Convex Geometry
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A set C C E is said to be convex if
ryyeCand A€ [0,1] = (1-XNz+MyeC.

That is, C' contains all line segments connecting points in C'.

Examples:

— Subspaces and affine sets

— Half spaces {z | (a,z) < B} for all a € E\ {0} and 8 € R.
— The unit ball B := {z | ||z|| <1} and intr (B).

— The unit simplex
Ap:={AeR":> " \=1X>0}.



Convexity Preserving Operations

Let A€ L(E,Y). If C1,C2 CE and K CY are all convex, then
so are the sets

— Intersection: Cy N Cy

— Scalar Multiplication: Ry K and MK VAeR
— Addition: C7 + Cy

— Linear Image/Preimage: AC; and A~'K

— Products: (7 x K

— Closure and Interior: cl K and intr K

— Non-negative sums: Let Q C E be convex and A1, Ay € R
Then
MQ + AQ = ()\1 + )\Q)Q.



Polyhedra and Spectrahedra

A convex polyhedron is any set of the form
Q={zxeR": Az > ¢},

for some A € R"™*" and ¢ € R™.
Equivalently, we may write () as an intersection of finitely many

half-spaces or as the preimage A~!(c + R"). Hence, a convex
polyhedron is convex.



Polyhedra and Spectrahedra

A convex polyhedron is any set of the form
Q={zxeR": Az > ¢},

for some A € R"™*" and ¢ € R™.

Equivalently, we may write () as an intersection of finitely many
half-spaces or as the preimage A~!(c + R"). Hence, a convex
polyhedron is convex.

More generally, a spectrahedron is any set of the form
Q= {JZERn:xlAl—i-xQAQ—i-...—i—ann EC},

for some matrices A; € S™ and C € S™. Equivalently, we may
write @ as the preimage A~!(C + S7) for the linear map
A(a;) = Z?:l «TzAz



Spectrahedra

There are many more spectrahedra than polyhedra. For
example, the elliptope is given by

1 =z
(x,y,2) eR3: [z 1
y z

— N
Y
]

Figure: The elliptope



Convex Hulls and Convex Combinations

Convex Combinations: A point x € E is a convex
combination of points x1,...,x; € E if it can be written as
T = Zle \;x; for some A € Ay.

A convex combination z = Zle \;x; can be viewed as a
weighted average of the points x1, ...,z with A1, ..., A\; as the
corresponding weights.

Given a set X C E, one can show that the set of all such convex
combinations of points in X,

k
{Z)\ixilkGN, AEAk,xl,...,:szX},

=1

equals the convex hull of the set X, conv(X), i.e. the
intersection of all convex sets containing X. Here
N:={1,2,...} is the set of natural numbers.
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point € conv(Q) can be written as a convex combination of n + 1 or
fewer points in Q.
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Carathéodory’s Theorem

Let Q@ C E, where E is an n-dimensional Euclidean space. Then each
point € conv(Q) can be written as a convex combination of n + 1 or
fewer points in Q.

Proof: Let x € conv(Q).
1) WLOG

E::inf{kEN‘x:Zfﬂ)\ixi, T1s. € Q, )\GAk}>n+1.
2) dzy,..., 25 €Q, M€ Apsit. CU:ZiE:l)\ﬂi and A > 0.

3) Since k >n + 1, 3 iy i:2,...,Enotall£)s.t. B

{2, g} £ 0= Sy (s — 1) = (Dl pites) — (Sisp i)
== o = Y =0, Y5 u=0, u¢RE.
5)Va € R, x—zf 1(Ai — apg)z; and El 1N —ap)=1.

6) a:= inf{a’)\‘—amZO, 2=1,...k}>OandWLOG

7~ oup =080z = Ei:ll NiZi, A€ Ay, where
=N o, 1=1,. .. ,E — 1. Contradiction.
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Relative interior and Boundary

The relative interior of a set @ C E, denoted ri (), is the interior
of @ relative to aff (Q)). That is,

riQ:={xe@:3e>0st. B(zr)Naff Q C Q}.
The relative boundary of @ is defined by rb @ := (cl@) \ (11 Q).

The subspace parallel to aff @) is denoted par Q). Observe that

since par ) = aff QQ — x for all z € aff ), it easily follows that
Be(x)Naff Q =z + B.(0) Npar @

for all z € aff Q.

Q@={r}| = [aff Q={z}, parQ={0}, Q=riQ and rhQ=0]
[Q=E] = [af Q=E, parQ=E, Q=r1riQ and rbQ=0]

Theorem: For any nonempty convex set () C E, the relative
interior ri () is nonempty.



Relative interior and Boundary

Proof: WLOG 0 € @ so aff Q@ = span (Q) = par@ is a
subspace, set k = dim(aff Q).

Let dy, ..., d; be a basis for aff Q and define A € L(R¥,E) by
AN = Zle A;d; so that aff Q = ran A.

Consequently, A maps the open set
Q= {)\ IS Rle ‘ Zle A < 1} onto a subset of aff Q) that is
open relative to the subspace aff @ (A is a linear isomorphism

between R* and aff Q). Consequently, AQ is open relative to
aff Q.

Observe that VA € Q, AN = (28 Nd)+(1-3F M) -0€Q
by convexity. Hence A2 C @ implying AQ C ri Q.



Access Theorem for Convex Sets

Theorem: Let (Q C E be convex. Then z € riQ if and only if
VyecQ, [z,y) CriQ.

Proof:(«) Trivial. (=) Let y € c1@Q, z € riQ, and € > 0 be
such that Be(z) Naff @ C Q. Then, for z € ri@ and X € (0, 1],
convexity tells us that

QDO ANB(x)naf Q)+ (1 - Ny
=Xz + B(0)NparQ) + (1 — Ny
=Xz + (1 —N)y+ AB.(0) Npar Q
= B()\E)((l — ANz + A\y) Naff Q. pic



Access Theorem for Convex Sets

Theorem: Let (Q C E be convex. Then z € riQ if and only if
VyecQ, [z,y) CriQ.

Proof:(«) Trivial. (=) Let y € c1@Q, z € riQ, and € > 0 be
such that Be(z) Naff @ C Q. Then, for z € ri@ and X € (0, 1],
convexity tells us that

QDO ANB(x)naf Q)+ (1 - Ny
=Xz + B(0)NparQ) + (1 — Ny
=Xz + (1 —N)y+ AB.(0) Npar Q
= B()\E)((l — ANz + A\y) Naff Q. pic

Corollaries:
1) For any nonempty convex set @ in E,

cd(riQ)=cl@ and ri(clQ))=riQ.
rcriQ <= VycQ3IN>1st. y+Az—y)€Q VYA (0.
3) intr (Q + [par Q) = riQ + [par Q] .



Linear Images of the Relative Interior

Theorem: Let () C E be convex and A € L[E,Y]. Then
11 (AQ) = A(riQ) and cl (AQ) D A(clQ).

Proof: The closure inclusion follows from continuity.
Next observe that

clA(riQ) D A(clriQ) = A(clQ) D AQ D A(riQ)
Hence, AQ and A(ri@)have the same closure and relative
interior which tells us that ri (AQ) C A(riQ). For the reverse
inclusion, let z € A(ri@) and y € ri @ such that z = Ay. Then
for all w € Q, [y, w) C @ which implies that for all
x € AQ, [Ay,z) C AQ. That is, z = Ay € ri AQ which

establishes the reverse inclusion.



The Relative Interior of the Sum

Let Q1, Q2 C E be convex and «, 8 € R, then

ri(a@Q1 +BQ2) = ari@Q1 + BriQs .

Proof: Let A € LIE x E, E] be given by A(z,y) := az + By.

Then
ri (@1 + BQ2) =11 A(Q1 X Q2)
= Ari(Q1 x Q2)

wh;

2 AriQr X 1iQy)
=ari@) + BriQs.



Separation Theorems

Separation theorems allow us to analyze the geometry of a
convex set () C X by studying how the elements of the dual
space X* act on ). This is the essence of duality theory which
provides the foundation of convex analysis.

In a Euclidean space, separation theorems can built on the
notion of the distance to a set. Given a set X C E, we define
the distance to X by

dist (z | X ) := inf ||z — =d .

it (= |X) += inf llo — 2| (= dx(2))
If X is closed and nonempty, then, for all z € E, there is a

x € X such that ||z — || = dist (z | X ). We call the set of such

closest points in X to z the projection of z onto X and write

projx (y) = {z € X : dg(y) = [l -y}



The Projection Theorem for Convex Sets

For any nonempty, closed, convex set Q C E, the set pron(y) is a
singleton. Moreover, the closest point z € @ to y is characterized by
the property:

(y—z,x—2)<0 for all x € Q. (©)

Proof: If z € Q) satisfies (0), then, for all z € Q,

2 2
ly—=* = lly— 21" +2(y — 2, z—2) + |z — 2| > |ly — 2|
with equality if and only if z = z. Hence, ({) implies z is the unique

element of projq(y).

It remains to show that any z € projg(y) must satisfy (¢). Define
o(z) =3 lly— z||? so that Vp(z) =2 —y. If z € projg(y), then, for
all z € Q,

O (z;x — 2) :limtww >0 asz+tlx—2)eqQ,tel0,1].
Soforallz € Q,0< ¢ (z;2—2) = (Vo(z), x—2)=(z —y, z — 2),
which is (0).



Strict Separation Theorem

Consider a nonempty, closed, convex set () C E and a point
y ¢ Q. Then there exists a nonzero vector z € E and a number
B € R satisfying

(z,x) < B < (z,y) forallze Q.



Strict Separation Theorem

Consider a nonempty, closed, convex set () C E and a point
y ¢ Q. Then there exists a nonzero vector z € E and a number
B € R satisfying

(z,x) < B < (z,y) forallze Q.

Proof: Fix a point y ¢ @ and define the nonzero vector
z =y — projg(y). Then for any x € @, the condition

(z,2 —projg(y)) <0 for all z € Q
yields

(z.2) < (z,pr0jq(y)) = (2,9) + (2, Projo(y) —v)
= (z,y) = I2l* < (z,9),

as claimed, where 3 := (2, projg(v))-



Supporting Hyperplanes to Points on the Relative
Boundary

Theorem: Let (Q C E be convex with z € rb @. Then there
exists Z € E such that
(Z, ) < (z,z) Vx €clQ and (z, x) < (2, T) Vx €1iQ.

Proof: Set @ = Q + [par Q]*. Then
intr@ =r1iQ + [par Q]+ = ri@. Since T € tb @, @ is not a single
point and not all of E so @ # E. Hence, there exists
{zx} CE\ c1Q with 2, — 2. Let {2z} C E be such that
2]l = 1 and (25, y) < (zk, x3) for all y € Q, k € N.
WLOG (why?) there is a z € E with ||Z|| = 1 such that z; — Z.
Taking the limit, we have

Zy < (Z z)Vye cl@ and (Z, y) < (Z, xx) Vy € intr@ .
Since ) C @ and ri ) C intr @, the result follows.



Dual Description of Convex Sets

Theorem: Given a nonempty set () C E, define the set of
halfspaces

Fo:={(a,b) e ExR:(a,z) <b forallzeQ}.

Then equality holds:

cdeonv(Q) = (]| {z€E:(az)<b}. (1)

(a,b)é]:Q



Cones and Convex Cones

A set K C E is called a cone if the inclusion AKX C K holds for
any A > 0.

In R?, the union of the x and y axes is a cone:
{(z,0)]z e R}U{(0,y)|y € R}.
Rl and S} are cones.

Theorem: A cone K C E is convex if and only if K = K + K.

Proposition: If C E is a convex cone, then aff K = K — K.



Cones and Polarity
The polar cone of a cone K C E is the set

K°:={veE: (vz) <0foralze K}
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The polar cone of a cone K C E is the set

K°:={veE: (vz) <0foralze K}
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Polarity generalizes the notion of perpendicular subspaces: if S is a
subspace, then S° = S+.

Theorem: [The Moreau Decomposition| Let K C E be a non-empty
closed convex cone. Then for every y € E there exists a unique pair
y1 € K and yo € K° such that y = y1 + y2 with (y1, y2) = 0.



The Lineality of a Cone

Given a closed convex cone K C E. The lineality of K, denoted
lin L, is the largest subspace contained in K.

The cone K is said to be pointed if K N (—K) = {0}, or
equivalently, lin K = {0}.

Show that K° C (lin K)*.



Properties of the Polar

— For any nonempty cone K C E, (K°)° = clconv(K).

— For any A € L[E, Y] and any nonempty cone K C Y,
(AK)° = (A")" LK.

— For any two nonempty cones K, Ky C E, (K7 + K3)° = Ky N K5.
— Let Q C E. We define the polar of ) to be the set
Q°={z|(z,z) <1Vz e}

It is easy to see that if @) is a cone, this notion of polar coincides with
cone polarity.

— For any nonempty Q C E, (Q°)° = clconv(Q U {0}).

— If B, is the closed unit ball for some norm p, then BJ is the closed
unit ball for its dual norm p*, i.e. By« = BJ.



Visualizing the Polar of a Convex Set

Let 0 € Q C E and let K be the cone generated by
Q@ x {1} C E x R, that is

K={Az,\) e ExR:x€Q,\>0}

Since @ contains the origin, the polar cone K° is contained in
E x R_. Then

Q° i ={zxeE: (z,—-1) € K°}.

~
ptie N
e

ol D
eigetiesietien
S

, b) Homogenization (¢
() Q={z:|laly <1y (P Homogeniwation = o0 4y



The Tangent Cone

The tangent cone to a set Q C E at a point T € Q) is the set

To(z) = {lim Mo — %) e = TinQ, TN\ O}.

1—00
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The Tangent Cone

The tangent cone to a set Q C E at a point T € Q) is the set

To(z) = {illrgloq_l(xi —I):ix;—>TinQ, T\ ()} .

Proposition: If ) C E is convex, then

To(z) =cl Ry(Q — ) Ve Q.

Corollary: If @ C E is polyhedral convex, then

To() =R4(Q-7) VieqQ.



The Normal Cone
The normal cone to a set Q C E at a point & € @) is the set

No) ={veE: (v,x—z) <o(|lr—z|) asz—zinQ},

i.e., v € Ng(z) if and only if

limsup@’%i_fv> <0,
"o? o —al

where the notation x % T means that = tends to z in Q.
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The normal cone to a set Q C E at a point & € @) is the set

No) ={veE: (v,x—z) <o(|lr—z|) asz—zinQ},

i.e., v € Ng(z) if and only if
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where the notation x Q) T means that = tends to z in Q.

Figure: Illustration of the tangent and normal cones for nonconvex
sets.
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No(z) = (To(7))°

Lemma: For any set ) C E and a point T € @, the polarity
relationship holds:

No(7) = (Tg(7))".

Corrolary: If Q C E is convex, then
No@) ={2|(z, v —bx) <O0Vz € Q}.

Corrolary: Let Q C E be convex with z € ). Then v € Ng(z)
if and only if Z = proj, (% + Av) for some (or all) A > 0.

Corrolary: Let @ C E be convex with z € Q. Then v € Ng(z)
if and only if 7 € argmax,cq (v, 7).



