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Background Material



Inner Products

Throughout, E is a Euclidean space ,
i.e., a finite-dim real vector space with an inner product 〈·, ·〉.
Occasionally we say that (E, 〈·, ·〉) is the Euclidean space when
the choice of inner product needs to be specified.

Recall that an inner-product on E is an assignment
〈·, ·〉 : E×E→ R satisfying the following three properties for all
x, y, z ∈ E and scalars a, b ∈ R:

(Symmetry) 〈x, y〉 = 〈y, x〉

(Bilinearity) 〈ax+ by, z〉 = a〈x, z〉+ b〈y, z〉

(Positive definiteness) 〈x, x〉 ≥ 0 and equality 〈x, x〉 = 0
holds if and only if x = 0.



Examples of Inner Products

Standard ip for Rn: 〈x, y〉 :=
∑n

i=1 xiyi = ‖x‖ ‖y‖ cos θ, where
θ is the angle between x and y.

Standard ip for Rm×n: The Frobenius or trace inner product,
〈X,Y 〉 := trXTY =

∑
i,j XijYij .

Real polynomials in one variable of degree ≤ n on [a, b]:
Integration inner product

〈p, q〉 :=
∫ b
a p(t)q(t)dt.



Adjoints of Linear Transformations

Suppose both (X, 〈·, ·〉X) and (Y, 〈·, ·〉Y) are Euclidean spaces.

Let A ∈ L(X,Y) where L(X,Y) is the vector space of linear
operators (or linear transformations) from X to Y.

There exists a unique linear mapping A∗ : Y → X, called the
adjoint, satisfying

〈A∗y, x〉X = 〈y,Ax〉
Y

for all points x ∈ X, y ∈ Y.

When X = Rn and Y = Rm, every linear map A can be
identified with a matrix A ∈ Rm×n. In this case, the matrix
associated with the adjoint A∗ is the transpose AT .

Note: The adjoint differs significantly from the classical adjoint in
Cramer’s Rule.



Self-adjoint Linear Operators

Let (E, 〈·, ·〉) be a Euclidean space and let A ∈ L(E,E).

We say that A is self-adjoint if A = A∗. The set of all
self-adjoint linear operators on E is denoted by S(E) or
S(E, 〈·, ·〉) if great specificity is required.

If E = Rn, the matrix representation of a self-adjoint linear
operator is a symmetric matrix.

A self-adjoint linear operator on Rn can be identified with the
symmetric matrices on Rn and so form a subspace of Rn×n

which we denote by Sn := {A ∈ Rn×n |A = AT }.

Example: Let A ∈ Sn and define H : Sn → Sn by
H(X) := AXA. Then H ∈ S(Sn) is a self-adjoint linear
operator. How do we obtain a matrix representation for H?
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Positive Semi-Definite Linear Operators
A self-adjoint operator A is positive semi-definite, denoted
A � 0, whenever

〈Ax, x〉 ≥ 0 for all x ∈ E.

Similarly, a self-adjoint operator A is positive definite, denoted
A � 0, whenever

〈Ax, x〉 > 0 for all 0 6= x ∈ E.

– A bilinear form b(·, ·) on the Euclidean space (E, 〈·, ·〉) is an
inner product on E if and only if there is a positive definite
linear operator A on E such that b(x, y) = 〈Ax, y〉 ∀x, y ∈ E.

– For any two linear operators A and B, we will use the notation
A � B to mean A− B � 0. The notation A � B is defined
similarly.
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Norms

A norm on a vector space V is a function ‖ · ‖ : V → R for which
the following three properties hold for all point x, y ∈ V and
scalars a ∈ R:

(Absolute homogeneity) ‖ax‖ = |a| · ‖x‖

(Triangle inequality) ‖x+ y‖ ≤ ‖x‖+ ‖y‖

(Positivity) Equality ‖x‖ = 0 holds if and only if x = 0.

The inner product in the Euclidean space E always induces a
norm ‖x‖ =

√
〈x, x〉. Unless specified otherwise, the symbol ‖x‖

for x ∈ E will always denote this induced norm.



Examples of Norms
p-norms on Rn:

‖x‖p =

{
(|x1|p + . . .+ |xn|p)1/p for 1 ≤ p <∞
max{|x1|, . . . , |xn|} for p =∞ .

Elliptic or inner product norms on Rn: Let A ∈ L(E,E)
be positive definite.

‖x‖A :=
√
〈Ax, y〉

Dual norms: Given an arbitrary norm ‖·‖ on Rn, the norm
dual to ‖·‖ is defined by

‖v‖∗ := max{〈v, x〉 : ‖x‖ ≤ 1}.

Why do norms and their duals satisfy the generalized
Cauchy-Schwartz inequality

|〈x, y〉| ≤ ‖x‖ · ‖y‖∗ for all x, y ∈ E ?
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Equivalence of Norms

All norms on E are “equivalent” in the sense that for any two
norms ρ1(·) and ρ2(·), there exist constants α, β > 0 satisfying

αρ1(x) ≤ ρ2(x) ≤ βρ1(x) for all x ∈ E.

‖x‖2 ≤ ‖x‖1 ≤
√
n‖x‖2

‖x‖∞ ≤ ‖x‖2 ≤
√
n‖x‖∞

‖x‖∞ ≤ ‖x‖1 ≤ n‖x‖∞.

The term “equivalent” is a misnomer since the constants α, β
strongly depend on the (often enormous) dimension of the
vector space E. Hence measuring quantities in different norms
can yield strikingly different conclusions.



The Orthogonal Group

Let (E, 〈·, ·〉) be a Euclidean space. A linear operator
U ∈ L(E,E) is said to be distance preserving if

‖Ux‖ = ‖x‖ ∀x ∈ E,
where ‖x‖ =

√
〈x.x〉 is the inner product norm on E.

The set O(E) of all distance preserving linear operators on E is
called the orthogonal group for E, and the elements of O(E) are
called orthogonal operators.

– O(E) is a group under matrix multiplication where the inverse
of any element is simply its adjoint.

– Given a basis for E, we can identify L(E,E) with Rn×n where
n is the dimension of E. If we identify O(E) with its associated
matrices, then O(E) = {U ∈ Rn×n |UUT = I = UTU} and its
elements are called orthogonal matrices.
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Eigenvalues of Symmetric Matrices
Let A ∈ Sn. λ ∈ R is an eigenvalue for A if exists x ∈ Rn \ {0}
s.t. Ax = λx.
The vector x is called an eigenvector associated with λ.

Note x ∈ ker(A− λI), where,
∀B ∈ Rn×n, kerB := {w ∈ Rn|Bw = 0}.
Consequently, the eigenvalues of A are the roots of the
characteristic polynomial

λ 7→ det(A− λI).

If A ∈ Sn, these n roots are real. One can show that there is an
associated orthonormal basis of real eigenvectors. Consequently,
A is diagonalizable in the sense that

UTAU = Λ or A = UΛUT ,

where the columns of U ∈ O(Rn) are an orthonormal basis of
eigenvectors and Λ is the diagonal matrix of corresponding
eigenvalues.
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Rayleigh-Ritz Theorem and Square Roots
Fix an ordering and denote the eigenvalues of A by

λ1(A) ≥ λ2(A) ≥ . . . ≥ λn(A).

A simple consequence of the decomposition A = UΛUT is the
Rayleigh-Ritz theorem:

λn(A) ≤ 〈Au, u〉
〈u, u〉

≤ λ1(A) for all u ∈ Rn \ {0}.

Observe that the two conditions, A � 0 and λn(A) ≥ 0 are
equivalent; similarly, A � 0 if and only λn(A) > 0.

Consequently, A ∈ Sn is positive semidefinite if and only if there
exists a matrix B ∈ Sn satisfying A = BBT (why?). The matrix
B is called a square root of A. There are infinitely many such
such square roots (see Cholesky Factorizations). The spectral
square root is B = UΛ1/2UT =:

√
A.
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The Singular Value Decomposition

Given A,BT ∈ Rm×n, one can show that the nonzero
eigenvalues of AB coincide with those of BA including
multiplicity.

Therefore, the eigenvalues of the symmetric matrices ATA and
AAT coincide up to multiplicity. Since these matrices are
positive semi-definite (why?), their nonzero eigenvalues are
positives and coincide up to multiplicity.

Let k := min{n,m} and define
σ1(A) ≥ σ2(A) ≥ . . . ≥ σk(A) ≥ 0

to be the largest k eigenvalues of
√
ATA and note that any

other eigenvalue of
√
ATA must be zero. The σis are called the

singular values of A.



The Singular Value Decomposition
If the columns of V ∈ O(Rn) form an orthonormal basis of
eigenvectors for ATA ordered in correspondence with the
magnitude of its eigenvalues, it can be shown that there is a
corresponding U ∈ O(Rm) whose columns form an orthonormal
basis of eigenvectors for AAT such that

A = UΣV T ,
where the principal diagonal Σ ∈ Rm×n are the ordered singular
values of A with all other values zero.

If we let k := rank(A), we may write
A = UΣV T ,

where now U ∈ Rm×k, V ∈ Rn×k have orthogonal columns and
Σ ∈ Rk×k is diagonal with the ordered nonzero singular values
on the diagonal. This called the compact or reduced singular
value decomposition.
For this reason, some authors refer to only the nonzero singular
values as the singular values. The columns of U are called the
left singular vectors and those of V are the right singular vectors.
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The Operator Norm on Rn×n

The Rayleigh-Ritz Theorem tells us that

‖A‖op := sup
x:‖x‖≤1

‖Ax‖ = σ1(A),

where ‖A‖op is called the operator norm of A when the given
norms are the inner product norms.

Let σ : Rm×n → Rk, where k := min{m,n}, be the mapping
that takes a matrix to its ordered vector of singular values:

σ(A) := (σ1(A), σ2(A), . . . , σk(A))T .
The Schatten p-norm of a A ∈ Rm×n, for 1 ≤ p ≤ ∞ is given by

‖A‖p := ‖σ(A)‖p .

Hence ‖A‖op = ‖σ(A)‖∞ . For p = 1, ‖A‖1 is called the nuclear
or trace norm.
It can be shown that all of the Schatten p-norms are norms on
the Euclidean space Rm×n.
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Sets and Operations on Sets

Let X, Y be Euclidean spaces with Xi ⊂ X i = 1, 2, Y ⊂ Y, and let
A ∈ L(X,Y).

– Rn
+ :={x∈Rn|xi≥0, i=1, . . . , n}, Rn

++ := {x∈Rn|xi>0, i=1, . . . , n}

– Sn
+ := {H ∈ Sn |H � 0}, Sn

++ := {H ∈ Sn |H � 0}
– For λ ∈ R, λX := {λx |x ∈ X }.
– X1+X2 :=

{
x1+x2 |xi∈Xi, i=1, 2

}
with X1 −X2 defined similarly.

– R+Y := {λy |λ ∈ R+, y ∈ Y }, the cone generated by Y .
– An affine set is a translate of a subspace.
– The affine hull of Y , aff Y , is the intersection of all affine sets
containing Y .

– AX1 := {Ax |x ∈ X1 }
– A−1Y := {x | Ax ∈ Y }
– X1 × Y := {(x, y) |x ∈ X1, y ∈ Y }



Convex Sets

A set C ⊂ E is said to be convex if

x, y ∈ C and λ ∈ [0, 1] =⇒ (1− λ)x+ λy ∈ C.

That is, C contains all line segments connecting points in C.

Let A ∈ L(E,Y). If C1, C2 ⊂ E and K ⊂ Y are all convex, then
so are the sets
– C1 ∩ C2

– R+K and λK ∀λ ∈ R
– C1 + C2

– AC1 and A−1K
– C1 ×K
– clK and intrK

We will spend a lot of time with convex sets.
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Point-Set Topology
Let E be a Euclidean space with x ∈ X ⊂ E.

– Given r > 0, the open r ball around x is the set
Br(x) := {y | ‖x− y‖ < r}.

– x is in the closure of X, written x ∈ clX, if
Br(x) ∩X 6= ∅ ∀ r > 0.

– X is closed if X = clX.
– x ∈ X is in the interior of X, written x ∈ intrX, if there is an
r > 0 such that Br(x) ⊂ X.

– X is open if X = intrX.
– X is bounded if there is an r > 0 such that X ⊂ Br(0).
– X is compact if it is closed and bounded.

Theorem (Bolzano-Weierstrass)
Q ⊂ E is compact if and only if every sequence in Q admits a
subsequence converging to a point in Q.
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Theorem (Bolzano-Weierstrass)
Q ⊂ E is compact if and only if every sequence in Q admits a
subsequence converging to a point in Q.



Limits Inferior and Superior

Define the extended real line R := R ∪ {±∞}.

The limit inferior and limit superior of any sequence {ri} ⊂ R
are defined by

liminf
i→∞

ri = lim
i→∞

{
inf
j≥i

rj

}
and limsup

i→∞
ri = lim

i→∞

{
sup
j≥i

rj

}
.

For any function f : E→ R and a point x ∈ E, we set

liminf
y→x

f(y) = lim
r>0

{
inf

y∈Br(x)\{x}
f(y)

}
The symbol limsupy→x f(y) is defined similarly, with sup
replacing inf.

Note: The infimum (supremum) over the empty set is +∞ (−∞).
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Functions and Continuity
Let f : E→ R and F : X→ Y.
– dom f := {x | f(x) <∞}
– epi f := {(x, λ) | f(x) ≤ λ} ⊂ E×R

– f is lower semi-continuous (lsc) at x ∈ E if liminfy→x f(y) ≥ f(x). f
is closed if it is lsc for all x ∈ E.

– f is upper semi-continuous at x ∈ E if f(x) ≥ limsupy→x f(y).
– f is continuous at x ∈ intr(dom f) if

liminfy→x f(y) = f(x) = limsupy→x f(y).
– F continuous at x ∈ X if

∀ ε > 0 ∃ δ > 0 s.t. ‖F (y)− F (x)‖ ≤ ε when ‖y − x‖ ≤ δ.
– For L > 0, F is L-Lipschitz continuous at x ∈ X if

‖F (x)− F (y)‖ ≤ L ‖x− y‖.
– For L > 0 and X ⊂ X, F is L-Lipschitz continuous on X if it is
L-Lipschitz continuous forall x ∈ X. If X = X, we simply say F is
L-Lipschitz. If 0 < L < 1, we say that F is a contraction.

Theorem
f : E→ R is closed if and only if epi f is closed.
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Existence of Optimal Solutions

Theorem (Weierstrass Extrema Value Theorem)
A continuous function on a compact set attains its extrema
values on that set. That is, if f : C → R is continuous on the
compact set C ⊂ E, then there exist x̄, y ∈ C such that
f(x̄) ≤ f(x) ≤ f(y) for all x ∈ C.

This can be refined using lower semi-continuity.

Theorem
If f : Q→ R is closed with Q ⊂ E compact, then there is an
x̄ ∈ Q such that f(x̄) ≤ f(x) for all x ∈ Q.

Coercive Functions: A function f : E→ R is coercive if for
any sequence xi with ‖xi‖ → ∞, it must be that f(xi)→ +∞.
It is easy to show that f is coercive if and only if the sets
{x | f(x) ≤ r} are compact for all r ∈ R. This observation
implies that any closed coercive function has a global minimizer,
i.e. there is x̄ such that f(x̄) ≤ f(x) for all x ∈ E.
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Linear Operators
Let X and Y be real normed linear spaces with norms ‖·‖x and ‖·‖y,
respectively.
A linear transformation (or operator) from X to Y is any mapping
L : X→ Y such that

L(αx+ βz) = αL(x) + βL(z) ∀x, z ∈ X and α, β ∈ R.

The linear operator T is continuous with respect to the norms on X
and Y if and only if

‖T ‖ := sup
‖x‖x≤1

‖T x‖y ∀ T ∈ L[X,Y],

is finite.
Let L[X,Y] denote the space of all continuous linear operators from
X to Y. In can be shown that ‖T ‖ is a norm on this space.

The topological dual of the normed linear space X is

X∗ := L[X,R]

with the duality pairing denoted by

〈φ, x〉 = φ(x) ∀ (φ, x) ∈ X∗ ×X.
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Hilbert Spaces

If the norm on X satisfies the parallelogram law,

‖x− y‖2 + ‖x+ y‖2 = 2 ‖x‖2 + 2 ‖y‖2 ,

then we call X a Hilbert space.

In this case there of a natural isometry between X∗ and X
under which the duality pairing is an inner product:

〈x, y〉 =
‖x+ y‖2 − ‖x− y‖2

4
.

Note: A Euclidean space is a real finite dimensional Hilbert
space.
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Bilinear Forms

Let X and Y be real linear spaces. A mapping Q : X×X→ Y
is said to be a bilinear if it is linear in each argument separately:
for all (xi, zj) ∈ X×X, i = 1, 2, and α, β, γ, δ ∈ R

Q(αx1 + βx2, γz1 + δz2) = αQ(x1, γz1 + δz2) + βQ(x2, γz1 + δz2)

= γQ(αx1 + βx2, z1) + δQ(αx1 + βx2, z2).

The bilinear form Q is said to be symmetric if Q(x, z) = Q(z, x).

Let B[X,Y] denote the set of all continuous bilinear maps from
X to Y.

If Y = R, the bilinear map Q is call a bilinear form and we
write Q[X] := B[X,R].



Differentiability
Let U ⊂ E be open.
f : U → R is differentiable at x ∈ U if there exists a vector,
denoted by ∇f(x) ∈ E, satisfying

lim
h→0

f(x+ h)− f(x)− 〈∇f(x), h〉
‖h‖

= 0.

We call ∇f(x) the gradient of f at x.
If E = Rn,

∇f(x) =


∂f(x)
∂x1
∂f(x)
∂x2
...

∂f(x)
∂xn

 .

Let the symbol o(r) represent the class of functions satisfying
0 = limr↓0 o(r)/r. Then f is differentiable at x if and only if

f(x+ h) = f(x) + 〈∇f(x), h〉+ o(‖h‖).
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Differentiability

If the mapping ∇f : U → Rn is well-defined and continuous, we say f
is C1-smooth on U .

If the gradient satisfies the stronger Lipschitz property

‖∇f(y)−∇f(x)‖ ≤ β‖y − x‖ holds for all x, y ∈ U,

then we say that f is β-smooth.

More generally, a mapping F : U → Y is differentiable at x ∈ U if
there exists a linear mapping from E to Y, denoted by F ′(x),
satisfying

F (x+ h) = F (x) + F ′(x)h+ o(‖h‖).

If one chooses bases in E and Y, then F ′(x) ∈ L(E,Y) can be given a
matrix representation which is denoted by ∇F (x) and called the
Jacobian of F at x. If the assignment x 7→ F ′(x) is continuous, we say
that F is C1-smooth.
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that F is C1-smooth.



Differentiability

If E = Rn and Y = Rm, we can write F in terms of coordinate
functions F (x) = (F1(x), . . . , Fm(x)), and then the Jacobian is
simply

∇F (x) =


∇F1(x)T

∇F2(x)T

...
∇Fm(x)T

 =


∂F1(x)
∂x1

∂F1(x)
∂x2

. . . ∂F1(x)
∂xn

∂F2(x)
∂x1

∂F2(x)
∂x2

. . . ∂F2(x)
∂xn

...
...

. . .
...

∂Fm(x)
∂x1

∂Fm(x)
∂x2

. . . ∂Fm(x)
∂xn

 .



Calculus Rules

Let U ⊂ E and W ⊂ Y be open.
Let Fi : U → Y, i = 1, 2, F : U →W , and H : W → Z be C1
(this can be significantly weakened).

– If F ∈ L(E,Y), the F ′(x) = F for al x ∈ E.

– For all λ ∈ R and x ∈ U , ′(λF )′(x) = λF ′(x).

– For all x ∈ U , (F1 + F2)
′(x) = F ′1(x) + F ′2(x).

– The Chain Rule: The mapping G : U → Z given by
G := H ◦F is differentiable on U with G′(x) = H ′(F (x)) ◦F ′(x).



Example

Let A ∈ Rs×n and B ∈ Rn×t and consider the mapping
T : Rm×n → Rs×t given by

T (X) := AXB.

Clearly, T ∈ L(Rm×n,Rs×t), hence

T ′(X)Y = T (Y ) = AY B ∀ X ∈ Rm×n.

What is ∇T ?

Representing the matrix ∇T requires choosing bases in both
Rm×n and Rs×t and then recording the action of T on these
bases. This is doable, but it is a real mess. A helpful tool in this
regard is the Kronecker product to be discussed later.
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The Second Derivative

Let F : X→ Y we say that F is twice differentiable at x if F is
differentiable at x and there is a bilinear form Q such that

lim
z→x

∥∥F (z)− (F (z) +∇F (x)(z − x) + 1
2Q(z − x, z − x))

∥∥
‖y − x‖2

= 0.

We call Q the second derivative of F at x and write Q = F ′′(x).
If the mapping x→ F ′′(x) is continuous, we say that F is C2.

When X = Rn and Y = R, we call F ′′(x) the Hessian of F at x
and write ∇2F (x) := F ′′(x). If all of the second partials of F
are continuous, then ∇2F (x) ∈ Sn is the n× n matrix of second
partials.

Again, the little-o notation gives
F (y)=F (x)+〈∇F (x), (y−x)〉+ 1

2 〈∇
2F (x)(y−x), (y−x)〉+o(‖y−x‖2).
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Computing Derivatives

Consider the linear transformation T ∈ L[Rn×n,Rn×n] given by

T (X) = AX +XB for fixed A,B ∈ Rn×n,

and let F : Rn → Rn×n be given by

F (x) := diag(x),

where the linear transformation diag(·) ∈ L[Rn,Rn×n] maps x
to the n×n matrix whose diagonal is x. What is (T ◦ diag )′(x)?

Since both T and diag are linear, so is (T ◦ diag ). Therefore,

(T ◦ diag(·))′(x)(d) = (T ◦ diag(·))(d) = A diag(d) + diag(d)B

for all x ∈ Rn.

What is ∇(T ◦ diag(·))?
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Computing Derivatives

Let A ∈ Rm×n, b ∈ Rm, and define f : Rn → R by
f(x) := 1

2 ‖Ax− b‖
2 .

Compute ∇f(x) and ∇2f(x).

f(x+ ∆x) =
1

2
‖(Ax− b) +A∆x‖2

=
1

2
‖Ax− b‖2 + 〈Ax− b, A∆x〉+

1

2
(∆x)TATA∆x

= f(x) + 〈AT (Ax− b),∆x〉+
1

2
〈(ATA)∆x,∆x〉.

Therefore ,

∇f(x) = AT (Ax− b) and ∇2f(x) = ATA.
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Computing Derivatives
Let A ∈ Rm×n, B ∈ Rn×n, and C ∈ Rn×k, and define
Q : Rn×n ×Rn×n → Rm×k by

Q(X,Z) = AXTBZC.
Q is a bilinear mapping in B[Rn×n,Rm×k]. This bilinear mapping is
a bilinear form if m = k = 1, and it is symmetric if m = k = 1,
AT = C, and B ∈ Sn.
Compute Q′.

Q(X + ∆X,Z + ∆Z)

= A(X + ∆X)TB(Z + ∆Z)C

= AXTBZC +A(∆X)TBZC +AXB(∆Z)C +A(∆X)TB(∆Z)C

= Q(X,Z) + (A(∆X)TBZC +AXB(∆Z)C) +
1

2
(2Q(∆X,∆Z)).

Hence

Q′(X,Z)(U, V ) = Q(U,Z)+Q(X,V ) and Q′′(X,Z)(U, V ) = 2Q(U, V ).

Is this true of all bilinear forms regardless of the space?
What is the gradient and Hessian when m = k = 1, AT = C, and
B ∈ Sn?
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Is this true of all bilinear forms regardless of the space?

What is the gradient and Hessian when m = k = 1, AT = C, and
B ∈ Sn?



Computing Derivatives
Let A ∈ Rm×n, B ∈ Rn×n, and C ∈ Rn×k, and define
Q : Rn×n ×Rn×n → Rm×k by

Q(X,Z) = AXTBZC.
Q is a bilinear mapping in B[Rn×n,Rm×k]. This bilinear mapping is
a bilinear form if m = k = 1, and it is symmetric if m = k = 1,
AT = C, and B ∈ Sn.
Compute Q′.
Q(X + ∆X,Z + ∆Z)

= A(X + ∆X)TB(Z + ∆Z)C

= AXTBZC +A(∆X)TBZC +AXB(∆Z)C +A(∆X)TB(∆Z)C

= Q(X,Z) + (A(∆X)TBZC +AXB(∆Z)C) +
1

2
(2Q(∆X,∆Z)).

Hence

Q′(X,Z)(U, V ) = Q(U,Z)+Q(X,V ) and Q′′(X,Z)(U, V ) = 2Q(U, V ).

Is this true of all bilinear forms regardless of the space?
What is the gradient and Hessian when m = k = 1, AT = C, and
B ∈ Sn?



Accuracy of Linear and Quadratic Approximations

Let U ⊂ E be open. Consider a function f : U → R and a point
x ∈ U . Multivariate calculus identifies the following two
functions as the “best” linear and quadratic approximations of f
near x, respectively:

lx(y) := f(x) + 〈∇f(x), y − x〉,

Qx(y) := f(x) + 〈∇f(x), y − x〉+ 1
2〈∇

2f(x)(y − x), y − x〉.

Can we quantify how well these functions approximate f near x?



Accuracy of Linear and Quadratic Approximations

Given x, y ∈ E define ϕ : R→ R by
ϕ(t) := f(x+ t(y − x)).

Then the following approximation results follow directly from Taylor
approximations to ϕ since ϕ′(0) = 〈∇f(x), y − x〉 and
ϕ′′(0) = 〈∇2f(x)(y − x), y − x〉.

Theorem (Accuracy in approximation)
Consider a C1-smooth function f : U → R and two points x, y ∈ U .
Then we have

f(y) = lx(y) +

∫ 1

0

〈∇f(x+ t(y − x))−∇f(x), y − x〉 dt.

If f is C2-smooth, then the equation holds:

f(y) = Qx(y) +

∫ 1

0

∫ t

0

〈(∇2f(x+ s(y − x))−∇2f(x))(y − x), y − x〉 ds dt.



Accuracy of Linear and Quadratic Approximations

Corollary (Accuracy in approximation under Lipschitz
conditions)

1 Suppose that f : U → R is a β-smooth function. Then for any points
x, y ∈ U the inequality∣∣∣f(y)− lx(y)

∣∣∣ ≤ β

2
‖y − x‖2 holds.

2 If f is C2-smooth and satisfies the estimate

‖∇2f(y)−∇2f(x)‖op ≤M‖y − x‖ for all x, y ∈ U,

then the inequality∣∣∣f(y)−Qx(y)
∣∣∣ ≤ M

6
‖y − x‖3, holds for all x, y ∈ U.



Lipschitz Constants and the Mean Value Theorem
Let U ⊂ E be open and f : U → R be C1 on U .
Given x, y ∈ U with x 6= y, set ϕ(t) := f(x+ t(y − x)).
As we have seen ϕ′(t) = 〈∇f(x+ t(y − x)), (y − x)〉. Hence, by
the 1-dimensional mean value theorem (MVT), there exists
t̄ ∈ (0, 1) such that
f(y)− f(x) = ϕ(1)− ϕ(0) = ϕ′(t̄) = 〈∇f(x+ t̄(y − x)), (y − x)〉.
Consequently, given z ∈ U and ε > 0 such that z + εB ⊂ U ,

|f(y)− f(x)| ≤ L ‖y − x‖ ∀ x, y ∈ Bε(z),

where
L := max {‖∇f(v)‖ | v ∈ z + εB},

and B := {x | ‖x‖ ≤ 1} is the closed unit ball.
That is, f is locally Lipschitz continuous on U with the local
Lipschitz constants given by the gradient. Moreover, if clU is
compact with ∇f continuous there, then L an be chosen
uniformly for all of clU .



Lipschitz Constants and the Mean Value Theorem

Let U ⊂ E be open and F : U → Rm be C1 on U with
component functions Fi.

Although, there is no MVT for F , we do have

F (y)−F (x)=

∫ 1

0
∇F (x+t(y−x))(y−x)dt=


∫ 1
0 〈∇F1(x+t(y−x)), (y−x)〉dt

...∫ 1
0 〈∇Fm(x+t(y−x)), (y−x)〉dt

.
Hence, given z ∈ U and ε > 0 such that Bε(z) ⊂ U ,

‖F (y)− F (x)‖ ≤ L ‖y − x‖ ∀ x, y ∈ Bε(z),

where
L := max

{
‖∇F (v)‖op | v ∈ z + εB

}
.

Again, compactness allows us to choose L uniformly on clU .



First-Order Optimality Conditions

Let f : E→ R, the directional derivative of f at x in the
direction d is given by

f ′(x; d) := lim
t↓0

f(x+ td)− f(x)

t
.

If f is differentiable at x, then f ′(x; d) = 〈∇f(x), d〉.

Theorem (First-order necessary conditions)
Suppose that x is a local minimizer of a function f : U → R.
Then f ′(x; d) ≥ 0 whenever f ′(x; d) exists. If f is differentiable
at x, then ∇f(x) = 0.



Second-Order Optimality Conditions

Theorem (Second-order conditions)
Consider a C2-smooth function f : U → R and fix a point x ∈ U .
Then the following are true.
1. (Necessary conditions) If x ∈ U is a local minimizer of f , then

∇f(x) = 0 and ∇2f(x) � 0.

2. (Sufficient conditions) If the relations

∇f(x) = 0 and ∇2f(x) � 0

hold, then x is a local minimizer of f . More precisely, it holds:

liminf
y→x

f(y)− f(x)
1
2‖y − x‖2

≥ λn(∇2f(x)).



Rates of Convergence

Let {ak} ∈ R+ be such that ak → 0.

Sublinear rate: We will say that ak converges sublinearly if
there exist constants c, q > 0 satisfying

ak ≤
c

kq
for all k.

Larger q and smaller c indicates faster rates of convergence. In
particular, given a target precision ε > 0, we have

ak ≤ ε ∀ k ≥ (
c

ε
)1/q.

The importance of the value of c should not be discounted; the
convergence guarantee depends strongly on this value. In
applications, it is usually dimension dependent.



Rates of Convergence

Linear rate: The sequence ak is said to converge linearly if
there exist constants c > 0 and q ∈ (0, 1] satisfying

ak ≤ c · (1− q)k for all k.

In this case, we call (1− q) the linear rate of convergence. Fix a
target accuracy ε > 0, and let us see how large k needs to be to
ensure ak ≤ ε. Taking logs we get

c · (1− q)k ≤ ε ⇐⇒ k ≥ −1

ln (1− q)
ln
(c
ε

)
.

Taking into account the inequality ln(1− q) ≤ −q, we deduce
that

ak ≤ ε ∀ k ≥ 1
q ln

(c
ε

)
.

The dependence on q is strong, while the dependence on c is
very weak, since the latter appears inside a log.



Rates of Convergence

Quadratic rate: The sequence ak is said to converge
quadratically if there is a constant c satisfying

ak+1 ≤ c · a2k for all k.

The recurrence yields

ak+1 ≤
1

c
(ca0)

2k+1
.

The constant c places conditions on when quadratic convergence
begins. In particular, if ca0 < 1, then the inequality ak ≤ ε
holds for all k ≥ log2 ln( 1

cε)− log2(ln( 1
ca0

)). The dependence on
c is negligible.

Note: 2−k converges linearly while 2−2
k

converges quadratically.


