Convex Geometry

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Convex Sets

A set $C \subset \mathbf{E}$ is said to be convex if

$$x, y \in C \text{ and } \lambda \in [0, 1] \implies (1 - \lambda)x + \lambda y \in C.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

That is, C contains all line segments connecting points in C.

Convex Sets

A set $C \subset \mathbf{E}$ is said to be convex if

$$x, y \in C \text{ and } \lambda \in [0, 1] \implies (1 - \lambda)x + \lambda y \in C.$$

That is, C contains all line segments connecting points in C.

Examples:

- Subspaces and affine sets
- Half spaces $\{x \mid \langle a, x \rangle \leq \beta\}$ for all $a \in \mathbf{E} \setminus \{0\}$ and $\beta \in \mathbf{R}$.
- The unit ball $\mathbb{B} := \{x \mid ||x|| \le 1\}$ and intr (\mathbb{B}) .
- The unit simplex

$$\Delta_n := \left\{ \lambda \in \mathbf{R}^n : \sum_{i=1}^n \lambda_i = 1, \lambda \ge 0 \right\}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Convexity Preserving Operations

Let $\mathcal{A} \in \mathbf{L}(\mathbf{E}, \mathbf{Y})$. If $C_1, C_2 \subset \mathbf{E}$ and $K \subset \mathbf{Y}$ are all convex, then so are the sets

- Intersection: $C_1 \cap C_2$
- Scalar Multiplication: $\mathbf{R}_+ K$ and $\lambda K \quad \forall \, \lambda \in \mathbf{R}$
- Addition: $C_1 + C_2$
- Linear Image/Preimage: $\mathcal{A}C_1$ and $\mathcal{A}^{-1}K$
- **Products:** $C_1 \times K$
- Closure and Interior: $\operatorname{cl} K$ and $\operatorname{intr} K$

- Non-negative sums: Let $Q \subset \mathbf{E}$ be convex and $\lambda_1, \lambda_2 \in \mathbf{R}_+$. Then

$$\lambda_1 Q + \lambda_2 Q = (\lambda_1 + \lambda_2) Q.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Polyhedra and Spectrahedra

A convex *polyhedron* is any set of the form

$$Q = \{ x \in \mathbf{R}^n : Ax \ge c \},\$$

for some $A \in \mathbf{R}^{m \times n}$ and $c \in \mathbf{R}^m$. Equivalently, we may write Q as an intersection of finitely many half-spaces or as the preimage $A^{-1}(c + \mathbf{R}^n_+)$. Hence, a convex polyhedron is convex.

うして ふゆ く は く は く む く し く

Polyhedra and Spectrahedra

A convex *polyhedron* is any set of the form

$$Q = \{ x \in \mathbf{R}^n : Ax \ge c \},\$$

for some $A \in \mathbf{R}^{m \times n}$ and $c \in \mathbf{R}^m$. Equivalently, we may write Q as an intersection of finitely many half-spaces or as the preimage $A^{-1}(c + \mathbf{R}^n_+)$. Hence, a convex polyhedron is convex.

More generally, a *spectrahedron* is any set of the form

$$Q = \{ x \in \mathbf{R}^n : x_1 A_1 + x_2 A_2 + \ldots + x_n A_n \succeq C \},\$$

for some matrices $A_i \in \mathbf{S}^m$ and $C \in \mathbf{S}^n$. Equivalently, we may write Q as the preimage $\mathcal{A}^{-1}(C + \mathbf{S}^n_+)$ for the linear map $\mathcal{A}(x) = \sum_{i=1}^n x_i A_i$.

Spectrahedra

There are many more spectrahedra than polyhedra. For example, the elliptope is given by

$$\left\{ (x, y, z) \in \mathbf{R}^3 : \begin{pmatrix} 1 & x & y \\ x & 1 & z \\ y & z & 1 \end{pmatrix} \succeq 0 \right\}$$

Figure: The elliptope

Convex Hulls and Convex Combinations

Convex Combinations: A point $x \in \mathbf{E}$ is a *convex* combination of points $x_1, \ldots, x_k \in \mathbf{E}$ if it can be written as $x = \sum_{i=1}^k \lambda_i x_i$ for some $\lambda \in \Delta_k$.

A convex combination $x = \sum_{i=1}^{k} \lambda_i x_i$ can be viewed as a weighted average of the points x_1, \ldots, x_k with $\lambda_1, \ldots, \lambda_k$ as the corresponding weights.

Given a set $X \subset \mathbf{E}$, one can show that the set of all such convex combinations of points in X,

$$\left\{\sum_{i=1}^k \lambda_i x_i \, | \, k \in \mathbb{N}, \ \lambda \in \Delta_k, x_1, \dots, x_k \in X\right\},\$$

equals the convex hull of the set X, $\operatorname{conv}(X)$, i.e. the intersection of all convex sets containing X. Here $\mathbb{N} := \{1, 2, ...\}$ is the set of *natural numbers*.

Let $Q \subset \mathbf{E}$, where **E** is an n-dimensional Euclidean space. Then each point $x \in \operatorname{conv}(Q)$ can be written as a convex combination of n + 1 or fewer points in Q.

Let $Q \subset \mathbf{E}$, where \mathbf{E} is an n-dimensional Euclidean space. Then each point $x \in \operatorname{conv}(Q)$ can be written as a convex combination of n + 1 or fewer points in Q.

Proof: Let $x \in \operatorname{conv}(Q)$. 1) WLOG $\overline{k} := \inf \left\{ k \in \mathbb{N} \mid x = \sum_{i=1}^{k} \lambda_i x_i, \ x_1, \dots, x_k \in Q, \ \lambda \in \Delta_k \right\} > n+1.$

うして ふゆ く 山 マ ふ し マ う く し マ

Let $Q \subset \mathbf{E}$, where \mathbf{E} is an n-dimensional Euclidean space. Then each point $x \in \operatorname{conv}(Q)$ can be written as a convex combination of n + 1 or fewer points in Q.

Proof: Let
$$x \in \operatorname{conv}(Q)$$
.
1) WLOG
 $\overline{k} := \inf \left\{ k \in \mathbb{N} \mid x = \sum_{i=1}^{k} \lambda_i x_i, x_1, \dots, x_k \in Q, \lambda \in \Delta_k \right\} > n+1.$
2) $\exists x_1, \dots, x_{\overline{k}} \in Q, \lambda \in \Delta_{\overline{k}} \text{ s.t. } x = \sum_{i=1}^{\overline{k}} \lambda_i x_i \text{ and } \lambda > 0.$

Let $Q \subset \mathbf{E}$, where \mathbf{E} is an n-dimensional Euclidean space. Then each point $x \in \operatorname{conv}(Q)$ can be written as a convex combination of n + 1 or fewer points in Q.

Proof: Let
$$x \in \operatorname{conv}(Q)$$
.
1) WLOG
 $\overline{k} := \inf \left\{ k \in \mathbb{N} \mid x = \sum_{i=1}^{k} \lambda_i x_i, \ x_1, \dots, x_k \in Q, \ \lambda \in \Delta_k \right\} > n+1.$
2) $\exists x_1, \dots, x_{\overline{k}} \in Q, \ \lambda \in \Delta_{\overline{k}} \text{ s.t. } x = \sum_{i=1}^{\overline{k}} \lambda_i x_i \text{ and } \lambda > 0.$
3) Since $\overline{k} > n+1, \ \exists \mu_i, \ i = 2, \dots, \overline{k} \text{ not all } 0 \text{ s.t.}$
 $\{\mu_2, \dots, \mu_{\overline{k}}\} : 0 = \sum_{i=2}^{\overline{k}} \mu_i (x_i - x_1) = (\sum_{i=2}^{\overline{k}} \mu_i x_i) - (\sum_{i=2}^{\overline{k}} \mu_i) x_1.$

Let $Q \subset \mathbf{E}$, where \mathbf{E} is an n-dimensional Euclidean space. Then each point $x \in \operatorname{conv}(Q)$ can be written as a convex combination of n + 1 or fewer points in Q.

$$\begin{aligned} & \operatorname{Proof:} \ \operatorname{Let} \ x \in \operatorname{conv}(Q). \\ & 1) \ \operatorname{WLOG} \\ & \overline{k} := \inf \left\{ k \in \mathbb{N} \ \middle| \ x = \sum_{i=1}^{k} \lambda_i x_i, \ x_1, \dots, x_k \in Q, \ \lambda \in \Delta_k \right\} > n+1. \\ & 2) \ \exists \ x_1, \dots, x_{\overline{k}} \in Q, \ \lambda \in \Delta_{\overline{k}} \ \text{s.t.} \ x = \sum_{i=1}^{\overline{k}} \lambda_i x_i \ \text{and} \ \lambda > 0. \\ & 3) \ \operatorname{Since} \ \overline{k} > n+1, \ \exists \ \mu_i, \ i = 2, \dots, \overline{k} \ \text{not} \ \text{all} \ 0 \ \text{s.t.} \\ & \left\{ \mu_2, \dots, \mu_{\overline{k}} \right\} : \ 0 = \sum_{i=2}^{\overline{k}} \mu_i (x_i - x_1) = (\sum_{i=2}^{\overline{k}} \mu_i x_i) - (\sum_{i=2}^{\overline{k}} \mu_i) x_1. \\ & 4) \ \mu_1 := -\sum_{i=2}^{\overline{k}} \mu_i \implies \sum_{i=1}^{\overline{k}} \mu_i x_i = 0, \ \sum_{i=1}^{\overline{k}} \mu_i = 0, \ \mu \notin \mathbf{R}_{-}^{\overline{k}}. \end{aligned}$$

Let $Q \subset \mathbf{E}$, where \mathbf{E} is an n-dimensional Euclidean space. Then each point $x \in \operatorname{conv}(Q)$ can be written as a convex combination of n + 1 or fewer points in Q.

$$\begin{aligned} & \operatorname{Proof:} \text{ Let } x \in \operatorname{conv}(Q). \\ & 1) \text{ WLOG} \\ & \overline{k} := \inf \left\{ k \in \mathbb{N} \ \middle| \ x = \sum_{i=1}^{k} \lambda_i x_i, \ x_1, \dots, x_k \in Q, \ \lambda \in \Delta_k \right\} > n+1. \\ & 2) \ \exists x_1, \dots, x_{\overline{k}} \in Q, \ \lambda \in \Delta_{\overline{k}} \text{ s.t. } x = \sum_{i=1}^{\overline{k}} \lambda_i x_i \text{ and } \lambda > 0. \\ & 3) \text{ Since } \overline{k} > n+1, \ \exists \mu_i, \ i = 2, \dots, \overline{k} \text{ not all } 0 \text{ s.t.} \\ & \{\mu_2, \dots, \mu_{\overline{k}}\} : 0 = \sum_{i=2}^{\overline{k}} \mu_i (x_i - x_1) = (\sum_{i=2}^{\overline{k}} \mu_i x_i) - (\sum_{i=2}^{\overline{k}} \mu_i) x_1. \\ & 4) \ \mu_1 := -\sum_{i=2}^{\overline{k}} \mu_i \implies \sum_{i=1}^{\overline{k}} \mu_i x_i = 0, \ \sum_{i=1}^{\overline{k}} \mu_i = 0, \ \mu \notin \mathbf{R}_{-}^{\overline{k}}. \\ & 5) \ \forall \alpha \in \mathbf{R}, \ x = \sum_{i=1}^{\overline{k}} (\lambda_i - \alpha \mu_i) x_i \text{ and } \sum_{i=1}^{\overline{k}} (\lambda_i - \alpha \mu_i) = 1 . \end{aligned}$$

Let $Q \subset \mathbf{E}$, where \mathbf{E} is an n-dimensional Euclidean space. Then each point $x \in \operatorname{conv}(Q)$ can be written as a convex combination of n + 1 or fewer points in Q.

Proof: Let
$$x \in \operatorname{conv}(Q)$$
.
1) WLOG
 $\overline{k} := \inf \left\{ k \in \mathbb{N} \mid x = \sum_{i=1}^{k} \lambda_i x_i, \ x_1, \dots, x_k \in Q, \ \lambda \in \Delta_k \right\} > n+1.$
2) $\exists x_1, \dots, x_{\overline{k}} \in Q, \ \lambda \in \Delta_{\overline{k}} \text{ s.t. } x = \sum_{i=1}^{\overline{k}} \lambda_i x_i \text{ and } \lambda > 0.$
3) Since $\overline{k} > n+1, \ \exists \mu_i, \ i = 2, \dots, \overline{k} \text{ not all } 0 \text{ s.t.}$
 $\{\mu_2, \dots, \mu_{\overline{k}}\} : 0 = \sum_{i=2}^{\overline{k}} \mu_i (x_i - x_1) = (\sum_{i=2}^{\overline{k}} \mu_i x_i) - (\sum_{i=2}^{\overline{k}} \mu_i) x_1.$
4) $\mu_1 := -\sum_{i=2}^{\overline{k}} \mu_i \implies \sum_{i=1}^{\overline{k}} \mu_i x_i = 0, \ \sum_{i=1}^{\overline{k}} \mu_i = 0, \ \mu \notin \mathbf{R}_{-}^{\overline{k}}.$
5) $\forall \alpha \in \mathbf{R}, \ x = \sum_{i=1}^{\overline{k}} (\lambda_i - \alpha \mu_i) x_i \text{ and } \sum_{i=1}^{\overline{k}} (\lambda_i - \alpha \mu_i) = 1.$
6) $\overline{\alpha} := \inf \left\{ \alpha \mid \lambda_i - \alpha \mu_i \ge 0, \ i = 1, \dots, \overline{k} \right\} > 0 \text{ and WLOG}$
 $\lambda_{\overline{k}} - \overline{\alpha} \mu_{\overline{k}} = 0 \text{ so } x = \sum_{i=1}^{\overline{k} - 1} \overline{\lambda}_i x_i, \ \overline{\lambda} \in \Delta_{\overline{k} - 1}, \text{ where}$
 $\overline{\lambda}_i := \lambda_i - \alpha \mu_i, \ i = 1, \dots, \overline{k} - 1. \text{ Contradiction.}$

The *relative interior* of a set $Q \subset \mathbf{E}$, denoted ri Q, is the interior of Q relative to aff (Q). That is,

 $\operatorname{ri} Q := \{ x \in Q : \exists \epsilon > 0 \text{ s.t. } B_{\epsilon}(x) \cap \operatorname{aff} Q \subseteq Q \}.$

The *relative boundary* of Q is defined by $\operatorname{rb} Q := (\operatorname{cl} Q) \setminus (\operatorname{ri} Q)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

The *relative interior* of a set $Q \subset \mathbf{E}$, denoted ri Q, is the interior of Q relative to aff (Q). That is,

$$\operatorname{ri} Q := \{ x \in Q : \exists \epsilon > 0 \text{ s.t. } B_{\epsilon}(x) \cap \operatorname{aff} Q \subseteq Q \}.$$

The *relative boundary* of Q is defined by $\operatorname{rb} Q := (\operatorname{cl} Q) \setminus (\operatorname{ri} Q)$.

The subspace parallel to aff Q is denoted par Q. Observe that since par $Q = \operatorname{aff} Q - x$ for all $x \in \operatorname{aff} Q$, it easily follows that $B_{\epsilon}(x) \cap \operatorname{aff} Q = x + B_{\epsilon}(0) \cap \operatorname{par} Q$ for all $x \in \operatorname{aff} Q$.

うして ふゆ く 山 マ ふ し マ う く し マ

The *relative interior* of a set $Q \subset \mathbf{E}$, denoted ri Q, is the interior of Q relative to aff (Q). That is,

$$\operatorname{ri} Q := \{ x \in Q : \exists \epsilon > 0 \text{ s.t. } B_{\epsilon}(x) \cap \operatorname{aff} Q \subseteq Q \}.$$

The *relative boundary* of Q is defined by $\operatorname{rb} Q := (\operatorname{cl} Q) \setminus (\operatorname{ri} Q)$.

The subspace parallel to aff Q is denoted par Q. Observe that since par $Q = \operatorname{aff} Q - x$ for all $x \in \operatorname{aff} Q$, it easily follows that $B_{\epsilon}(x) \cap \operatorname{aff} Q = x + B_{\epsilon}(0) \cap \operatorname{par} Q$ for all $x \in \operatorname{aff} Q$.

 $[Q = \{x\}] \Longrightarrow \text{ [aff } Q = \{x\}, \text{ par } Q = \{0\}, \text{ } Q = \operatorname{ri} Q \text{ and } \operatorname{rb} Q = \emptyset]$

The relative interior of a set $Q \subset \mathbf{E}$, denoted ri Q, is the interior of Q relative to aff (Q). That is,

$$\operatorname{ri} Q := \{ x \in Q : \exists \epsilon > 0 \text{ s.t. } B_{\epsilon}(x) \cap \operatorname{aff} Q \subseteq Q \}.$$

The *relative boundary* of Q is defined by $\operatorname{rb} Q := (\operatorname{cl} Q) \setminus (\operatorname{ri} Q)$.

The subspace parallel to aff Q is denoted par Q. Observe that since par $Q = \operatorname{aff} Q - x$ for all $x \in \operatorname{aff} Q$, it easily follows that $B_{\epsilon}(x) \cap \operatorname{aff} Q = x + B_{\epsilon}(0) \cap \operatorname{par} Q$ for all $x \in \operatorname{aff} Q$.

$$\begin{aligned} [Q = \{x\}] \implies [\operatorname{aff} Q = \{x\}, \quad \operatorname{par} Q = \{0\}, \quad Q = \operatorname{ri} Q \quad \text{and} \quad \operatorname{rb} Q = \emptyset] \\ [Q = \mathbf{E}] \implies [\operatorname{aff} Q = \mathbf{E}, \quad \operatorname{par} Q = \mathbf{E}, \quad Q = \operatorname{ri} Q \quad \text{and} \quad \operatorname{rb} Q = \emptyset] \end{aligned}$$

うして ふゆ く 山 マ ふ し マ う く し マ

The *relative interior* of a set $Q \subset \mathbf{E}$, denoted ri Q, is the interior of Q relative to aff (Q). That is,

$$\operatorname{ri} Q := \{ x \in Q : \exists \epsilon > 0 \text{ s.t. } B_{\epsilon}(x) \cap \operatorname{aff} Q \subseteq Q \}.$$

The *relative boundary* of Q is defined by $\operatorname{rb} Q := (\operatorname{cl} Q) \setminus (\operatorname{ri} Q)$.

The subspace parallel to aff Q is denoted par Q. Observe that since par $Q = \operatorname{aff} Q - x$ for all $x \in \operatorname{aff} Q$, it easily follows that $B_{\epsilon}(x) \cap \operatorname{aff} Q = x + B_{\epsilon}(0) \cap \operatorname{par} Q$ for all $x \in \operatorname{aff} Q$.

$$\begin{aligned} [Q = \{x\}] \implies [\operatorname{aff} Q = \{x\}, \quad \operatorname{par} Q = \{0\}, \quad Q = \operatorname{ri} Q \quad \text{and} \quad \operatorname{rb} Q = \emptyset] \\ [Q = \mathbf{E}] \implies [\operatorname{aff} Q = \mathbf{E}, \quad \operatorname{par} Q = \mathbf{E}, \quad Q = \operatorname{ri} Q \quad \text{and} \quad \operatorname{rb} Q = \emptyset] \end{aligned}$$

Theorem: For any nonempty convex set $Q \subset \mathbf{E}$, the relative interior ri Q is nonempty.

Proof: WLOG $0 \in Q$ so aff Q = span(Q) = par Q is a subspace, set k = dim(aff Q).

Let d_1, \ldots, d_k be a basis for aff Q and define $\mathcal{A} \in \mathbf{L}(\mathbf{R}^k, \mathbf{E})$ by $\mathcal{A}\lambda := \sum_{i=1}^k \lambda_i d_i$ so that aff $Q = \operatorname{ran} \mathcal{A}$.

Consequently, \mathcal{A} maps the open set $\Omega := \left\{ \lambda \in \mathbf{R}_{++}^d \mid \sum_{i=1}^k \lambda_i < 1 \right\}$ onto a subset of aff Q that is open relative to the subspace aff Q (\mathcal{A} is a linear isomorphism between \mathbf{R}^k and aff Q). Consequently, $\mathcal{A}\Omega$ is open relative to aff Q.

Observe that $\forall \lambda \in \Omega$, $\mathcal{A}\lambda = (\sum_{i=1}^k \lambda_i d_i) + (1 - \sum_{i=1}^k \lambda_i) \cdot 0 \in Q$ by convexity. Hence $\mathcal{A}\Omega \subset Q$ implying $\mathcal{A}\Omega \subset \operatorname{ri} Q$.

Access Theorem for Convex Sets

Theorem: Let $Q \subset \mathbf{E}$ be convex. Then $x \in \operatorname{ri} Q$ if and only if $\forall y \in \operatorname{cl} Q, \ [x, y) \subset \operatorname{ri} Q$.

Proof:(\Leftarrow) Trivial. (\Rightarrow) Let $y \in \operatorname{cl} Q$, $x \in \operatorname{ri} Q$, and $\epsilon > 0$ be such that $B_{\epsilon}(x) \cap \operatorname{aff} Q \subset Q$. Then, for $x \in \operatorname{ri} Q$ and $\lambda \in (0, 1]$, convexity tells us that

$$Q \supset \lambda(B_{\epsilon}(x) \cap \operatorname{aff} Q) + (1 - \lambda)y$$

= $\lambda(x + B_{\epsilon}(0) \cap \operatorname{par} Q) + (1 - \lambda)y$
= $\lambda x + (1 - \lambda)y + \lambda B_{\epsilon}(0) \cap \operatorname{par} Q$
= $B_{(\lambda\epsilon)}((1 - \lambda)x + \lambda y) \cap \operatorname{aff} Q$. pic

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Access Theorem for Convex Sets

Theorem: Let $Q \subset \mathbf{E}$ be convex. Then $x \in \operatorname{ri} Q$ if and only if $\forall y \in \operatorname{cl} Q, \ [x, y) \subset \operatorname{ri} Q$.

Proof:(\Leftarrow) Trivial. (\Rightarrow) Let $y \in \operatorname{cl} Q$, $x \in \operatorname{ri} Q$, and $\epsilon > 0$ be such that $B_{\epsilon}(x) \cap \operatorname{aff} Q \subset Q$. Then, for $x \in \operatorname{ri} Q$ and $\lambda \in (0, 1]$, convexity tells us that

$$Q \supset \lambda(B_{\epsilon}(x) \cap \operatorname{aff} Q) + (1 - \lambda)y$$

= $\lambda(x + B_{\epsilon}(0) \cap \operatorname{par} Q) + (1 - \lambda)y$
= $\lambda x + (1 - \lambda)y + \lambda B_{\epsilon}(0) \cap \operatorname{par} Q$
= $B_{(\lambda\epsilon)}((1 - \lambda)x + \lambda y) \cap \operatorname{aff} Q$. pic

Corollaries:

1) For any nonempty convex set Q in \mathbf{E} , $\operatorname{cl}(\operatorname{ri} Q) = \operatorname{cl} Q$ and $\operatorname{ri}(\operatorname{cl} Q)) = \operatorname{ri} Q$.

2) $x \in \operatorname{ri} Q \iff \forall y \in Q \ \exists \overline{\lambda} > 1 \text{ s.t. } y + \lambda(x - y) \in Q \ \forall \lambda \in (0, \overline{\lambda}].$

3) intr $(Q + [\operatorname{par} Q]^{\perp}) = \operatorname{ri} Q + [\operatorname{par} Q]^{\perp}$.

Linear Images of the Relative Interior

Theorem: Let $Q \subset \mathbf{E}$ be convex and $A \in \mathbf{L}[\mathbf{E}, \mathbf{Y}]$. Then $\operatorname{ri}(AQ) = A(\operatorname{ri} Q)$ and $\operatorname{cl}(AQ) \supset A(\operatorname{cl} Q)$.

Proof: The closure inclusion follows from continuity. Next observe that

 $\operatorname{cl} A(\operatorname{ri} Q) \supset A(\operatorname{cl} \operatorname{ri} Q) = A(\operatorname{cl} Q) \supset AQ \supset A(\operatorname{ri} Q)$ Hence, AQ and $A(\operatorname{ri} Q)$ have the same closure and relative interior which tells us that $\operatorname{ri} (AQ) \subset A(\operatorname{ri} Q)$. For the reverse inclusion, let $z \in A(\operatorname{ri} Q)$ and $y \in \operatorname{ri} Q$ such that z = Ay. Then for all $w \in Q$, $[y, w) \subset Q$ which implies that for all $x \in AQ$, $[Ay, x) \subset AQ$. That is, $z = Ay \in \operatorname{ri} AQ$ which establishes the reverse inclusion.

The Relative Interior of the Sum

Let $Q_1, Q_2 \subset \mathbf{E}$ be convex and $\alpha, \beta \in \mathbf{R}$, then

$$\operatorname{ri}\left(\alpha Q_1 + \beta Q_2\right) = \alpha \operatorname{ri} Q_1 + \beta \operatorname{ri} Q_2 .$$

Proof: Let $A \in \mathbf{L}[\mathbf{E} \times \mathbf{E}, \mathbf{E}]$ be given by $A(x, y) := \alpha x + \beta y$. Then

$$\operatorname{ri} (\alpha Q_1 + \beta Q_2) = \operatorname{ri} A(Q_1 \times Q_2)$$
$$= A \operatorname{ri} (Q_1 \times Q_2)$$
$$\stackrel{\text{why?}}{=} A(\operatorname{ri} Q_1 \times \operatorname{ri} Q_2)$$
$$= \alpha \operatorname{ri} Q_1 + \beta \operatorname{ri} Q_2.$$

ション ふゆ さい シャリン しょうくしゃ

Separation Theorems

Separation theorems allow us to analyze the geometry of a convex set $Q \subset \mathbf{X}$ by studying how the elements of the dual space \mathbf{X}^* act on Q. This is the essence of *duality theory* which provides the foundation of convex analysis.

In a Euclidean space, separation theorems can built on the notion of the distance to a set. Given a set $X \subset \mathbf{E}$, we define the distance to X by

dist
$$(z | X) := \inf_{x \in X} ||x - z||$$
 $(= d_X(z)).$

If X is closed and nonempty, then, for all $z \in \mathbf{E}$, there is a $x \in X$ such that ||z - x|| = dist(z | X). We call the set of such closest points in X to z the projection of z onto X and write

$$\operatorname{proj}_X(y) := \{ x \in X : d_Q(y) = ||x - y|| \}.$$

The Projection Theorem for Convex Sets

For any nonempty, closed, convex set $Q \subset \mathbf{E}$, the set $\operatorname{proj}_Q(y)$ is a singleton. Moreover, the closest point $z \in Q$ to y is characterized by the property:

$$\langle y - z, x - z \rangle \le 0$$
 for all $x \in Q$. (\Diamond)

Proof: If $z \in Q$ satisfies (\Diamond) , then, for all $x \in Q$, $||y - x||^2 = ||y - z||^2 + 2\langle y - z, z - x \rangle + ||z - x||^2 \ge ||y - z||^2$ with equality if and only if z = x. Hence, (\Diamond) implies z is the unique element of $\operatorname{proj}_Q(y)$.

It remains to show that any $z \in \operatorname{proj}_Q(y)$ must satisfy (\diamond). Define $\varphi(x) := \frac{1}{2} ||y - x||^2$ so that $\nabla \varphi(x) = x - y$. If $z \in \operatorname{proj}_Q(y)$, then, for all $x \in Q$, $\varphi'(z; x - z) = \lim_{t \downarrow 0} \frac{\varphi(z + t(x - z)) - \varphi(z)}{t} \ge 0$ as $z + t(x - z) \in Q$, $t \in [0, 1]$. So for all $x \in Q$, $0 \le \varphi'(z; x - z) = \langle \nabla \varphi(z), x - z \rangle = \langle z - y, x - z \rangle$, which is (\diamond).

Strict Separation Theorem

Consider a nonempty, closed, convex set $Q \subset \mathbf{E}$ and a point $y \notin Q$. Then there exists a nonzero vector $z \in \mathbf{E}$ and a number $\beta \in \mathbf{R}$ satisfying

$$\langle z,x\rangle \leq \beta < \langle z,y\rangle \quad \text{ for all } x\in Q.$$

Strict Separation Theorem

Consider a nonempty, closed, convex set $Q \subset \mathbf{E}$ and a point $y \notin Q$. Then there exists a nonzero vector $z \in \mathbf{E}$ and a number $\beta \in \mathbf{R}$ satisfying

$$\langle z, x \rangle \le \beta < \langle z, y \rangle$$
 for all $x \in Q$.

Proof: Fix a point $y \notin Q$ and define the nonzero vector $z := y - \operatorname{proj}_{Q}(y)$. Then for any $x \in Q$, the condition

$$\langle z, x - \operatorname{proj}_Q(y) \rangle \le 0$$
 for all $x \in Q$

yields

$$\langle z, x \rangle \leq \langle z, \operatorname{proj}_Q(y) \rangle = \langle z, y \rangle + \langle z, \operatorname{proj}_Q(y) - y \rangle$$

= $\langle z, y \rangle - \|z\|^2 < \langle z, y \rangle,$

as claimed, where $\beta := \langle z, \operatorname{proj}_Q(y) \rangle$.

Supporting Hyperplanes to Points on the Relative Boundary

Theorem: Let $Q \subset \mathbf{E}$ be convex with $\overline{x} \in \operatorname{rb} Q$. Then there exists $\overline{z} \in \mathbf{E}$ such that

 $\langle \overline{z}, \, x \rangle \leq \langle \overline{z}, \, \overline{x} \rangle \; \forall \, x \in \operatorname{cl} Q \; \operatorname{and} \; \langle \overline{z}, \, x \rangle < \langle \overline{z}, \, \overline{x} \rangle \; \forall \, x \in \operatorname{ri} Q \, .$

Proof: Set $\widehat{Q} := Q + [\operatorname{par} Q]^{\perp}$. Then intr $\widehat{Q} = \operatorname{ri} Q + [\operatorname{par} Q]^{\perp} = \operatorname{ri} \widehat{Q}$. Since $\overline{x} \in \operatorname{rb} Q$, Q is not a single point and not all of \mathbf{E} so $\widehat{Q} \neq \mathbf{E}$. Hence, there exists $\{x_k\} \subset \mathbf{E} \setminus \operatorname{cl} \widehat{Q}$ with $x_k \to x$. Let $\{z_k\} \subset \mathbf{E}$ be such that $\|z_k\| = 1$ and $\langle z_k, y \rangle \leq \langle z_k, x_k \rangle$ for all $y \in \widehat{Q}, k \in \mathbb{N}$. WLOG (why?) there is a $\overline{z} \in \mathbf{E}$ with $\|\overline{z}\| = 1$ such that $z_k \to \overline{z}$. Taking the limit, we have

 $\langle \overline{z}, y \rangle \leq \langle \overline{z}, x_k \rangle \ \forall \ y \in \operatorname{cl} \widehat{Q} \text{ and } \langle \overline{z}, y \rangle < \langle \overline{z}, x_k \rangle \ \forall \ y \in \operatorname{intr} \widehat{Q}$. Since $Q \subset \widehat{Q}$ and ri $Q \subset \operatorname{intr} Q$, the result follows.

Dual Description of Convex Sets

Theorem: Given a nonempty set $Q \subset \mathbf{E}$, define the set of halfspaces

$$\mathcal{F}_Q := \{(a, b) \in \mathbf{E} \times \mathbf{R} : \langle a, x \rangle \le b \quad \text{ for all } x \in Q\}.$$

Then equality holds:

$$\operatorname{cl\,conv}(Q) = \bigcap_{(a,b)\in\mathcal{F}_Q} \left\{ x \in \mathbf{E} : \langle a, x \rangle \le b \right\}.$$
(1)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Cones and Convex Cones

A set $K \subseteq \mathbf{E}$ is called a *cone* if the inclusion $\lambda K \subset K$ holds for any $\lambda \ge 0$.

In \mathbf{R}^2 , the union of the x and y axes is a cone: $\{(x,0) | x \in \mathbf{R}\} \cup \{(0,y) | y \in \mathbf{R}\}.$ \mathbf{R}^n_+ and \mathbf{S}^n_+ are cones.

Theorem: A cone $K \subset \mathbf{E}$ is convex if and only if K = K + K.

Proposition: If \subset **E** is a convex cone, then aff K = K - K.

Cones and Polarity

The *polar cone* of a cone $K \subset \mathbf{E}$ is the set

Figure: Polar cone

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Cones and Polarity

The *polar cone* of a cone $K \subset \mathbf{E}$ is the set

Figure: Polar cone

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくぐ

Polarity generalizes the notion of perpendicular subspaces: if S is a subspace, then $S^{\circ} = S^{\perp}$.

Cones and Polarity

The *polar cone* of a cone $K \subset \mathbf{E}$ is the set

Figure: Polar cone

Polarity generalizes the notion of perpendicular subspaces: if S is a subspace, then $S^{\circ} = S^{\perp}$.

Theorem: [The Moreau Decomposition] Let $K \subset \mathbf{E}$ be a non-empty closed convex cone. Then for every $y \in \mathbf{E}$ there exists a unique pair $y_1 \in K$ and $y_2 \in K^{\circ}$ such that $y = y_1 + y_2$ with $\langle y_1, y_2 \rangle = 0$.

The Lineality of a Cone

Given a closed convex cone $K \subset \mathbf{E}$. The *lineality* of K, denoted lin L, is the largest subspace contained in K.

うして ふゆ く 山 マ ふ し マ う く し マ

The cone K is said to be *pointed* if $K \cap (-K) = \{0\}$, or equivalently, $\lim K = \{0\}$.

Show that $K^{\circ} \subset (\lim K)^{\perp}$.

Properties of the Polar

- For any nonempty cone $K \subset \mathbf{E}$, $(K^{\circ})^{\circ} = \operatorname{cl}\operatorname{conv}(K)$.

- For any $\mathcal{A} \in \mathbf{L}[\mathbf{E}, \mathbf{Y}]$ and any nonempty cone $K \subset \mathbf{Y}$, $(\mathcal{A}K)^{\circ} = (\mathcal{A}^*)^{-1}K^{\circ}.$

- For any two nonempty cones $K_1, K_2 \subset \mathbf{E}, (K_1 + K_2)^\circ = K_1^\circ \cap K_2^\circ.$

– Let $Q \subset \mathbf{E}$. We define the polar of Q to be the set $Q^{\circ} := \{z \mid \langle z, x \rangle \leq 1 \ \forall x \in Q\}.$ It is easy to see that if Q is a cone, this notion of polar coincides with cone polarity.

- For any nonempty $Q \subset \mathbf{E}$, $(Q^{\circ})^{\circ} = \operatorname{cl}\operatorname{conv}(Q \cup \{0\})$.

- If \mathbb{B}_{ρ} is the closed unit ball for some norm ρ , then $\mathbb{B}_{\rho}^{\circ}$ is the closed unit ball for its dual norm ρ^* , i.e. $\mathbb{B}_{\rho^*} = \mathbb{B}_{\rho}^{\circ}$.

Visualizing the Polar of a Convex Set

Let $0 \in Q \subset \mathbf{E}$ and let K be the cone generated by $Q \times \{1\} \subset \mathbf{E} \times \mathbf{R}$, that is

$$K = \{ (\lambda x, \lambda) \in \mathbf{E} \times \mathbf{R} : x \in Q, \lambda \ge 0 \}.$$

Since Q contains the origin, the polar cone K° is contained in $\mathbf{E} \times \mathbf{R}_{-}$. Then

$$Q^{\circ} := \{ x \in \mathbf{E} : (x, -1) \in K^{\circ} \}.$$

The Tangent Cone

The tangent cone to a set $Q \subset \mathbf{E}$ at a point $\bar{x} \in Q$ is the set

$$T_Q(\bar{x}) := \left\{ \lim_{i \to \infty} \tau_i^{-1}(x_i - \bar{x}) : x_i \to \bar{x} \text{ in } Q, \ \tau_i \searrow 0 \right\}.$$

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ∃ のへで

The Tangent Cone

The tangent cone to a set $Q \subset \mathbf{E}$ at a point $\bar{x} \in Q$ is the set

$$T_Q(\bar{x}) := \left\{ \lim_{i \to \infty} \tau_i^{-1}(x_i - \bar{x}) : x_i \to \bar{x} \text{ in } Q, \ \tau_i \searrow 0 \right\}.$$

Proposition: If $Q \subset \mathbf{E}$ is convex, then

$$T_Q(\bar{x}) = \operatorname{cl} \mathbf{R}_+(Q - \bar{x}) \qquad \forall x \in Q.$$

The Tangent Cone

The tangent cone to a set $Q \subset \mathbf{E}$ at a point $\bar{x} \in Q$ is the set

$$T_Q(\bar{x}) := \left\{ \lim_{i \to \infty} \tau_i^{-1}(x_i - \bar{x}) : x_i \to \bar{x} \text{ in } Q, \ \tau_i \searrow 0 \right\}.$$

Proposition: If $Q \subset \mathbf{E}$ is convex, then

$$T_Q(\bar{x}) = \operatorname{cl} \mathbf{R}_+(Q - \bar{x}) \qquad \forall x \in Q.$$

Corollary: If $Q \subset \mathbf{E}$ is polyhedral convex, then

$$T_Q(\bar{x}) = \mathbf{R}_+(Q - \bar{x}) \qquad \forall \, \bar{x} \in Q.$$

The Normal Cone

The normal cone to a set $Q \subset \mathbf{E}$ at a point $\bar{x} \in Q$ is the set

 $N_Q(\bar{x}) := \{ v \in \mathbf{E} : \langle v, x - \bar{x} \rangle \le o(\|x - \bar{x}\|) \quad \text{as } x \to \bar{x} \text{ in } Q \},$ i.e., $v \in N_Q(\bar{x})$ if and only if

$$\limsup_{\substack{x \stackrel{Q}{\to} \bar{x}}} \frac{\langle v, x - \bar{x} \rangle}{\|x - \bar{x}\|} \le 0,$$

where the notation $x \xrightarrow{Q} \bar{x}$ means that x tends to \bar{x} in Q.

The Normal Cone

The normal cone to a set $Q \subset \mathbf{E}$ at a point $\bar{x} \in Q$ is the set

 $N_Q(\bar{x}) := \{ v \in \mathbf{E} : \langle v, x - \bar{x} \rangle \le o(\|x - \bar{x}\|) \quad \text{as } x \to \bar{x} \text{ in } Q \},$ i.e., $v \in N_Q(\bar{x})$ if and only if

$$\limsup_{\substack{x \stackrel{Q}{\to} \bar{x}}} \frac{\langle v, x - \bar{x} \rangle}{\|x - \bar{x}\|} \le 0,$$

where the notation $x \xrightarrow{Q} \bar{x}$ means that x tends to \bar{x} in Q.

Figure: Illustration of the tangent and normal cones for nonconvex sets.

うして ふゆ く 山 マ ふ し マ う く し マ

Lemma: For any set $Q \subset \mathbf{E}$ and a point $\bar{x} \in Q$, the polarity relationship holds:

 $N_Q(\bar{x}) = (T_Q(\bar{x}))^\circ.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Lemma: For any set $Q \subset \mathbf{E}$ and a point $\bar{x} \in Q$, the polarity relationship holds:

$$N_Q(\bar{x}) = (T_Q(\bar{x}))^\circ.$$

Corrolary: If $Q \subset \mathbf{E}$ is convex, then $N_Q(\bar{x}) = \{z \mid \langle z, x - bx \rangle \leq 0 \ \forall x \in Q\}.$

Lemma: For any set $Q \subset \mathbf{E}$ and a point $\bar{x} \in Q$, the polarity relationship holds:

$$N_Q(\bar{x}) = (T_Q(\bar{x}))^\circ.$$

Corrolary: If $Q \subset \mathbf{E}$ is convex, then $N_Q(\bar{x}) = \{ z \mid \langle z, x - bx \rangle \leq 0 \ \forall x \in Q \}.$

Corrolary: Let $Q \subset \mathbf{E}$ be convex with $\bar{x} \in Q$. Then $v \in N_Q(\bar{x})$ if and only if $\bar{x} = \operatorname{proj}_Q(\bar{x} + \lambda v)$ for some (or all) $\lambda > 0$.

うして ふぼう ふほう ふほう ふしつ

Lemma: For any set $Q \subset \mathbf{E}$ and a point $\bar{x} \in Q$, the polarity relationship holds:

$$N_Q(\bar{x}) = (T_Q(\bar{x}))^\circ.$$

Corrolary: If
$$Q \subset \mathbf{E}$$
 is convex, then
 $N_Q(\bar{x}) = \{ z \mid \langle z, x - bx \rangle \le 0 \ \forall x \in Q \}.$

Corrolary: Let $Q \subset \mathbf{E}$ be convex with $\bar{x} \in Q$. Then $v \in N_Q(\bar{x})$ if and only if $\bar{x} = \operatorname{proj}_Q(\bar{x} + \lambda v)$ for some (or all) $\lambda > 0$.

Corrolary: Let $Q \subset \mathbf{E}$ be convex with $\bar{x} \in Q$. Then $v \in N_Q(\bar{x})$ if and only if $\bar{x} \in \operatorname{argmax}_{x \in Q} \langle v, x \rangle$.