets

– Intersection: C1 ∩ C2

– Scalar Multiplication: R+K and λK ∀λ ∈ R

– Addition: C1 + C2

– Linear Image/Preimage: AC1 and A−1K

– Products: C1 ×K

– Closure and Interior: clK and intrK

– Non-negative sums: Let Q ⊂ E be convex and λ1, λ2 ∈ R+.
Then

λ1Q+ λ2Q = (λ1 + λ2)Q.



Polyhedra and Spectrahedra

A convex polyhedron is any set of the form

Q = {x ∈ Rn : Ax ≥ c},

for some A ∈ Rm×n and c ∈ Rm.
Equivalently, we may write Q as an intersection of finitely many
half-spaces or as the preimage A−1(c+ Rn

+). Hence, a convex
polyhedron is convex.

More generally, a spectrahedron is any set of the form

Q = {x ∈ Rn : x1A1 + x2A2 + . . .+ xnAn � C},

for some matrices Ai ∈ Sm and C ∈ Sn. Equivalently, we may
write Q as the preimage A−1(C + Sn+) for the linear map
A(x) =

∑n
i=1 xiAi.
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Spectrahedra
There are many more spectrahedra than polyhedra. For
example, the elliptope is given by(x, y, z) ∈ R3 :

1 x y
x 1 z
y z 1

 � 0



Figure: The elliptope



Convex Hulls and Convex Combinations

Convex Combinations: A point x ∈ E is a convex
combination of points x1, . . . , xk ∈ E if it can be written as
x =

∑k
i=1 λixi for some λ ∈ ∆k.

A convex combination x =
∑k

i=1 λixi can be viewed as a
weighted average of the points x1, . . . , xk with λ1, . . . , λk as the
corresponding weights.

Given a set X ⊂ E, one can show that the set of all such convex
combinations of points in X,{

k∑
i=1

λixi | k ∈ N, λ ∈ ∆k, x1, . . . , xk ∈ X

}
,

equals the convex hull of the set X, conv(X), i.e. the
intersection of all convex sets containing X. Here
N := {1, 2, . . . } is the set of natural numbers.



Carathéodory’s Theorem
Let Q ⊂ E, where E is an n-dimensional Euclidean space. Then each
point x ∈ conv(Q) can be written as a convex combination of n+ 1 or
fewer points in Q.

Proof: Let x ∈ conv(Q).
1) WLOG
k := inf

{
k ∈ N

∣∣∣x =
∑k
i=1 λixi, x1, . . . , xk ∈ Q, λ ∈ ∆k

}
> n+ 1.

2) ∃x1, . . . , xk ∈ Q, λ ∈ ∆k s.t. x =
∑k
i=1 λixi and λ > 0.

3) Since k > n+ 1, ∃µi, i = 2, . . . , k not all 0 s.t.
{µ2, . . . , µk} : 0 =

∑k
i=2 µi(xi − x1) = (

∑k
i=2 µixi)− (

∑k
i=2 µi)x1.

4) µ1 := −
∑k
i=2 µi =⇒

∑k
i=1 µixi = 0,

∑k
i=1 µi = 0, µ 6∈ Rk

−.

5) ∀α ∈ R, x =
∑k
i=1(λi − αµi)xi and

∑k
i=1(λi − αµi) = 1 .

6) ᾱ := inf
{
α
∣∣λi − αµi ≥ 0, i = 1, . . . k

}
> 0 and WLOG

λk − ᾱµk = 0 so x =
∑k−1
i=1 λixi, λ ∈ ∆k−1, where

λi := λi − αµi, i = 1, . . . , k − 1. Contradiction.
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λk − ᾱµk = 0 so x =
∑k−1
i=1 λixi, λ ∈ ∆k−1, where

λi := λi − αµi, i = 1, . . . , k − 1. Contradiction.



Carathéodory’s Theorem
Let Q ⊂ E, where E is an n-dimensional Euclidean space. Then each
point x ∈ conv(Q) can be written as a convex combination of n+ 1 or
fewer points in Q.

Proof: Let x ∈ conv(Q).
1) WLOG
k := inf

{
k ∈ N

∣∣∣x =
∑k
i=1 λixi, x1, . . . , xk ∈ Q, λ ∈ ∆k

}
> n+ 1.

2) ∃x1, . . . , xk ∈ Q, λ ∈ ∆k s.t. x =
∑k
i=1 λixi and λ > 0.

3) Since k > n+ 1, ∃µi, i = 2, . . . , k not all 0 s.t.
{µ2, . . . , µk} : 0 =

∑k
i=2 µi(xi − x1) = (

∑k
i=2 µixi)− (

∑k
i=2 µi)x1.

4) µ1 := −
∑k
i=2 µi =⇒

∑k
i=1 µixi = 0,

∑k
i=1 µi = 0, µ 6∈ Rk

−.

5) ∀α ∈ R, x =
∑k
i=1(λi − αµi)xi and

∑k
i=1(λi − αµi) = 1 .
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Relative interior and Boundary

The relative interior of a set Q ⊂ E, denoted riQ, is the interior
of Q relative to aff (Q). That is,

riQ := {x ∈ Q : ∃ε > 0 s.t. Bε(x) ∩ aff Q ⊆ Q}.

The relative boundary of Q is defined by rbQ := (clQ) \ (riQ).

The subspace parallel to aff Q is denoted parQ. Observe that
since parQ = aff Q− x for all x ∈ aff Q, it easily follows that

Bε(x) ∩ aff Q = x+Bε(0) ∩ parQ
for all x ∈ aff Q.

[Q={x}] =⇒ [aff Q={x}, parQ={0}, Q=riQ and rbQ=∅]
[Q=E] =⇒ [aff Q=E, parQ=E, Q=riQ and rbQ=∅]

Theorem: For any nonempty convex set Q ⊂ E, the relative
interior riQ is nonempty.
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Relative interior and Boundary

Proof: WLOG 0 ∈ Q so aff Q = span (Q) = parQ is a
subspace, set k = dim(aff Q).

Let d1, . . . , dk be a basis for aff Q and define A ∈ L(Rk,E) by
Aλ :=

∑k
i=1 λidi so that aff Q = ranA.

Consequently, A maps the open set
Ω :=

{
λ ∈ Rd

++

∣∣∣∑k
i=1 λi < 1

}
onto a subset of aff Q that is

open relative to the subspace aff Q (A is a linear isomorphism
between Rk and aff Q). Consequently, AΩ is open relative to
aff Q.

Observe that ∀λ ∈ Ω, Aλ = (
∑k

i=1 λidi) + (1−
∑k

i=1 λi) · 0 ∈ Q
by convexity. Hence AΩ ⊂ Q implying AΩ ⊂ riQ.



Access Theorem for Convex Sets
Theorem: Let Q ⊂ E be convex. Then x ∈ riQ if and only if
∀ y ∈ clQ, [x, y) ⊂ riQ.

Proof:(⇐) Trivial. (⇒) Let y ∈ clQ, x ∈ riQ, and ε > 0 be
such that Bε(x) ∩ aff Q ⊂ Q. Then, for x ∈ riQ and λ ∈ (0, 1],
convexity tells us that

Q ⊃ λ(Bε(x) ∩ aff Q) + (1− λ)y

= λ(x+Bε(0) ∩ parQ) + (1− λ)y

= λx+ (1− λ)y + λBε(0) ∩ parQ

= B(λε)((1− λ)x+ λy) ∩ aff Q. pic

Corollaries:
1) For any nonempty convex set Q in E,

cl (riQ) = clQ and ri (clQ)) = riQ.

2) x ∈ riQ ⇐⇒ ∀ y ∈ Q ∃λ > 1 s.t. y + λ(x− y) ∈ Q ∀λ ∈ (0, λ].

3) intr (Q+ [parQ]⊥) = riQ+ [parQ]⊥ .
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Linear Images of the Relative Interior

Theorem: Let Q ⊂ E be convex and A ∈ L[E,Y]. Then
ri (AQ) = A(riQ) and cl (AQ) ⊃ A(clQ).

Proof: The closure inclusion follows from continuity.
Next observe that

clA(riQ) ⊃ A(cl riQ) = A(clQ) ⊃ AQ ⊃ A(riQ) .
Hence, AQ and A(riQ)have the same closure and relative
interior which tells us that ri (AQ) ⊂ A(riQ). For the reverse
inclusion, let z ∈ A(riQ) and y ∈ riQ such that z = Ay. Then
for all w ∈ Q, [y, w) ⊂ Q which implies that for all
x ∈ AQ, [Ay, x) ⊂ AQ. That is, z = Ay ∈ riAQ which
establishes the reverse inclusion.



The Relative Interior of the Sum

Let Q1, Q2 ⊂ E be convex and α, β ∈ R, then

ri (αQ1 + βQ2) = α riQ1 + β riQ2 .

Proof: Let A ∈ L[E×E,E] be given by A(x, y) := αx+ βy.
Then

ri (αQ1 + βQ2) = riA(Q1 ×Q2)

= A ri (Q1 ×Q2)

why?
= A(riQ1 × riQ2)

= α riQ1 + β riQ2 .



Separation Theorems

Separation theorems allow us to analyze the geometry of a
convex set Q ⊂ X by studying how the elements of the dual
space X∗ act on Q. This is the essence of duality theory which
provides the foundation of convex analysis.

In a Euclidean space, separation theorems can built on the
notion of the distance to a set. Given a set X ⊂ E, we define
the distance to X by

dist (z |X ) := inf
x∈X
‖x− z‖ (= dX(z)).

If X is closed and nonempty, then, for all z ∈ E, there is a
x ∈ X such that ‖z − x‖ = dist (z |X ). We call the set of such
closest points in X to z the projection of z onto X and write

projX(y) := {x ∈ X : dQ(y) = ‖x− y‖}.



The Projection Theorem for Convex Sets

For any nonempty, closed, convex set Q ⊂ E, the set projQ(y) is a
singleton. Moreover, the closest point z ∈ Q to y is characterized by
the property:

〈y − z, x− z〉 ≤ 0 for all x ∈ Q. (♦)

Proof: If z ∈ Q satisfies (♦), then, for all x ∈ Q,
‖y − x‖2 = ‖y − z‖2 + 2〈y − z, z − x〉+ ‖z − x‖2 ≥ ‖y − z‖2

with equality if and only if z = x. Hence, (♦) implies z is the unique
element of projQ(y).

It remains to show that any z ∈ projQ(y) must satisfy (♦). Define
ϕ(x) := 1

2 ‖y − x‖
2 so that ∇ϕ(x) = x− y. If z ∈ projQ(y), then, for

all x ∈ Q,
ϕ′(z;x− z) = limt↓0

ϕ(z+t(x−z))−ϕ(z)
t ≥ 0 as z + t(x− z) ∈ Q, t ∈ [0, 1].

So for all x ∈ Q, 0 ≤ ϕ′(z;x− z) = 〈∇ϕ(z), x− z〉 = 〈z − y, x− z〉,
which is (♦).



Strict Separation Theorem
Consider a nonempty, closed, convex set Q ⊂ E and a point
y /∈ Q. Then there exists a nonzero vector z ∈ E and a number
β ∈ R satisfying

〈z, x〉 ≤ β < 〈z, y〉 for all x ∈ Q.

Proof: Fix a point y /∈ Q and define the nonzero vector
z := y − projQ(y). Then for any x ∈ Q, the condition

〈z, x− projQ(y)〉 ≤ 0 for all x ∈ Q

yields

〈z, x〉 ≤ 〈z, projQ(y)〉 = 〈z, y〉+
〈
z, projQ(y)− y

〉
= 〈z, y〉 − ‖z‖2 < 〈z, y〉,

as claimed, where β := 〈z, projQ(y)〉.
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Supporting Hyperplanes to Points on the Relative
Boundary

Theorem: Let Q ⊂ E be convex with x̄ ∈ rbQ. Then there
exists z ∈ E such that
〈z, x〉 ≤ 〈z, x̄〉 ∀x ∈ clQ and 〈z, x〉 < 〈z, x̄〉 ∀x ∈ riQ .

Proof: Set Q̂ := Q+ [parQ]⊥. Then
intr Q̂ = riQ+ [parQ]⊥ = ri Q̂. Since x̄ ∈ rbQ, Q is not a single
point and not all of E so Q̂ 6= E. Hence, there exists
{xk} ⊂ E \ cl Q̂ with xk → x. Let {zk} ⊂ E be such that
‖zk‖ = 1 and 〈zk, y〉 ≤ 〈zk, xk〉 for all y ∈ Q̂, k ∈ N.
WLOG (why?) there is a z ∈ E with ‖z‖ = 1 such that zk → z.
Taking the limit, we have
〈z, y〉 ≤ 〈z, xk〉 ∀ y ∈ cl Q̂ and 〈z, y〉 < 〈z, xk〉 ∀ y ∈ intr Q̂ .

Since Q ⊂ Q̂ and riQ ⊂ intrQ, the result follows.



Dual Description of Convex Sets

Theorem: Given a nonempty set Q ⊂ E, define the set of
halfspaces

FQ := {(a, b) ∈ E×R : 〈a, x〉 ≤ b for all x ∈ Q} .

Then equality holds:

cl conv(Q) =
⋂

(a,b)∈FQ

{x ∈ E : 〈a, x〉 ≤ b} . (1)



Cones and Convex Cones

A set K ⊆ E is called a cone if the inclusion λK ⊂ K holds for
any λ ≥ 0.

In R2, the union of the x and y axes is a cone:
{(x, 0) |x ∈ R} ∪ {(0, y) | y ∈ R}.

Rn
+ and Sn+ are cones.

Theorem: A cone K ⊂ E is convex if and only if K = K +K.

Proposition: If ⊂ E is a convex cone, then aff K = K −K.



Cones and Polarity

The polar cone of a cone K ⊂ E is the set

K◦ := {v ∈ E : 〈v, x〉 ≤ 0 for all x ∈ K}.

K

K◦

Figure: Polar cone

Polarity generalizes the notion of perpendicular subspaces: if S is a
subspace, then S◦ = S⊥.

Theorem: [The Moreau Decomposition] Let K ⊂ E be a non-empty
closed convex cone. Then for every y ∈ E there exists a unique pair
y1 ∈ K and y2 ∈ K◦ such that y = y1 + y2 with 〈y1, y2〉 = 0.
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The Lineality of a Cone

Given a closed convex cone K ⊂ E. The lineality of K, denoted
linL, is the largest subspace contained in K.

The cone K is said to be pointed if K ∩ (−K) = {0}, or
equivalently, linK = {0}.

Show that K◦ ⊂ (linK)⊥.



Properties of the Polar

– For any nonempty cone K ⊂ E, (K◦)◦ = cl conv(K).

– For any A ∈ L[E,Y] and any nonempty cone K ⊂ Y,
(AK)◦ = (A∗)−1K◦.

– For any two nonempty cones K1,K2 ⊂ E, (K1 +K2)◦ = K◦1 ∩K◦2 .

– Let Q ⊂ E. We define the polar of Q to be the set
Q◦ := {z | 〈z, x〉 ≤ 1 ∀ x ∈ Q}.

It is easy to see that if Q is a cone, this notion of polar coincides with
cone polarity.

– For any nonempty Q ⊂ E, (Q◦)◦ = cl conv(Q ∪ {0}).

– If Bρ is the closed unit ball for some norm ρ, then B◦ρ is the closed
unit ball for its dual norm ρ∗, i.e. Bρ∗ = B◦ρ.



Visualizing the Polar of a Convex Set
Let 0 ∈ Q ⊂ E and let K be the cone generated by
Q× {1} ⊂ E×R, that is

K = {(λx, λ) ∈ E×R : x ∈ Q,λ ≥ 0}.
Since Q contains the origin, the polar cone K◦ is contained in
E×R−. Then

Q◦ := {x ∈ E : (x,−1) ∈ K◦}.

(a) Q = {x : ‖x‖1 ≤ 1} (b) Homogenization (c)
Q◦ = {x : ‖x‖∞ ≤ 1}



The Tangent Cone

The tangent cone to a set Q ⊂ E at a point x̄ ∈ Q is the set

TQ(x̄) :=

{
lim
i→∞

τ−1
i (xi − x̄) : xi → x̄ in Q, τi ↘ 0

}
.

Proposition: If Q ⊂ E is convex, then

TQ(x̄) = cl R+(Q− x̄) ∀x ∈ Q.

Corollary: If Q ⊂ E is polyhedral convex, then

TQ(x̄) = R+(Q− x̄) ∀ x̄ ∈ Q.
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The Normal Cone
The normal cone to a set Q ⊂ E at a point x̄ ∈ Q is the set

NQ(x̄) := {v ∈ E : 〈v, x− x̄〉 ≤ o(‖x− x̄‖) as x→ x̄ in Q},

i.e., v ∈ NQ(x̄) if and only if

lim sup

x
Q→x̄

〈v, x− x̄〉
‖x− x̄‖

≤ 0,

where the notation x Q→ x̄ means that x tends to x̄ in Q.

Q
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TQ(x̄)

Figure: Illustration of the tangent and normal cones for nonconvex
sets.
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NQ(x̄) = (TQ(x̄))◦

Lemma: For any set Q ⊂ E and a point x̄ ∈ Q, the polarity
relationship holds:

NQ(x̄) = (TQ(x̄))◦.

Corrolary: If Q ⊂ E is convex, then
NQ(x̄) = {z | 〈z, x− bx〉 ≤ 0 ∀x ∈ Q}.

Corrolary: Let Q ⊂ E be convex with x̄ ∈ Q. Then v ∈ NQ(x̄)
if and only if x̄ = projQ(x̄+ λv) for some (or all) λ > 0.

Corrolary: Let Q ⊂ E be convex with x̄ ∈ Q. Then v ∈ NQ(x̄)
if and only if x̄ ∈ argmaxx∈Q 〈v, x〉.
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