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Linear Algebra and Matrix Analysis

Vector Spaces

Throughout this course, the base field F of scalars will be R or C. Recall that a vector
space is a nonempty set V on which are defined the operations of addition (for v, w ∈ V ,
v+w ∈ V ) and scalar multiplication (for α ∈ F and v ∈ V , αv ∈ V ), subject to the following
conditions:

1. x+ y = y + x

2. (x+ y) + z = x+ (y + z)

3. There exists an element 0 ∈ V such that x+ 0 = x for all x

4. For each x ∈ V , there is an element of V denoted −x such that x+ (−x) = 0

5. α(βx) = (αβ)x

6. α(x+ y) = αx+ αy

7. (α + β)x = αx+ βx

8. 1x = x

A subset W ⊂ V is a subspace if W is closed under addition and scalar multiplication, so W
inherits a vector space structure of its own.

Examples:

(1) {0}

(2) Fn =


 x1

...
xn

 : each xj ∈ F

 , n ≥ 1

(3) Fm×n =


a11 · · · a1n

...
...

am1 · · · amn

 : each aij ∈ F

 , m, n ≥ 1

1



2 Linear Algebra and Matrix Analysis

(4) F∞ =


 x1

x2
...

 : each xj ∈ F


(5) `1(F) ⊂ F∞, where `1(F) =


 x1

x2
...

 :
∞∑
j=1

|xj| <∞


`∞(F) ⊂ F∞, where `∞(F) =


 x1

x2
...

 : sup
j
|xj| <∞


`1(F) and `∞(F) are clearly subspaces of F∞.

Let 0 < p <∞, and define `p(F) =


 x1

x2
...

 :
∞∑
j=1

|xj|p <∞

.

Since

|x+ y|p ≤ (|x|+ |y|)p ≤ (2 max(|x|, |y|))p

= 2p max(|x|p, |y|p) ≤ 2p(|x|p + |y|p),

it follows that `p(F) is a subspace of F∞.

Exercise: Show that `p(F) $ `q(F) if 0 < p < q ≤ ∞.

(6) Let X be a nonempty set; then the set of all functions f : X → F has a natural
structure as a vector space over F: define f1 + f2 by (f1 + f2)(x) = f1(x) + f2(x), and
define αf by (αf)(x) = αf(x).

(7) For a metric space X, let C(X,F) denote the set of all continuous F-valued functions on
X. C(X,F) is a subspace of the vector space defined in (6). Define Cb(X,F) ⊂ C(X,F)
to be the subspace of all bounded continuous functions f : X → F.

(8) If U ⊂ Rn is a nonempty open set and k is a nonnegative integer, the set Ck(U,F) ⊂
C(U,F) of functions all of whose derivatives of order at most k exist and are continuous
on U is a subspace of C(U,F). The set C∞(U,F) =

⋂∞
k=0C

k(U,F) is a subspace of
each of the Ck(U,F).

(9) Define P(F) ⊂ C∞(R,F) to be the space of all F-valued polynomials on R:

P(F) = {a0 + a1x+ · · ·+ amx
m : m ≥ 0, each aj ∈ F}.

Each p ∈ P(F) is viewed as a function p : R→ F given by p(x) = a0 +a1x+ · · ·+amxm.

(10) Define Pn(F) ⊂ P(F) to be the subspace of all polynomials of degree ≤ n.
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(11) Let V = {u ∈ C2(R,C) : u′′ + u = 0}. It is easy to check directly from the definition
that V is a subspace of C2(R,C). Alternatively, one knows that

V = {a1 cosx+ a2 sinx : a1, a2 ∈ C} = {b1e
ix + b2e

−ix : b1, b2 ∈ C},

from which it is also clear that V is a vector space.

More generally, if L(u) = u(m) + am−1u
(m−1) + · · · + a1u

′ + a0u is an mth order linear
constant-coefficient differential operator, then V = {u ∈ Cm(R,C) : L(u) = 0} is a
vector space. V can be explicitly described as the set of all linear combinations of
certain functions of the form xjerx where j ≥ 0 and r is a root of the characteristic
polynomial rm + am−1r

m−1 + · · ·+ a1r+ a0 = 0. For details, see Chapter 3 of Birkhoff
& Rota.

Convention: Throughout this course, if the field F is not specified, it is assumed to be C.

Linear Independence, Span, Basis

Let V be a vector space. A linear combination of the vectors v1, . . . , vm ∈ V is a vector
v ∈ V of the form

v = α1v1 + · · ·+ αmvm

where each αj ∈ F. Let S ⊂ V be a subset of V . S is called linearly independent if for every
finite subset {v1, . . . , vm} of S, the linear combination

∑m
i=1 αivi = 0 iff α1 = · · · = αm = 0.

Otherwise, S is called linearly dependent. Define the span of S (denoted Span(S)) to be the
set of all linear combinations of all finite subsets of S. (Note: a linear combination is by
definition a finite sum.) If S = ∅, set Span(S) = {0}. S is said to be a basis of V if S is
linearly independent and Span(S) = V .

Facts: (a) Every vector space has a basis; in fact if S is any linearly independent set in V , then
there is a basis of V containing S. The proof of this in infinite dimensions uses Zorn’s lemma
and is nonconstructive. Such a basis in infinite dimensions is called a Hamel basis. Typically
it is impossible to identify a Hamel basis explicitly, and they are of little use. There are
other sorts of “bases” in infinite dimensions defined using topological considerations which
are very useful and which we will consider later.

(b) Any two bases of the same vector space V can be put into 1−1 correspondence. Define
the dimension of V (denoted dimV ) ∈ {0, 1, 2, . . .} ∪ {∞} to be the number of elements in
a basis of V . The vectors e1, . . . , en, where

ej =


0
...
1
...
0

← jth entry,

form the standard basis of Fn, and dimFn = n.
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Remark. Any vector space V over C may be regarded as a vector space over R by restriction
of the scalar multiplication. It is easily checked that if V is finite-dimensional with basis
{v1, . . . , vn} over C, then {v1, . . . , vn, iv1, . . . , ivn} is a basis for V over R. In particular,
dimR V = 2 dimC V .

The vectors e1, e2, . . . ∈ F∞ are linearly independent. However, Span{e1, e2, . . . } is the
proper subset F∞0 ⊂ F∞ consisting of all vectors with only finitely many nonzero components.
So {e1, e2, . . .} is not a basis of F∞. But {xm : m ∈ {0, 1, 2, . . .}} is a basis of P .

Now let V be a finite-dimensional vector space, and {v1, . . . , vn} be a basis for V . Any

v ∈ V can be written uniquely as v =
n∑
i=1

xivi for some xi ∈ F. So we can define a map

from V into Fn by v 7→

 x1
...
xn

. The xi’s are called the coordinates of v with respect to the

basis {v1, . . . , vn}. This coordinate map clearly preserves the vector space operations and is
bijective, so it is an isomorphism of V with Fn in the following sense.

Definition. Let V , W be vector spaces. A map L : V → W is a linear transformation if

L(α1v1 + α2v2) = α1L(v1) + α2L(v2)

for all v1, v2 ∈ V and α1, α2 ∈ F. If in addition L is bijective, then L is called a (vector
space) isomorphism.

Even though every finite-dimensional vector space V is isomorphic to Fn, where n =
dimV , the isomorphism depends on the choice of basis. Many properties of V are indepen-
dent of the basis (e.g. dimV ). We could try to avoid bases, but it is very useful to use
coordinate systems. So we need to understand how coordinates change when the basis is
changed.

Change of Basis

Let V be a finite dimensional vector space. Let {v1, . . . , vn} and {w1, . . . , wn} be two bases for
V . For v ∈ V , let x = (x1, . . . , xn)T and y = (y1, . . . , yn)T denote the vectors of coordinates
of v with respect to the bases B1 = {v1, . . . , vn} and B2 = {w1, . . . , wn}, respectively. Here
T denotes the transpose. So v =

∑n
i=1 xivi =

∑n
j=1 yjwj. Express each wj in terms of

{v1, . . . , vn} : wj =
∑n

i=1 cijvi (cij ∈ F). Let C =

 c11 · · · c1n
...
cn1 · · · cnn

 ∈ Fn×n. Then

n∑
i=1

xivi = v =
n∑
j=1

yjwj =
n∑
i=1

(
n∑
j=1

cijyj

)
vi,

so xi =
∑n

j=1 cijyj, i.e. x = Cy. C is called the change of basis matrix.

Notation: Horn-Johnson uses Mm,n(F) to denote what we denote by Fm×n: the set of m×n
matrices with entries in F. H-J writes [v]B1 for x, [v]B2 for y, and B1 [I]B2 for C, so x = Cy
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becomes [v]B1 = B1 [I]B2 [v]B2 . Similarly, we can express each vj in terms of {w1, . . . , wn} :

vj =
∑n

i=1 bijwi (bij ∈ F). Let B =

 b11 · · · b1n
...
bn1 · · · bnn

 ∈ Fn×n. Then y = Bx. We obtain

that C and B are invertible and B = C−1.

Formal matrix notation: Write the basis vectors (v1, · · · , vn) and (w1, · · · , wn) formally in
rows. Then the equations wj =

∑n
i=1 cijvi become the formal matrix equation

(w1, · · · , wn) = (v1, · · · , vn)C

using the usual matrix multiplication rules. In general, (v1, · · · , vn) and (w1, · · · , wn) are
not matrices (although in the special case where each vj and wj is a column vector in Fn,
we have W = V C where V,W ∈ Fn×n are the matrices whose columns are the vj’s and
the wj’s, respectively). We also have the formal matrix equations v = (v1, · · · , vn)x and
v = (w1, · · · , wn)y, so

(v1, · · · , vn)x = (w1, · · · , wn)y = (v1, · · · , vn)Cy,

which gives us x = Cy as before.

Remark. We can read the matrix equation W = V C as saying that the jth column of W is
the linear combination of the columns of V whose coefficients are in the jth column of C.

Constructing New Vector Spaces from Given Ones

(1) The intersection of any family of subspaces of V is again a subspace: let {Wγ : γ ∈ G}
be a family of subspaces of V (where G is an index set); then

⋂
γ∈G

Wγ is a subspace of

V .

(2) Sums of subspaces: If W1,W2 are subspaces of V , then

W1 +W2 = {w1 + w2 : w1 ∈ W1, w2 ∈ W2}

is also a subspace, and dim(W1 + W2) + dim(W1 ∩W2) = dimW1 + dimW2. We say
that the sum W1 +W2 is direct if W1 ∩W2 = {0} (equivalently: for each v ∈ W1 +W2,
there are unique w1 ∈ W1 and w2 ∈ W2 for which v = w1 + w2), and in this case we
write W1 ⊕W2 for W1 + W2. More generally, if W1, . . . ,Wn are subspaces of V , then
W1 + · · · + Wn = {w1 + · · · + wn : wj ∈ Wj, 1 ≤ j ≤ n} is a subspace. We say that
the sum is direct if whenever wj ∈ Wj and

∑n
j=1wj = 0, then each wj = 0, and in

this case we write W1 ⊕ · · · ⊕Wn. Even more generally, if {Wγ : γ ∈ G} is a family of

subspaces of V , define
∑

γ∈GWγ = span

(⋃
γ∈G

Wγ

)
. We say that the sum is direct if

for each finite subset G′ of G, whenever wγ ∈ Wγ for γ ∈ G′ and
∑

γ∈G′ wγ = 0, then

each wγ = 0 for γ ∈ G′ (equivalently: for each β ∈ G, Wβ ∩
(∑

γ∈G,γ 6=βWγ

)
= {0}).
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(3) Direct Products: Let {Vγ : γ ∈ G} be a family of vector spaces over F. Define

V = X
γ∈G

Vγ to be the set of all functions v : G →
⋃
γ∈G

Vγ for which v(γ) ∈ Vγ for all

γ ∈ G. We write vγ for v(γ), and we write v = (vγ)γ∈G, or just v = (vγ). Define
v + w = (vγ + wγ) and αv = (αvγ). Then V is a vector space over F. (Example:
G = N = {1, 2, . . .}, each Vn = F. Then X

n≥1
Vn = F∞.)

(4) (External) Direct Sums: Let {Vγ : γ ∈ G} be a family of vector spaces over F. Define⊕
γ∈G

Vγ to be the subspace of X
γ∈G

Vγ consisting of those v for which vγ = 0 except for

finitely many γ ∈ G. (Example: For n = 0, 1, 2, . . . let Vn = span(xn) in P . Then P
can be identified with

⊕
n≥0

Vn.)

Facts: (a) If G is a finite index set, then XVγ and
⊕

Vγ are isomorphic.

(b) If each Wγ is a subspace of V and the sum
∑

γ∈GWγ is direct, then it is naturally
isomorphic to the external direct sum

⊕
Wγ.

(5) Quotients: Let W be a subspace of V . Define on V the equivalence relation v1 ∼ v2

if v1 − v2 ∈ W , and define the quotient to be the set V/W of equivalence classes. Let
v + W denote the equivalence class of v. Define a vector space structure on V/W by
defining α1(v1 +W ) +α2(v2 +W ) = (α1v1 +α2v2) +W . Define the codimension of W
in V by codim(W ) = dim(V/W ).

Dual Vector Spaces

Definition. Let V be a vector space. A linear functional on V is a function f : V → F for
which f(α1v1 + α2v2) = α1f(v1) + α2f(v2) for v1, v2 ∈ V , α1, α2 ∈ F. Equivalently, f is a
linear transformation from V to the 1-dimensional vector space F.

Examples:

(1) Let V = Fn, and let f be a linear functional on V . Set fi = f(ei) for 1 ≤ i ≤ n. Then
for x = (x1, . . . , xn)T =

∑n
i=1 xiei ∈ Fn,

f(x) =
n∑
i=1

xif(ei) =
n∑
i=1

fixi

So every linear functional on Fn is a linear combination of the coordinates.

(2) Let V = F∞. Given an N and some f1, f2, . . . , fN ∈ F, we can define a linear functional
f(x) =

∑N
i=1 fixi for x ∈ F∞. However, not all linear functionals on F∞ are of this

form.

(3) Let V = `1(F). If f ∈ `∞(F), then for x ∈ `1(F),
∑∞

i=1 |fixi| ≤ (sup |fi|)
∑∞

i=1 |xi| <∞,
so the sum f(x) =

∑∞
i=1 fixi converges absolutely, defining a linear functional on `1(F).

Similarly, if V = `∞(F) and f ∈ `1(F), f(x) =
∑∞

i=1 fixi defines a linear functional on
`∞(F).
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(4) Let X be a metric space and x0 ∈ X. Then f(u) = u(x0) defines a linear functional
on C(X).

(5) If −∞ < a < b <∞, f(u) =
∫ b
a
u(x)dx defines a linear functional on C([a, b]).

Definition. If V is a vector space, the dual space of V is the vector space V ′ of all linear
functionals on V , where the vector space operations on V ′ are given by (α1f1 + α2f2)(v) =
α1f1(v) + α2f2(v).

Remark. When V is infinite dimensional, V ′ is often called the algebraic dual space of V , as it
depends only on the algebraic structure of V . We will be more interested in linear functionals
related also to a topological structure on V . After introducing norms (which induce metrics
on V ), we will define V ∗ to be the vector space of all continuous linear functionals on
V . (When V is finite dimensional, with any norm on V , every linear functional on V is
continuous, so V ∗ = V ′.)

Dual Basis in Finite Dimensions

Let V be a finite dimensional vector space and let {v1, . . . , vn} be a basis for V . For 1 ≤ i ≤ n,
define linear functionals fi ∈ V ′ by fi(vj) = δij, where

δij =

{
1 if i = j
0 if i 6= j.

Let v ∈ V , and let x = (x1, . . . , xn)T be the vector of coordinates of v with respect to the
basis {vi, . . . , vn}, i.e., v =

∑n
i=1 xivi. Then fi(v) = xi, i.e., fi maps v into its coordinate xi.

Now if f ∈ V ′, let ai = f(vi); then

f(v) = f(
∑

xivi) =
n∑
i=1

aixi =
n∑
i=1

aifi(v),

so f =
∑n

i=1 aifi. This representation is unique (exercise), so {f1, . . . , fn} is a basis for V ′,
called the dual basis to {v1, . . . , vn}. We get dimV ′ = dimV .

If we write the dual basis in a column

 f1
...
fn

 and the coordinates (a1 · · · an) of f =

∑n
i=1 aifi ∈ V ′ in a row, then f = (a1 · · · an)

 f1
...
fn

. The defining equation of the dual

basis is (matrix multiply, evaluate)

(∗)

 f1
...
fn

 (v1 · · · vn) =

 1 0
. . .

0 1

 = I
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Change of Basis and Dual Bases: Let {w1, . . . , wn} be another basis of V related to the
first basis {v1, . . . , vn} by the change-of-basis matrix C, i.e., (w1 · · ·wn) = (v1 · · · vn)C. Left-
multiplying (∗) by C−1 and right-multiplying by C gives

C−1

 f1
...
fn

 (w1 · · ·wn) = I.

Therefore  g1
...
gn

 = C−1

 f1
...
fn

 satisfies

 g1
...
gn

 (w1 · · ·wn) = I

and so {g1, . . . , gn} is the dual basis to {w1, . . . , wn}. If (b1 · · · bn) are the coordinates of
f ∈ V ′ with respect to {g1, . . . , gn}, then

f = (b1 · · · bn)

 g1
...
gn

 = (b1 · · · bn)C−1

 f1
...
fn

 = (a1 · · · an)

 f1
...
fn

 ,

so (b1 · · · bn)C−1 = (a1 · · · an), i.e., (b1 · · · bn) = (a1 · · · an)C is the transformation law for the
coordinates of f with respect to the two dual bases {f1, . . . , fn} and {g1, . . . , gn}.

Linear Transformations

Linear transformations were defined above.

Examples:

(1) Let T : Fn → Fm be a linear transformation. For 1 ≤ j ≤ n, write

T (ej) = tj =

 t1j
...
tmj

 ∈ Fm.

If x =

 x1
...
xn

 ∈ Fn, then T (x) = T (Σxjej) = Σxjtj, which we can write as

T (x) = (t1 · · · tn)

 x1
...
xn

 =

 t11 · · · t1n
...

...
tm1 · · · tmn


 x1

...
xn

 .

So every linear transformation from Fn to Fm is given by multiplication by a matrix
in Fm×n.
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(2) One can construct linear transformations T : F∞ → F∞ by matrix multiplication. Let

T =

 t11 t12 · · ·
t21

. . .
...


be an infinite matrix for which each row has only finitely many nonzero entries. In

forming Tx for x =

(
x1
...

)
∈ F∞, each entry in Tx is given by a finite sum, so Tx

makes sense and T clearly defines a linear transformation from F∞ to itself. (How-
ever, not all linear transformations on F∞ are of this form.) The shift operators
(x1, x2, . . .)

T 7→ (0, x1, x2, . . .)
T and (x1, x2, . . .)

T 7→ (x2, x3, . . .)
T are examples of linear

transformations of this form.

(3) If sup
i,j
|tij| <∞ and x ∈ `1, then for each i,

∑∞
j=1 |tijxj| ≤ sup

i,j
|tij|

∑∞
j=1 |xj|. It follows

that matrix multiplication Tx defines a linear transformation T : `1 → `∞.

(4) There are many ways that linear transformations arise on function spaces, for example:

(a) Let k ∈ C([c, d]× [a, b]) where [a, b], [c, d] are closed bounded intervals. Define the

linear transformation L : C[a, b] → C[c, d] by L(u)(x) =
∫ b
a
k(x, y)u(y)dy. L is

called an integral operator and k(x, y) is called its kernel.

(b) Let X be a metric space and let m ∈ C(X). Then L(u)(x) = m(x)u(x) defines a
multiplier operator L on C(X).

(c) Let X and Y be metric spaces and let g : X → Y be continuous. Then L(u)(x) =
u(g(x)) defines a composition operator L : C(Y )→ C(X).

(d) u 7→ u′ defines a differential operator L : C1[a, b]→ C[a, b].

Suppose V,W are finite-dimensional with bases {v1, . . . , vn}, {w1, . . . , wm}, respectively
and suppose L : V → W is linear. For 1 ≤ j ≤ n, we can write Lvj =

∑m
i=1 tijwi. The

matrix

T =

 t11 · · · t1n
...

...
tm1 · · · tmn

 ∈ Fm×n

is called the matrix of L with respect to the bases B1 = {v1, . . . , vn}, B2 = {w1, . . . , wm}

(H-J writes T = B2 [L]B1 .) Let v ∈ V and let

 x1
...
xn

 be the coordinates of v with respect

to B1 and

 y1
...
ym

 the coordinates of Lv with respect to B2. Then

m∑
i=1

yiwi = Lv = L

(
n∑
j=1

xjvj

)
=

m∑
i=1

(
n∑
j=1

tijxj

)
wi,



10 Linear Algebra and Matrix Analysis

so for 1 ≤ i ≤ m, we have yi =
∑n

j=1 tijxj, i.e. y = Tx. Thus, in terms of the coordinates
relative to these bases, L is represented by matrix multiplication by T .

Note that the relations defining T can be rewritten as L(v1 · · · vn) = (w1 · · ·wn)T . Sup-
pose now that we choose different bases B′1 = {v′1, . . . , v′n} and B′2 = {w′1, . . . , w′m} for V and
W , respectively, with change-of-bases matrices C ∈ Fn×n, D ∈ Fm×m:

(v′1 · · · v′n) = (v1 · · · vn)C and (w′1 · · ·w′m) = (w1 · · ·wm)D.

Then

L(v′1 · · · v′n) = (w1 · · ·wn)TC = (w′1 · · ·w′m)D−1TC,

so the matrix of L in the new bases is D−1TC. In particular, if W = V and we choose
B2 = B1 and B′2 = B′1, then D = C, so the matrix of L in the new basis is C−1TC. A matrix
of the form C−1TC is said to be similar to T . Therefore similar matrices can be viewed as
representations of the same linear transformation with respect to different bases.

Linear transformations can be studied abstractly or in terms of matrix representations.
For L : V → W , the range R(L), null space N (L) (or kernel ker(L)), rank (L) = dim(R(L)),
etc., can be defined directly in terms of L, or in terms of matrix representations. If T ∈ Fn×n
is the matrix of L : V → V in some basis, it is easiest to define detL = detT and trL = trT .
Since det (C−1TC) = detT and tr (C−1TC) = trT , these are independent of the basis.

Vector Spaces of Linear Transformations

Let V , W be vector spaces. We denote by L(V,W ) the set of all linear transformations
from V to W . The set L(V,W ) has a natural vector space structure: if L1, L2 ∈ L and
α1, α2 ∈ F, define α1L1 + α2L2 ∈ L(V,W ) by (α1L1 + α2L2)(v) = α1L1(v) + α2L2(v). In
the infinite-dimensional case, we will be more interested in the vector space B(V,W ) of all
bounded linear transformations (to be defined) from V to W with respect to norms on V
and W . When V and W are finite-dimensional, it will turn out that B(V,W ) = L(V,W ).

If V , W have dimensions n, m, respectively, then the matrix representation above shows
that L(V,W ) is isomorphic to Fm×n, so it has dimension nm. When V = W , we denote
L(V, V ) by L(V ). Since the composition M◦L : V → U of linear transformations L : V → W
and M : W → U is also linear, L(V ) is naturally an algebra with composition as the
multiplication operation.

Projections

Suppose W1, W2 are subspaces of V and V = W1 ⊕ W2. Then we say W1 and W2 are
complementary subspaces. Any v ∈ V can be written uniquely as v = w1 +w2 with w1 ∈ W1,
w2 ∈ W2. So we can define maps P1 : V → W1, P2 : V → W2 by P1v = w1, P2v = w2. It
is easy to check that P1, P2 are linear. We usually regard P1, P2 as mapping V into itself
(as W1 ⊂ V , W2 ⊂ V ). P1 is called the projection onto W1 along W2 (and P2 the projection
of W2 along W1). It is important to note that P1 is not determined solely by the subspace
W1 ⊂ V , but also depends on the choice of the complementary subspace W2. Since a linear
transformation is determined by its restrictions to direct summands of its domains, P1 is
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uniquely characterized as that linear transformation on V which satisfies

P1

∣∣∣
W1

= I
∣∣∣
W1

and P1

∣∣∣
W2

= 0.

It follows easily that

P 2
1 = P1, P 2

2 = P2, P1 + P2 = I, P1P2 = P2P1 = 0.

In general, an element q of an algebra is called idempotent if q2 = q. If P : V → V is a
linear transformation and P is idempotent, then P is a projection in the above sense: it is
the projection onto R(P ) along N (P ).

This discussion extends to the case in which V = W1 ⊕ · · · ⊕Wm for subspaces Wi. We
can define projections Pi : V → Wi in the obvious way: Pi is the projection onto Wi along
W1 ⊕ · · · ⊕Wi−1 ⊕Wi+1 ⊕ · · · ⊕Wm. Then

P 2
i = Pi for 1 ≤ i ≤ m, P1 + · · ·+ Pm = I, and PiPj = PjPi = 0 for i 6= j.

If V is finite dimensional, we say that a basis {w1, . . . , wp, u1, . . . , uq} for V = W1 ⊕W2 is
adapted to the decomposition W1 ⊕W2 if {w1, . . . , wp} is a basis for W1 and {u1, . . . , uq} is
a basis for W2. With respect to such a basis, the matrix representations of P1 and P2 are[

I 0
0 0

]
and

[
0 0
0 I

]
, where the block structure is

[
p× p p× q
q × p q × q

]
,

abbreviated as:

[ p q

p ∗ ∗
q ∗ ∗

]
.

Invariant Subspaces

We say that a subspace W ⊂ V is invariant under a linear transformation L : V → V if
L(W ) ⊂ W . If V is finite dimensional and {w1, . . . , wp} is a basis for W which we complete
to some basis {w1, . . . , wp, u1, . . . , uq} of V , then W is invariant under L iff the matrix of L
in this basis is of the form [ p q

p ∗ ∗
q 0 ∗

]
,

i.e., block upper-triangular.
We say that L : V → V preserves the decomposition W1 ⊕ · · · ⊕Wm = V if each Wi is

invariant under L. In this case, L defines linear transformations Li : Wi → Wi, 1 ≤ i ≤ m,
and we write L = L1 ⊕ · · · ⊕ Lm. Clearly L preserves the decomposition iff the matrix T of
L with respect to an adapted basis is of block diagonal form

T =


T1 0

T2

. . .

0 Tm

 ,
where the Ti’s are the matrices of the Li’s in the bases of the Wi’s.
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Nilpotents

A linear transformation L : V → V is called nilpotent if Lr = 0 for some r > 0. A basic
example is a shift operator on Fn: define Se1 = 0, and Sei = ei−1 for 2 ≤ i ≤ n. The matrix
of S is denoted Sn:

Sn =


0 1 0

. . . . . .

1
0 0

 ∈ Fn×n.

Note that Sm shifts by m : Smei = 0 for 1 ≤ i ≤ m, and Smei = ei−m for m + 1 ≤ i ≤ n.
Thus Sn = 0. For 1 ≤ m ≤ n− 1, the matrix (Sn)m of Sm is zero except for 1’s on the mth

super diagonal (i.e., the ij elements for j = i+m (1 ≤ i ≤ n−m) are 1’s):

(Sn)m =


0 · · · 0 1 0

. . . . . . . . . 1
. . . . . . 0

0
. . . 0


←− (1,m+ 1) element

←− (n−m,n) element.

Note, however that the analogous shift operator on F∞ defined by: Se1 = 0, Sei = ei−1 for
i ≥ 2, is not nilpotent.

Structure of Nilpotent Operators in Finite Dimensions

We next prove a theorem which describes the structure of all nilpotent operators in finite
dimensions. This is an important result in its own right and will be a key step in showing
that every matrix is similar to a matrix in Jordan form.

Theorem. Let V be finite dimensional and L : V → V be nilpotent. There is a basis for V
in which L is a direct sum of shift operators.

Proof. Since L is nilpotent, there is an integer r so that Lr = 0 but Lr−1 6= 0. Let v1, . . . , vl1
be a basis for R(Lr−1), and for 1 ≤ i ≤ l1, choose wi ∈ V for which vi = Lr−1wi. (As an
aside, observe that

V = N (Lr) = N (Lr−1)⊕ span{w1, . . . , wl1}.)

We claim that the set

S1 = {Lkwi : 0 ≤ k ≤ r − 1, 1 ≤ i ≤ l1}

is linearly independent. Suppose

l1∑
i=1

r−1∑
k=0

cikL
kwi = 0.
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Apply Lr−1 to obtain
l1∑
i=1

ci0L
r−1wi = 0.

Hence
∑l1

i=1 ci0vi = 0, so ci0 = 0 for 1 ≤ i ≤ l1. Now apply Lr−2 to the double sum to obtain

0 =

l1∑
i=1

ci1L
r−1wi =

l1∑
i=1

ci1vi,

so ci1 = 0 for 1 ≤ i ≤ l1. Successively applying lower powers of L shows that all cik = 0.
Observe that for 1 ≤ i ≤ l1, span{Lr−1wi, L

r−2wi, . . . , wi} is invariant under L, and L
acts by shifting these vectors. It follows that on span(S1), L is the direct sum of l1 copies of
the (r × r) shift Sr, and in the basis

{Lr−1w1, L
r−2w1, . . . , w1, L

r−1w2, . . . , w2, . . . , L
r−1wl1 , . . . , wl1}

for span(S1), L has the matrix

 Sr 0
. . .

0 Sr

. In general, span(S1) need not be all of V ,

so we aren’t done.
We know that {Lr−1w1, . . . , L

r−1wl1} is a basis for R(Lr−1), and that

{Lr−1w1, . . . , L
r−1wl1 , L

r−2w1, . . . , L
r−2wl1}

are linearly independent vectors in R(Lr−2). Complete the latter to a basis of R(Lr−2) by
appending, if necessary, vectors ũ1, . . . , ũl2 . As before, choose w̃l1+j for which

Lr−2w̃l1+j = ũj, 1 ≤ j ≤ l2.

We will replace w̃l1+j (1 ≤ j ≤ l2) by vectors in N (Lr−1). Note that

Lũj = Lr−1w̃l1+j ∈ R(Lr−1),

so we may write

Lr−1w̃l1+j =

l1∑
i=1

aijL
r−1wi

for some aij ∈ F. For 1 ≤ j ≤ l2, set

wl1+j = w̃l1+j −
l1∑
i=1

aijwi and uj = Lr−2wl1+j.

Replacing the ũj’s by the uj’s still gives a basis of R(Lr−2) as above (exercise). Clearly
Lr−1wl1+j = 0 for 1 ≤ j ≤ l2. (Again as an aside, observe that we now have the direct sum
decomposition

N (Lr−1) = N (Lr−2)⊕ span{Lw1, . . . , Lwl1 , wl1+1, . . . , wl1+l2}.)
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So we now have a basis for R(Lr−2) of the form

{Lr−1w1, . . . , L
r−1wl1 , L

r−2w1, . . . , L
r−2wl1 , L

r−2wl1+1, . . . , L
r−2wl1+l2}

for which Lr−1wl1+j = 0 for 1 ≤ j ≤ l2. By the same argument as above, upon setting

S2 = {Lkwl1+j : 0 ≤ k ≤ r − 2, 1 ≤ j ≤ l2},

we conclude that S1 ∪ S2 is linearly independent, and L acts on span(S2) as a direct sum of
l2 copies of the (r− 1)× (r− 1) shift Sr−1. We can continue this argument, decreasing r one
at a time and end up with a basis of R(L0) = V in which L acts as a direct sum of shift
operators:

L =

l1︷ ︸︸ ︷
Sr ⊕ · · · ⊕ Sr⊕

l2︷ ︸︸ ︷
Sr−1 ⊕ · · · ⊕ Sr−1⊕ · · · ⊕

lr︷ ︸︸ ︷
S1 ⊕ · · · ⊕ S1 (Note: S1 = 0 ∈ F1×1)

�

Remarks:

(1) For 1 ≤ j, let kj = dim(N (Lj)). It follows easily from the above that 0 < k1 < k2 <
· · · < kr = kr+1 = kr+2 = · · · = n, and thus r ≤ n.

(2) The structure of L is determined by knowing r and l1, . . . , lr. These, in turn, are
determined by knowing k1, . . . , kn (see the homework).

(3) General facts about nilpotent transformations follow from this normal form. For ex-
ample, if dimV = n and L : V → V is nilpotent, then

(i) Ln = 0

(ii) trL = 0

(iii) detL = 0

(iv) det (I + L) = 1

(v) for any λ ∈ F, det (λI − L) = λn

Dual Transformations

Recall that if V and W are vector spaces, we denote by V ′ and L(V,W ) the dual space of
V and the space of linear transformations from V to W , respectively.

Let L ∈ L(V,W ). We define the dual, or adjoint transformation L′ : W ′ → V ′ by
(L′g)(v) = g(Lv) for g ∈ W ′, v ∈ V . Clearly L 7→ L′ is a linear transformation from
L(V,W ) to L(W ′, V ′) and (L ◦M)′ = M ′ ◦ L′ if M ∈ L(U, V ).

When V , W are finite dimensional and we choose bases for V and W , we get corre-
sponding dual bases, and we can represent vectors in V , W , V ′, W ′ by their coordinate
vectors

x =

 x1
...
xn

 y =

 y1
...
ym

 a = (a1 · · · an) b = (b1 · · · bm).
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Also, L is represented by a matrix T ∈ Fm×n for which y = Tx. Now if g ∈ W ′ has
coordinates b = (b1 · · · bm), we have

g(Lv) = (b1 · · · bm)T

 x1
...
xn

 ,

so L′g has coordinates (a1 · · · an) = (b1 · · · bm)T . Thus L is represented by left-multiplication
by T on column vectors, and L′ is represented by right-multiplication by T on row vectors.
Another common convention is to represent the dual coordinate vectors also as columns;
taking the transpose in the above gives a1

...
an

 = T T

 b1
...
bm

 ,

so L′ is represented by left-multiplication by T T on column vectors. (T T is the transpose of
T : (T T )ij = tji.)

We can take the dual of V ′ to obtain V ′′. There is a natural inclusion V → V ′′: if v ∈ V ,
then f 7→ f(v) defines a linear functional on V ′. This map is injective since if v 6= 0, there
is an f ∈ V ′ for which f(v) 6= 0. (Proof: Complete {v} to a basis for V and take f to be
the first vector in the dual basis.)

We identify V with its image, so we can regard V ⊂ V ′′. If V is finite dimensional, then
V = V ′′ since dimV = dimV ′ = dimV ′′. If V is infinite dimensional, however, then there
are elements of V ′′ which are not in V .

If S ⊂ V is a subset, we define the annihilator Sa ⊂ V ′ by

Sa = {f ∈ V ′ : f(v) = 0 for all v ∈ S}.

Clearly Sa = (span(S))a. Now (Sa)a ⊂ V ′′, and if dimV < ∞, we can identify V ′′ = V as
above.

Proposition. If dimV <∞, then (Sa)a = span(S).

Proof. It follows immediately from the definition that span(S) ⊂ (Sa)a. To show (Sa)a ⊂
span(S), assume without loss of generality that S is a subspace. We claim that if W is an
m-dimensional subspace of V and dimV = n, then dimW a = codimW = n−m. To see this,
choose a basis {w1, . . . , wm} for W and complete it to a basis {w1, . . . , wm+1, . . . , wn} for V .
Then clearly the dual basis vectors {fm+1, . . . , fn} are a basis for W a, so dimW a = n−m.
Hence dim(Sa)a = n − dimSa = n − (n − dimS) = dimS. Since we know S ⊂ (Sa)a, the
result follows. �

In complete generality, we have

Proposition. Suppose L ∈ L(V,W ). Then N (L′) = R(L)a.

Proof. Clearly both are subspaces of W ′. Let g ∈ W ′. Then g ∈ N (L′) ⇐⇒ L′g = 0 ⇐⇒
(∀v ∈ V ) (L′g)(v) = 0⇐⇒ (∀ v ∈ V ) g(Lv) = 0⇐⇒ g ∈ R(L)a. �
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As an immediate consequence of the two Propositions above we conclude:

Corollary. Suppose L ∈ L(V,W ) and dimW <∞. Then R(L) = N (L′)a.

We are often interested in identifying R(L) for some L ∈ L(V,W ), or equivalently in
determining those w ∈ W for which there exists v ∈ V satisfying Lv = w. If V and W
are finite-dimensional, choose bases of V , W , thereby obtaining coordinate vectors x ∈ Fn,
y ∈ Fm for v, w and a matrix T representing L. This question then amounts to determining
those y ∈ Fm for which the linear system Tx = y can be solved. According to the Corollary
above, we haveR(L) = N (L′)a. Thus there exists v ∈ V satisfying Lv = w iff g(w) = 0 for all

g ∈ W ′ for which L′g = 0. In terms of matrices, Tx = y is solvable iff (b1 · · · bm)

 y1
...
ym

 = 0

for all (b1 · · · bm) for which (b1 · · · bm)T = 0, or equivalently, T T

 b1

· · ·
bm

 = 0. These are

often called the compatibility conditions for solving the linear system Tx = y.

Bilinear Forms

A function ϕ : V × V → F is called a bilinear form if it is linear in each variable separately.

Examples:

(1) Let V = Fn. For any matrix A ∈ Fn×n,

ϕ(y, x) =
n∑
i=1

n∑
j=1

aijyixj = yTAx

is a bilinear form. In fact, all bilinear forms on Fn are of this form: since

ϕ
(∑

yiei,
∑

xjej

)
=

n∑
i=1

n∑
j=1

yixjϕ(ei, ej),

we can just set aij = ϕ(ei, ej). Similarly, for any finite-dimensional V , we can choose
a basis {v1, . . . , vn}; if ϕ is a bilinear form on V and v =

∑
xjvj, w =

∑
yivi, then

ϕ(w, v) =
n∑
i=1

n∑
j=1

yixjϕ(vi, vj) = yTAx

where A ∈ Fn×n is given by aij = ϕ(vi, vj). A is called the matrix of ϕ with respect
to the basis {v1, . . . , vn}.

(2) One can also use infinite matrices (aij)i,j≥1 for V = F∞ as long as convergence con-
ditions are imposed. For example, if all |aij| ≤ M , then ϕ(y, x) =

∑∞
i=1

∑∞
j=1 aijyixj

defines a bilinear form on `1 since
∞∑
i=1

∞∑
j=1

|aijyixj| ≤M

(
∞∑
i=1

|yi|

)(
∞∑
j=1

|xj|

)
.
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Similarly if
∑∞

i=1

∑∞
j=1 |aij| <∞, then we get a bilinear form on `∞.

(3) If V is a vector space and f, g ∈ V ′, then ϕ(w, v) = g(w)f(v) is a bilinear form.

(4) If V = C[a, b], then the following are all examples of bilinear forms:

(i) ϕ(v, u) =
∫ b
a

∫ b
a
k(x, y)v(x)u(y)dxdy, for k ∈ C([a, b]× [a, b])

(ii) ϕ(v, u) =
∫ b
a
h(x)v(x)u(x)dx, for h ∈ C([a, b])

(iii) ϕ(v, u) = v(x0)
∫ b
a
u(x)dx, for x0 ∈ [a, b]

We say that a bilinear form is symmetric if (∀ v, w ∈ V )ϕ(v, w) = ϕ(w, v). In the finite-
dimensional case, this corresponds to the condition that the matrix A be symmetric, i.e.,
A = AT , or (∀ i, j) aij = aji.

Returning to Example (1) above, let V be finite-dimensional and consider how the matrix
of the bilinear form ϕ changes when the basis of V is changed. Let (v′1, . . . , v

′
n) be another

basis for V related to the original basis (v1, . . . , vn) by change of basis matrix C ∈ Fn×n. We
have seen that the coordinates x′ for v relative to (v′1, . . . , v

′
n) are related to the coordinates

x relative to (v1, . . . , vn) by x = Cx′. If y′ and y denote the coordinates of w relative to the
two bases, we have y = Cy′ and therefore

ϕ(w, v) = yTAx = y′TCTACx′.

It follows that the matrix of ϕ in the basis (v′1, . . . , v
′
n) is CTAC. Compare this with the

way the matrix representing a linear transformation L changed under change of basis: if T
was the matrix of L in the basis (v1, . . . , vn), then the matrix in the basis (v′1, . . . , v

′
n) was

C−1TC. Hence the way a matrix changes under change of basis depends on whether the
matrix represents a linear transformation or a bilinear form.

Sesquilinear Forms

When F = C, we will more often use sesquilinear forms: ϕ : V ×V → C is called sesquilinear
if ϕ is linear in the second variable and conjugate-linear in the first variable, i.e.,

ϕ(α1w1 + α2w2, v) = ᾱ1ϕ(w1, v) + ᾱ2ϕ(w2, v).

(Sometimes the convention is reversed and ϕ is conjugate-linear in the second variable. The
two possibilities are equivalent upon interchanging the variables.) For example, on Cn all
sesquilinear forms are of the form ϕ(w, z) =

∑n
i=1

∑n
j=1 aijw̄izj for some A ∈ Cn×n. To be

able to discuss bilinear forms over R and sesquilinear forms over C at the same time, we will
speak of a sesquilinear form over R and mean just a bilinear form over R. A sesquilinear
form is said to be Hermitian-symmetric (or sometimes just Hermitian) if

(∀ v, w ∈ V )ϕ(w, v) = ϕ(v, w)

(when F = R, we say the form is symmetric). When F = C, this corresponds to the condition
that A = AH , where AH = ĀT (i.e., (AH)ij = aji) is the Hermitian transpose (or conjugate
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transpose) of A, and a matrix A ∈ Cn×n satisfying A = AH is called Hermitian. When
F = R, this corresponds to the condition A = AT (i.e., A is symmetric).

To a sesquilinear form, we can associate the quadratic form ϕ(v, v). We say that ϕ is
nonnegative (or positive semi-definite) if (∀ v ∈ V )ϕ(v, v) ≥ 0, and that ϕ is positive (or
positive definite) if ϕ(v, v) > 0 for all v 6= 0 in V . By an inner product on V , we will mean
a positive-definite Hermitian-symmetric sesquilinear form.

Examples:

(1) Fn with the Euclidean inner product 〈y, x〉 =
∑n

i=1 yixi.

(2) Let V = Fn, and let A ∈ Fn×n be Hermitian-symmetric. Define

〈y, x〉A =
n∑
i=1

n∑
j=1

aijyixj = yTAx

The requirement that 〈x, x〉A > 0 for x 6= 0 for 〈·, ·〉A to be an inner product serves to
define positive-definite matrices.

(3) If V is any finite-dimensional vector space, we can choose a basis and thus identify
V ∼= Fn, and then transfer the Euclidean inner product to V in the coordinates of
this basis. The resulting inner product depends on the choice of basis — there is no
canonical inner product on a general vector space. With respect to the coordinates
induced by a basis, any inner product on a finite-dimensional vector space V is of the
form (2).

(4) One can define an inner product on `2 by 〈y, x〉 =
∑∞

i=1 yixi. To see (from first
principles) that this sum converges absolutely, apply the finite-dimensional Cauchy-
Schwarz inequality to obtain

n∑
i=1

|yixi| ≤

(
n∑
i=1

|xi|2
) 1

2
(

n∑
i=1

|yi|2
) 1

2

≤

(
∞∑
i=1

|xi|2
) 1

2
(
∞∑
i=1

|yi|2
) 1

2

.

Now let n→∞ to deduce that the series
∑∞

i=1 yixi converges absolutely.

(5) The L2-inner product on C([a, b]) is given by 〈v, u〉 =
∫ b
a
v(x)u(x)dx. (Exercise: show

that this is indeed positive definite on C([a, b]).)

An inner product on V determines an injection V → V ′: if w ∈ V , define w∗ ∈ V ′ by
w∗(v) = 〈w, v〉. Since w∗(w) = 〈w,w〉 it follows that w∗ = 0⇒ w = 0, so the map w 7→ w∗

is injective. The map w 7→ w∗ is conjugate-linear (rather than linear, unless F = R) since
(αw)∗ = ᾱw∗. The image of this map is a subspace of V ′. If dimV < ∞, then this map is
surjective too since dimV = dimV ′. In general, it is not surjective.

Let dimV < ∞, and represent vectors in V as elements of Fn by choosing a basis. If

v, w have coordinates

 x1
...
xn

,

 y1
...
yn

, respectively, and the inner product has matrix
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A ∈ Fn×n in this basis, then

w∗(v) = 〈w, v〉 =
n∑
i=1

(
n∑
j=1

aijyi

)
xj.

It follows that w∗ has components bj =
∑n

j=1 aijyi with respect to the dual basis. Recalling

that the components of dual vectors are written in a row, we can write this as b = yTA.
An inner product on V allows a reinterpretation of annihilators. If W ⊂ V is a subspace,

define the orthogonal complement W⊥ = {v ∈ V : 〈w, v〉 = 0 for all w ∈ W}. Clearly W⊥

is a subspace of V and W ∩W⊥ = {0}. The orthogonal complement W⊥ is closely related
to the annihilator W a: it is evident that for v ∈ V , we have v ∈ W⊥ if and only if v∗ ∈ W a.
If dimV <∞, we saw above that every element of V ′ is of the form v∗ for some v ∈ V . So
we conclude in the finite-dimensional case that

W a = {v∗ : v ∈ W⊥}.

It follows that dimW⊥ = dimW a = codimW . From this and W ∩W⊥ = {0}, we deduce
that V = W ⊕W⊥. So in a finite dimensional inner product space, a subspace W has a
natural complementary subspace, namely W⊥. The induced projection onto W along W⊥

is called the orthogonal projection onto W .
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Norms

A norm is a way of measuring the length of a vector. Let V be a vector space. A norm on
V is a function ‖ · ‖ : V → [0,∞) satisfying

(i) ‖v‖ = 0 iff v = 0

(ii) ‖αv‖ = |α| · ‖v‖ for α ∈ F, v ∈ V

(iii) (triangle inequality) ‖v + w‖ ≤ ‖v‖+ ‖w‖ for v, w ∈ V .

The pair (V, ‖ · ‖) is called a normed linear space (or normed vector space).

Fact: A norm ‖ · ‖ on a vector space V induces a metric d on V by

d(v, w) = ‖v − w‖.

(Exercise: Show d is a metric on V .) All topological properties (e.g. open sets, closed sets,
convergence of sequences, continuity of functions, compactness, etc.) will refer to those of
the metric space (V, d).

Examples:

(1) `p norm on Fn (1 ≤ p ≤ ∞)

(a) p =∞ ‖x‖∞ = max
1≤i≤n

|xi| is a norm on Fn.

(b) 1 ≤ p <∞ ‖x‖p = (
∑n

i=1 |xi|p)
1
p is a norm on Fn.

The triangle inequality(
n∑
i=1

|xi + yi|p
) 1

p

≤

(
n∑
i=1

|xi|p
) 1

p

+

(
n∑
i=1

|yi|p
) 1

p

is known as “Minkowski’s inequality.” It is a consequence of Hölder’s inequality.
Integral versions of these inequalities are proved in real analysis texts, e.g., Folland
or Royden. The proofs for vectors in Fn are analogous to the proofs for integrals.
The fact that the triangle inequality holds is related to the observation that for
1 ≤ p <∞, the function x 7→ xp for x ≥ 0 is convex:

. .................. .................
................
..............
.............

..............

................

.................

..................

y

x

y = xp

(1 ≤ p <∞)

(c) 0 < p < 1 (
∑n

i=1 |xi|p)
1
p is not a norm on Fn (n > 1).

The triangle inequality does not hold. For a counterexample, let x = e1 and

y = e2. Then (
∑n

i=1 |xi + yi|p)
1
p = 2

1
p > 2 = (

∑n
i=1 |xi|p)

1
p + (

∑n
i=1 |yi|p)

1
p .
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The failure of the triangle inequality is related to the observation that for 0 <
p < 1, the map x 7→ xp for x ≥ 0 is not convex:

.

..................

.................

................

..............

.............
..............
................

................. ..................

y

x

y = xp

(0 < p < 1)

(2) `p norm on `p (subspace of F∞) (1 ≤ p ≤ ∞)

(a) p =∞ Recall `∞ = {x ∈ F∞ : supi≥1 |xi| <∞}.
‖x‖∞ = supi≥1 |xi| is a norm on `∞.

(b) 1 ≤ p <∞ Recall `p =
{
x ∈ F∞ : (

∑∞
i=1 |xi|p)

1
p <∞

}
.

‖x‖p = (
∑∞

i=1 |x|p)
1
p is a norm on `p.

The triangle inequality follows from the finite-dimensional case: exercise.

(3) Lp norm on C([a, b]) (1 ≤ p ≤ ∞) (−∞ < a < b <∞)

(a) p =∞ ‖f‖∞ = supa≤x≤b |f(x)| is a norm on C([a, b]).

Since |f(x)| is a continuous, real-valued function on the compact set [a, b], it takes
on its maximum, so the “sup” is actually a “max” here:

‖f‖∞ = max
a≤x≤b

|f(x)|.

(b) 1 ≤ p <∞ ‖f‖p =
(∫ b

a
|f(x)|pdx

) 1
p

is a norm on C([a, b]).

Use continuity of f to show that ‖f‖p = 0⇒ f(x) ≡ 0 on [a, b].

The triangle inequality(∫ b

a

|f(x) + g(x)|pdx
) 1

p

≤
(∫ b

a

|f(x)|pdx
) 1

p

+

(∫ b

a

|g(x)|pdx
) 1

p

is Minkowski’s inequality, a consequence of Hölder’s inequality.

(c) 0 < p < 1
(∫ b

a
|f(x)|pdx

) 1
p

is not a norm on C([a, b]).

“Pseudo-example”: Let a = 0, b = 1,

f(x) =

{
1 0 ≤ x < 1

2

0 1
2
< x ≤ 1

, g(x) =

{
0 0 ≤ x < 1

2

1 1
2
< x ≤ 1

.

Then(∫ 1

0

|f(x)|pdx
) 1

p

+

(∫ 1

0

|g(x)|pdx
) 1

p

=

(
1

2

) 1
p

+

(
1

2

) 1
p

= 21− 1
p < 1 =

(∫ 1

0

|f(x) + g(x)|pdx
) 1

p

,
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so the triangle inequality fails. This is only a pseudo-example because f and g are

not continuous. Exercise: Adjust these f and g to be continuous (e.g.,
@@f

�� g ) to construct a legitimate counterexample to the triangle inequality.

Remark: There is also a Minkowski inequality for integrals: if 1 ≤ p <∞ and u ∈ C([a, b]×
[c, d]), then (∫ b

a

∣∣∣∣∫ d

c

u(x, y)dy

∣∣∣∣p dx
) 1

p

≤
∫ d

c

(∫ b

a

|u(x, y)|p dx
) 1

p

dy.

Equivalence of Norms

Lemma. If (V, ‖ · ‖) is a normed linear space, then ‖ · ‖ : (V, ‖ · ‖)→ R is continuous.

Proof. For v1, v2 ∈ V , ‖v1‖ = ‖v1 − v2 + v2‖ ≤ ‖v1 − v2‖ + ‖v2‖, and thus ‖v1‖ − ‖v2‖ ≤
‖v1 − v2‖. Similarly, ‖v2‖ − ‖v1‖ ≤ ‖v2 − v1‖ = ‖v1 − v2‖. So |‖v1‖ − ‖v2‖| ≤ ‖v1 − v2‖.
Given ε > 0, let δ = ε, etc. �

Definition. Two norms ‖ · ‖1 and ‖ · ‖2, both on the same vector space V , are called
equivalent norms on V if there are constants C1, C2 > 0 such that for all v ∈ V ,

1

C1

‖v‖2 ≤ ‖v‖1 ≤ C2‖v‖2.

Remarks.

(1) If ‖v‖1 ≤ C2‖v‖2, then ‖vk − v‖2 → 0 ⇒ ‖vk − v‖1 → 0, so the identity map I :
(V, ‖ · ‖2)→ (V, ‖ · ‖1) is continuous. Likewise if ‖v‖2 ≤ C1‖v‖1, then the identity map
I : (V, ‖·‖1)→ (V, ‖·‖2) is continuous. So if two norms are equivalent, then the identity
map is bicontinuous. It is not hard to show (and it follows from a Proposition in the
next chapter) that the converse is true as well: if the identity map is bicontinuous,
then the two norms are equivalent. Thus two norms are equivalent if and only if they
induce the same topologies on V , that is, the associated metrics have the same open
sets.

(2) Equivalence of norms is easily checked to be an equivalence relation on the set of all
norms on a fixed vector space V .

The next theorem establishes the fundamental fact that on a finite dimensional vector space,
all norms are equivalent.

Norm Equivalence Theorem If V is a finite dimensional vector space, then any two norms
on V are equivalent.

Proof. Fix a basis {v1, . . . , vn} for V , and identify V with Fn (v ∈ V ↔ x ∈ Fn, where
v = x1v1 + · · · + xnvn). Using this identification, it suffices to prove the result for Fn. Let
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|x| = (
∑n

i=1 |xi|2)
1
2 denote the Euclidean norm (i.e., `2 norm) on Fn. Because equivalence

of norms is an equivalence relation, it suffices to show that any given norm ‖ · ‖ on Fn is
equivalent to the Euclidean norm | · |. For x ∈ Fn,

‖x‖ =

∥∥∥∥∥
n∑
i=1

xiei

∥∥∥∥∥ ≤
n∑
i=1

|xi| · ‖ei‖ ≤

(
n∑
i=1

|xi|2
) 1

2
(

n∑
i=1

‖ei‖2

) 1
2

by the Schwarz inequality in Rn. Thus ‖x‖ ≤ M |x|, where M = (
∑n

i=1 ‖ei‖2)
1
2 . Thus the

identity map I : (Fn, | · |)→ (Fn, ‖ · ‖) is continuous, which is half of what we have to show.
Composing the map with ‖ · ‖ : (Fn, ‖ · ‖) → R (which is continuous by the preceding

Lemma), we conclude that ‖ · ‖ : (Fn, | · |) → R is continuous. Let S = {x ∈ Fn : |x| = 1}.
Then S is compact in (Fn, | · |), and thus ‖ · ‖ takes on its minimum on S, which must be
> 0 since 0 6∈ S. Let m = min|x|=1 ‖x‖ > 0. So if |x| = 1, then ‖x‖ ≥ m. For any x ∈ Fn

with x 6= 0,
∣∣∣ x|x| ∣∣∣ = 1, so

∥∥∥ x
|x|

∥∥∥ ≥ m, i.e. |x| ≤ 1
m
‖x‖. Thus ‖ · ‖ and | · | are equivalent. �

Remarks.

(1) So all norms on a fixed finite dimensional vector space are equivalent. Be careful,
though, when studying problems (e.g. in numerical PDE) where there is a sequence
of finite dimensional spaces of increasing dimensions: the constants C1 and C2 in the
equivalence can depend on the dimension (e.g. ‖x‖2 ≤

√
n‖x‖∞ in Fn).

(2) The Norm Equivalence Theorem is not true in infinite dimensional vector spaces, as
the following examples show.

Example. Recall that F∞0 = {x ∈ F∞ : (∃N)(∀n ≥ N) xn = 0}. On F∞0 , the `p norm and
`q norm are not equivalent for 1 ≤ p < q ≤ ∞. We will show the case p = 1, q = ∞ here.
Note that ‖x‖∞ ≤

∑∞
i=1 |xi| = ‖x‖1, so I : (F∞0 , ‖ · ‖1)→ (F∞0 , ‖ · ‖∞) is continuous. But if

y1 = (1, 0, 0, · · · ), y2 = (1, 1, 0, · · · ), y3 = (1, 1, 1, 0, · · · ), · · ·

then ‖yn‖∞ = 1 ∀n, but ‖yn‖1 = n. So there does not exist a constant C for which
(∀x ∈ F∞0 )‖x‖1 ≤ C‖x‖∞.

Example. On C([a, b]), for 1 ≤ p < q ≤ ∞, the Lp and Lq norms are not equivalent. We will
show the case p = 1, q =∞ here. We have

‖u‖1 =

∫ b

a

|u(x)|dx ≤
∫ b

a

‖u‖∞dx = (b− a)‖u‖∞,

so I : (C([a, b]), ‖ · ‖∞)→ (C([a, b]), ‖ · ‖1) is continuous.

(Remark: The integral I(u) =
∫ b
a
u(x)dx is continuous on (C([a, b]), ‖ · ‖1) since |I(u1) −

I(u2)| ≤
∫ b
a
|u1(x) − u2(x)|dx = ‖u1 − u2‖1. So composing these two continuous operators

implies the standard result that if un → u uniformly on [a, b], then
∫ b
a
un(x)dx→

∫ b
a
u(x)dx.)

To see that the inequality the other direction fails, WLOG assume a = 0, b = 1. Let un have
graph:
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�
�@
@

n

0 1
n

2
n

1

Then ‖un‖1 = 1, but ‖un‖∞ = n. So there does not exist a constant C for which (∀u ∈
C([a, b])) ‖u‖∞ ≤ C‖u‖1.

(3) It can be shown that, for a normed linear space V , the closed unit ball {v ∈ V : ‖v‖ ≤
1} is compact iff dimV <∞.

Example. In `2 (subspace of F∞) with `2 norm ‖x‖2 =
√∑∞

i=1 |xi|2 considered above, the
closed unit ball {x ∈ `2 : ‖x‖2 ≤ 1} is not compact. The sequence e1, e2, e3, . . . is in the
closed unit ball, but no subsequence converges because ‖ei− ej‖2 =

√
2 for i 6= j. Note that

this shows that in an infinite dimensional normed linear space, a closed bounded set need
not be compact.

Norms induced by inner products

Let V be a vector space and 〈·, ·〉 be an inner product on V . Define ‖v‖ =
√
〈v, v〉. By the

properties of an inner product,

‖v‖ ≥ 0 with ‖v‖ = 0 iff v = 0, and

(∀α ∈ F)(∀ v ∈ V ) ‖αv‖ = |α| · ‖v‖.

To show that ‖ · ‖ is actually a norm on V we need the triangle inequality. For this, it is
helpful to observe that for any two vectors u, v ∈ V we have

‖u+ v‖2 = 〈u+ v, u+ v〉
= 〈u, u〉+ 〈u, v〉+ 〈v, u〉+ 〈v, v〉
= 〈u, u〉+ 〈u, v〉+ 〈u, v〉+ 〈v, v〉
= ‖u‖2 + 2Re 〈u, v〉+ ‖v‖2 .

Consequently, if u and v are orthogonal (〈u, v〉 = 0), then

‖u+ v‖2 = ‖u‖2 + ‖v‖2 .

Cauchy-Schwarz inequality: For all v,w ∈ V :

|〈v, w〉| ≤ ‖v‖ · ‖w‖

Moreover, equality holds if and only if v and w are linearly dependent. (This latter statement
is sometimes called the “converse of Cauchy-Schwarz.”)

Proof. Case (i) If v = 0, we are done.
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Case (ii) Assume v 6= 0, and set

u := w − 〈w, v〉
‖v‖2 v,

so that 〈u, v〉 = 0, i.e. u ⊥ v. Then, by orthogonality,

‖w‖2 =

∥∥∥∥u+
〈w, v〉
‖v‖2 v

∥∥∥∥2

= ‖u‖2 +

∥∥∥∥〈w, v〉‖v‖2 v

∥∥∥∥2

= ‖u‖2 +
| 〈w, v〉 |2

‖v‖2

≥ | 〈w, v〉 |2

‖v‖2 ,

with equality if and only if u = 0.

Now the triangle inequality follows:

‖v + w‖2 = 〈v + w, v + w〉 = 〈v, v〉+ 2Re〈v, w〉+ 〈w,w〉
≤ ‖v‖2 + 2|〈v, w〉|+ ‖w‖2 ≤ ‖v‖2 + 2‖v‖ · ‖w‖+ ‖w‖2 = (‖v‖+ ‖w‖)2.

So ‖v‖ =
√
〈v, v〉 is a norm on V , called the norm induced by the inner product 〈·, ·〉. An

inner product induces a norm, which induces a metric (V, 〈·, ·〉)→ (V, ‖ · ‖)→ (V, d).

Examples.

(1) The Euclidean norm (i.e. `2 norm) on Fn is induced by the standard inner product
〈y, x〉 =

∑n
i=1 yixi: ‖x‖2 =

√∑n
i=1 |xi|2.

(2) Let A ∈ Fn×n be Hermitian symmetric and positive definite, and let

〈y, x〉A =
n∑
i=1

n∑
j=1

yiaijxj

for x, y ∈ Fn. Then 〈·, ·〉A is an inner product on Fn, which induces the norm ‖x‖A
given by

‖x‖2
A = 〈x, x〉A =

n∑
i=1

n∑
j=1

xiaijxj = xTAx = xHAx,

where xH = xT .

(3) The `2 norm on `2 (subspace of F∞) is induced by the inner product 〈y, x〉 =
∑∞

i=1 yixi :
‖x‖2

2 =
∑∞

i=1 xixi =
∑∞

i=1 |xi|2.

(4) The L2 norm ‖u‖2 =
(∫ b

a
|u(x)|2dx

) 1
2

on C([a, b]) is induced by the inner product

〈v, u〉 =
∫ b
a
v(x)u(x)dx.
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Closed unit balls in finite dimensional normed linear spaces

Example. The unit balls for the `p norms in R2 look like:
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Definition. A subset C of a vector space V is called convex if

(∀ v, w ∈ C)(∀ t ∈ [0, 1]) tv + (1− t)w ∈ C.

Remarks.

(1) This means that the line segment joining v and w is in C:

��
��

��1
r

r
w

v
HHY t = 1

2
(midpoint)

� t = 1

-t = 0

. .............. ............... ................

............
............

............
............

......

..................... ...................... .......................

v − w

tv + (1− t)w = w + t(v − w) is on this line segment.

(2) The linear combination tv+ (1− t)w for t ∈ [0, 1] is often called a convex combination
of v and w.

It is easily seen that the closed unit ball B = {v ∈ V : ‖v‖ ≤ 1} in a finite dimensional
normed linear space (V, ‖ · ‖) satisfies:

1. B is convex.

2. B is compact.

3. B is symmetric. (This means that if v ∈ B and α ∈ F with |α| = 1, then αv ∈ B.)

4. The origin is in the interior of B. (Remark: The condition that 0 be in the interior of
a set is independent of the norm: by the norm equivalence theorem, all norms induce
the same topology on V , i.e. have the same collection of open sets.)
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Conversely, if dimV <∞ and B ⊂ V satisfies these four conditions, then there is a unique
norm on V for which B is the closed unit ball. In fact, the norm can be obtained from the
set B by:

‖v‖ = inf{c > 0 :
v

c
∈ B}.

Exercise: Show that this defines a norm, and that B is its closed unit ball. Uniqueness
follows from the fact that in any normed linear space, ‖v‖ = inf{c > 0 : v

c
∈ B} where B is

the closed unit ball B = {v : ‖v‖ ≤ 1}.

Hence there is a one-to-one correspondence between norms on a finite dimensional vector
space and subsets B satisfying these four conditions.

Completeness

Completeness in a normed linear space (V, ‖ · ‖) means completeness in the metric space
(V, d), where d(v, w) = ‖v − w‖: every Cauchy sequence {vn} in V has a limit in V . (The
sequence vn is Cauchy if (∀ ε > 0)(∃N)(∀n,m ≥ N)‖vn − vm‖ < ε, and the sequence has a
limit in V if (∃ v ∈ V )‖vn − v‖ → 0 as n→∞.)

Example. Fn in the Euclidean norm ‖x‖2 =
√∑n

i=1 |xi|2 is complete.

It is immediate from the definition of a Cauchy sequence that if two norms on V are equiv-
alent, then a sequence is Cauchy with respect to one of the norms if and only if it is Cauchy
with respect to the other. Therefore, if two norms ‖ · ‖1 and ‖ · ‖2 on a vector space V are
equivalent, then (V, ‖ · ‖1) is complete iff (V, ‖ · ‖2) is complete.

Every finite-dimensional normed linear space is complete. In fact, we can choose a basis
and use it to identify V with Fn. Since Fn is complete in the Euclidean norm, it is complete
in any norm by the norm equivalence theorem.

But not every infinite dimensional normed linear space is complete.

Definition. A complete normed linear space is called a Banach space. An inner product
space for which the induced norm is complete is called a Hilbert space.

Examples. To show that a normed linear space is complete, we must show that every Cauchy
sequence converges in that space. Given a Cauchy sequence,

(1) construct what you think is its limit;

(2) show the limit is in the space V ;

(3) show the sequence converges to the limit in the norm of V .

(1) Let X be a metric space. Let C(X) denote the vector space of continuous functions u :
X → F. Let Cb(X) denote the subspace of C(X) consisting of all bounded continuous
functions Cb(X) = {u ∈ C(X) : (∃K)(∀x ∈ X)|u(x)| ≤ K}. On Cb(X), define the
sup norm ‖u‖ = supx∈X |u(x)|.

Fact. (Cb(X)), ‖ · ‖) is complete.
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Proof. Let {un} ⊂ Cb(X) be Cauchy in ‖ · ‖. For each x ∈ X, |un(x) − um(x)| ≤
‖un−um‖, so for each x ∈ X, {un(x)} is a Cauchy sequence in F. Since F is complete,
this sequence has a limit in F which we will call u(x): u(x) = limn→∞ un(x). This
defines a function on X. The fact that {un} is Cauchy in Cb(X) says that for each
ε > 0, (∃N)(∀n,m ≥ N)(∀x ∈ X)|un(x)−um(x)| < ε. Taking the limit (for each fixed
x) asm→∞, we get (∀n ≥ N)(∀x ∈ X)|un(x)−u(x)| ≤ ε. Thus un → u uniformly, so
u is continuous (since the uniform limit of continuous functions is continuous). Clearly
u is bounded (choose N for ε = 1; then (∀x ∈ X)|u(x)| ≤ ‖uN‖ + 1), so u ∈ Cb(X).
And now we have ‖un − u‖ → 0 as n→∞, i.e., un → u in (Cb(X), ‖ · ‖). �

(2) `p is complete for 1 ≤ p ≤ ∞.

p =∞. This is a special case of (1) where X = N = {1, 2, 3, . . .}.

1 ≤ p <∞. Let {xn} be a Cauchy sequence in `p; write xn = (xn1 , x
n
2 , . . .). Given ε > 0,

(∃N)(∀n,m ≥ N)‖xn−xm‖p < ε. For each k ∈ N, |xnk −xmk | ≤ (
∑∞

k=1 |xnk − xmk |p)
1
p =

‖xn − xm‖, so for each k ∈ N, {xnk}∞n=1 is a Cauchy sequence in F, which has a
limit: let xk = limn→∞ x

n
k . Let x be the sequence x = (x1, x2, x3, . . .); so far, we

just know that x ∈ F∞. Given ε > 0, (∃N)(∀n,m ≥ N)‖xn − xm‖ < ε. Then for

any K and for n,m ≥ N ,
(∑K

k=1 |xnk − xmk |p
) 1
p
< ε; taking the limit as m → ∞,(∑K

k=1 |xnk − xk|p
) 1
p ≤ ε; then taking the limit as K → ∞, (

∑∞
k=1 |xnk − xk|p)

1
p ≤ ε.

Thus xN−x ∈ `p, so also x = xN−(xN−x) ∈ `p, and we have (∀n ≥ N)‖xn−x‖p ≤ ε.
Thus ‖xn − x‖p → 0 as n→∞, i.e., xn → x in `p. �

(3) If X is a compact metric space, then every continuous function u : X → F is
bounded, so C(X) = Cb(X). In particular, C(X) is complete in the sup norm
‖u‖ = supx∈X |u(x)| (special case of (1)). For example, C([a, b]) is complete in the
L∞ norm.

(4) For 1 ≤ p <∞, C([a, b]) is not complete in the Lp norm.

Example. On [0, 1], let un be:
�
�

1

0 1
2
− 1
n

1
2

1 Then un ∈ C([0, 1]).

Exercise: Show that {un} is Cauchy in ‖ · ‖p.

We must show that there does not exist a u ∈ C([0, 1]) for which ‖un − u‖p → 0.

Exercise: Show that if u ∈ C([0, 1]) and ‖un − u‖p → 0, then u(x) ≡ 0 for 0 ≤ x < 1
2

and u(x) ≡ 1 for 1
2
< x ≤ 1, contradicting the continuity of u at x = 1

2
.

(5) F∞0 = {x ∈ F∞ : (∃N)(∀ i ≥ N)xi = 0} is not complete in any `p norm (1 ≤ p ≤ ∞).

1 ≤ p < ∞. Choose any x ∈ `p \ F∞0 , and consider the truncated sequences y1 =
(x1, 0, . . .); y2 = (x1, x2, 0, . . .); y3 = (x1, x2, x3, 0, . . .), etc.
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Exercise: Show that {yn} is Cauchy in (F∞0 , ‖ · ‖p), but that there is no y ∈ F∞0 for
which ‖yn − y‖p → 0.

p =∞. Same idea: choose any x ∈ `∞ \ F∞0 for which limi→∞ xi = 0, and consider the
sequence of truncated sequences.

Completion of a Metric Space

Fact. Let (X, d) be a metric space. Then there exists a complete metric space (X̄, d̄) and
an “inclusion map” i : X → X̄ for which i is injective, i is an isometry from X to i(X) (i.e.
(∀x, y ∈ X)d(x, y) = d̄(i(x), i(y))), and i(X) is dense in X̄. Moreover, all such (X̄, d̄) are
isometrically isomorphic. The metric space (X̄, d̄) is called the completion of (X, d). (One
way to construct such an X̄ is to take equivalence classes of Cauchy sequences in X to be
elements of X̄.)

Representations of Completions

In some situations, the completion of a metric space can be identified with a larger vector
space which actually includes X, and whose elements are objects of a similar nature to
the elements of X. One example is R = completion of the rationals Q. The completion
of C([a, b]) in the Lp norm (for 1 ≤ p < ∞) can be represented as Lp([a, b]), the vector
space of [equivalence classes of] Lebesgue measurable functions u : [a, b] → F for which∫ b
a
|u(x)|pdx <∞, with norm ‖u‖p =

(∫ b
a
|u(x)|pdx

) 1
p
. We will discuss this example in more

detail next quarter. Recall the fact from metric space theory that a subset of a complete
metric space is complete in the restricted metric iff it is closed. This implies

Proposition. Let V be a Banach space, and W ⊂ V be a subspace. The norm on V
restricts to a norm on W . We have:

W is complete iff W is closed.

(If you’re not familiar with this fact, it is extremely easy to prove. Just follow your nose.)

Further Examples. Define

C0(Rn) = {u ∈ Cb(Rn) : lim|x|→∞ u(x) = 0}

Cc(Rn) = {u ∈ Cb(Rn) : (∃K > 0) such that u(x) = 0 for |x| ≥ K}.

We remark that if X is a metric space and u : X → F is a function, the support of u is
defined to be the closure of {x ∈ X : u(x) 6= 0}. Cc(Rn) is thus the space of continuous
functions on Rn with compact support.

(6) C0(Rn) is complete in the sup norm (exercise). This can either be shown directly, or
by showing that C0(Rn) is a closed subspace of Cb(Rn).

(7) Cc(Rn) is not complete in the sup norm. In fact, Cc(Rn) is dense in C0(Rn). So C0(Rn)
is a representation of the completion of Cc(Rn) in the sup norm.
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Series in normed linear spaces

Let (V, ‖ · ‖) be a normed linear space. Consider a series
∑∞

n=1 vn in V .

Definition. We say the series converges in V if ∃ v ∈ V such that limN→∞ ‖SN − v‖ = 0,
where SN =

∑N
n=1 vn is the N th partial sum. We say this series converges absolutely if∑∞

n=1 ‖vn‖ <∞.

Caution: If a series converges absolutely in a normed linear space, it does not have to
converge in that space.

Example. The series (1, 0 · · · ) +
(
0, 1

2
, 0 · · ·

)
+
(
0, 0, 1

4
, 0 · · ·

)
converges absolutely in F∞0 with

the `∞ norm, but it doesn’t converge in this space.

Proposition. A normed linear space (V, ‖ · ‖) is complete iff every absolutely convergent
series actually converges in (V, ‖ · ‖).

Sketch of proof (⇒): Given an absolutely convergent series, show that the sequence of partial
sums is Cauchy: for m > n ‖Sm − Sn‖ ≤

∑m
j=n+1 ‖vj‖.

(⇐): Given a Cauchy sequence {vn}, choose n1 < n2 < · · · inductively so that for k =
1, 2, . . ., (∀n,m ≥ nk)‖vn − vm‖ ≤ 2−k. Then in particular ‖vnk − vnk+1

‖ ≤ 2−k. Show that
the series vn1 +

∑∞
k=2(vnk − vnk−1

) is absolutely convergent. Let v be its limit. Show that
vn → v. �

A special case encountered in the classical literature is the Weierstrass M -test, obtained
by taking V = Cb(X) with the sup norm on a metric space X. The Weierstrass M -test states
that if uj ∈ Cb(X) and

∑∞
j=1 sup |uj| <∞, then the series

∑∞
j=1 uj converges uniformly to a

continuous function. This is traditionally called the M -test because one sets Mj = sup |uj|
so that the hypothesis is

∑∞
j=1 Mj <∞.
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Norms on Operators

If V , W are vector spaces then so is L(V,W ), the space of linear transformations from V to
W . We now consider norms on subspaces of L(V,W ).

Bounded Linear Operators and Operator Norms

Let (V, ‖ · ‖V ) and (W, ‖ · ‖W ) be normed linear spaces. An operator L ∈ L(V,W ) is called
a bounded linear operator if

sup
‖v‖V =1

‖Lv‖W <∞.

Let B(V,W ) denote the set of all bounded linear operators from V to W . In the special case
W = F we have bounded linear functionals, and we set V ∗ = B(V,F).

Proposition. If dimV <∞, then every linear operator is bounded, so L(V,W ) = B(V,W )
and V ∗ = V ′.

Proof. Choose a basis {v1, . . . , vn} for V with corresponding coordinates x1, . . . , xn. Then∑n
i=1 |xi| is a norm on V , so by the Norm Equivalence Theorem, there exists M so that∑n
i=1 |xi| ≤M‖v‖ for v =

∑
xivi. Then

‖Lv‖W =

∥∥∥∥∥L
(

n∑
i=1

xivi

)∥∥∥∥∥
W

≤
n∑
i=1

|xi| · ‖Lvi‖W

≤
(

max
1≤i≤n

‖Lvi‖W
) n∑

i=1

|xi|

≤
(

max
1≤i≤n

‖Lvi‖W
)
M‖v‖V ,

so

sup
‖v‖V =1

‖Lv‖W ≤
(

max
1≤i≤n

‖Lvi‖W
)
·M <∞.

�

Caution. If L is a bounded linear operator, it is not necessarily the case that {‖Lv‖W : v ∈ V }
is a bounded set of R. In fact, if it is, then L ≡ 0 (exercise). Similarly, if a linear functional
is a bounded linear functional, it does not mean that there is an M for which |f(v)| ≤ M
for all v ∈ V . The word “bounded” is used in different ways in different contexts.

Remark: It is easy to see that if L ∈ L(V,W ), then

sup
‖v‖V =1

‖Lv‖W = sup
‖v‖V ≤1

‖Lv‖W = sup
v 6=0

(‖Lv‖W/‖v‖V ).

Therefore L is bounded if and only if there is a constant M so that ‖Lv‖W ≤M‖v‖V for all
v ∈ V .

Examples:
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(1) Let V = P be the space of polynomials with norm ‖p‖ = sup0≤x≤1 |p(x)|. The differen-
tiation operator d

dx
: P → P is not a bounded linear operator: ‖xn‖ = 1 for all n ≥ 1,

but
∥∥ d
dx
xn
∥∥ = ‖nxn−1‖ = n.

(2) Let V = F∞0 with `p-norm for some p, 1 ≤ p ≤ ∞. Let L be diagonal, so Lx =
(λ1x1, λ2x2, λ3x3, . . .)

T for x ∈ F∞0 , where λi ∈ C, i ≥ 1. Then L is a bounded linear
operator iff supi |λi| <∞.

One of the reasons that boundedness of a linear transformation is an important concept
is the following result.

Proposition. Let L : V → W be a linear transformation between normed vector spaces.
Then L is bounded iff L is continuous.

Proof. First suppose L is bounded. Thus there is C so that ‖Lv‖W ≤ C‖v‖V for all v ∈ V .
Then for all v1, v2 ∈ V ,

‖Lv1 − Lv2‖W = ‖L(v1 − v2)‖W ≤ C‖v1 − v2‖V .

Hence L is continuous (given ε, let δ = C−1ε, etc.). In fact, L is Lipschitz continuous with
Lipschitz constant C (and in particular is uniformly continuous).

Conversely, suppose L is continuous. Then L is continuous at v = 0. Let ε = 1.

Then ∃ δ > 0 so that if ‖v‖V ≤ δ, then ‖Lv‖W ≤ 1. For any v 6= 0,
∥∥∥ δ
‖v‖V

v
∥∥∥
V

= δ, so∥∥∥L( δ
‖v‖V

v
)∥∥∥

W
≤ 1, i.e., ‖Lv‖W ≤ 1

δ
‖v‖V . Let C = 1

δ
. �

Definition. Let L : V → W be a bounded linear operator between normed linear spaces,
i.e., L ∈ B(V,W ). Define the operator norm of L to be

‖L‖ = sup
‖v‖V ≤1

‖Lv‖W

(
= sup
‖v‖V =1

‖Lv‖W = sup
v 6=0

(‖Lv‖W/‖v‖V )

)
.

Remark. We have ‖Lv‖W ≤ ‖L‖ · ‖v‖V for all v ∈ V . In fact, ‖L‖ is the smallest constant
with this property: ‖L‖ = min{C ≥ 0 : (∀ v ∈ V ) ‖Lv‖W ≤ C‖v‖V }.

We now show that B(V,W ) is a vector space (a subspace of L(V,W )). If L ∈ B(V,W )
and α ∈ F, clearly αL ∈ B(V,W ) and ‖αL‖ = |α| · ‖L‖. If L1, L2 ∈ B(V,W ), then

‖(L1 + L2)v‖W ≤ ‖L1v‖W + ‖L2v‖W ≤ (‖L1‖+ ‖L2‖)‖v‖V ,

so L1 + L2 ∈ B(V,W ), and ‖L1 + L2‖ ≤ ‖L1‖ + ‖L2‖. It follows that the operator norm is
indeed a norm on B(V,W ). ‖ · ‖ is sometimes called the operator norm on B(V,W ) induced
by the norms ‖ · ‖V and ‖ · ‖W (as it clearly depends on both ‖ · ‖V and ‖ · ‖W ).
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Completeness of B(V,W ) when W is complete

Proposition. If W is complete, then B(V,W ) is complete. In particular, V ∗ is always
complete (since F is), whether or not V is.

Proof. If {Ln} is Cauchy in B(V,W ), then (∀ v ∈ V ){Lnv} is Cauchy in W , so the limit
limn→∞ Lnv ≡ Lv exists in W . Clearly the map L : V → W so defined is linear, and it is
easy to see that L ∈ B(V,W ) and ‖Ln − L‖ → 0. �

Dual norms

In the special case W = F, the norm ‖f‖∗ = sup‖v‖≤1 |f(v)| on V ∗ is called the dual norm to
that on V . If dimV < ∞, then we can choose bases and identify V and V ∗ with Fn. Thus
every norm on Fn has a dual norm on Fn. We sometimes write Fn∗ for Fn when it is being
identified with V ∗. Consider some examples.

(1) If Fn is given the `1-norm, then the dual norm is

‖f‖∗ = max
‖x‖1≤1

∣∣∣∣∣
n∑
i=1

fixi

∣∣∣∣∣ for f = (f1, . . . , fn) ∈ Fn∗,

which is easily seen to be the `∞-norm ‖f‖∞ (exercise).

(2) If Fn is given the `∞-norm, then the dual norm is

‖f‖∗ = max
‖x‖∞≤1

∣∣∣∣∣
n∑
i=1

fixi

∣∣∣∣∣ for f = (f1, . . . , fn) ∈ Fn∗,

which is easily seen to be the `1-norm ‖f‖1 (exercise).

(3) The dual norm to the `2-norm on Fn is again the `2-norm; this follows easily from the
Schwarz inequality (exercise). The `2-norm is the only norm on Fn which equals its
own dual norm; see the homework.

(4) Let 1 < p < ∞. The dual norm to the `p-norm on Fn is the `q-norm, where 1
p

+ 1
q

=

1. The key inequality is Hölder’s inequality: |
∑n

i=1 fixi| ≤ ‖f‖q · ‖x‖p. We will be
primarily interested in the cases p = 1, 2,∞. (Note: 1

p
+ 1

q
= 1 in an extended sense

when p = 1 and q = ∞, or when p = ∞ and q = 1; Hölder’s inequality is trivial in
these cases.)

It is instructive to consider linear functionals and the dual norm geometrically. Recall
that a norm on Fn can be described geometrically by its closed unit ball B, a compact
convex set. The geometric realization of a linear functional (excluding the zero functional)
is a hyperplane. A hyperplane in Fn is a set of the form {x ∈ Fn :

∑n
i=1 fixi = c}, where

fi, c ∈ F and not all fi = 0 (sets of this form are sometimes called affine hyperplanes
if the term “hyperplane” is being reserved for a subspace of Fn of dimension n − 1). In
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fact, there is a natural 1 − 1 correspondence between Fn∗\{0} and the set of hyperplanes
in Fn which do not contain the origin: to f = (f1, . . . , fn) ∈ Fn∗, associate the hyperplane
{x ∈ Fn : f(x) = f1x1 + · · · + fnxn = 1}; since every hyperplane not containing 0 has a
unique equation of this form, this is a 1− 1 correspondence as claimed.

If F = C it is often more appropriate to use real hyperplanes in Cn = R2n; if z ∈ Cn and
we write zj = xj + iyj, then a real hyperplane not containing {0} has a unique equation of
the form

∑n
j=1(ajxj + bjyj) = 1 where aj, bj ∈ R, and not all of the aj’s and bj’s vanish.

Observe that this equation is of the form Re
(∑n

j=1 fjzj

)
= 1 where fj = aj − ibj is

uniquely determined. Thus the real hyperplanes in Cn not containing {0} are all of the form
Ref(z) = 1 for a unique f ∈ Cn∗\{0}. For F = R or C and f ∈ Fn∗\{0}, we denote by Hf

the real hyperplane Hf = {v ∈ Fn : Ref(v) = 1}.

Lemma. If (V, ‖ · ‖) is a normed linear space and f ∈ V ∗, then the dual norm of f satisfies
‖f‖∗ = sup‖v‖≤1Ref(v).

Proof. Since Ref(v) ≤ |f(v)|,

sup
‖v‖≤1

Ref(v) ≤ sup
‖v‖≤1

|f(v)| = ‖f‖∗.

For the other direction, choose a sequence {vj} from V with ‖vj‖ = 1 and |f(vj)| → ‖f‖∗.
Taking θj = − arg f(vj) and setting wj = eiθjvj, we have ‖wj‖ = 1 and f(wj) = |f(vj)| →
‖f‖∗, so sup‖v‖≤1Ref(v) ≥ ‖f‖∗. �

We can reformulate the Lemma geometrically in terms of real hyperplanes and the unit
ball in the original norm. Note that any real hyperplane Hf in Fn not containing the origin
divides Fn into two closed half-spaces whose intersection is Hf . The one of these half-spaces
which contains the origin is {v ∈ Fn : Ref(v) ≤ 1}.

Proposition. Let ‖ · ‖ be a norm on Fn with closed unit ball B. A linear functional
f ∈ Fn∗\{0} satisfies ‖f‖∗ ≤ 1 if and only if B lies completely in the half space {v ∈ Fn :
Ref(v) ≤ 1} determined by f containing the origin.

Proof. This is just a geometric restatement of the Lemma above. The Lemma shows that
f ∈ Fn∗ satisfies ‖f‖∗ ≤ 1 iff sup‖v‖≤1Ref(v) ≤ 1, which states geometrically that B is
contained in the closed half-space Ref(v) ≤ 1. �

It is interesting to translate this criterion into a concrete geometric realization of the dual
unit ball in specific examples; see the homework.

The following Theorem is a fundamental result concerning dual norms.

Theorem. Let (V, ‖ · ‖) be a normed linear space and v ∈ V . Then there exists f ∈ V ∗
such that ‖f‖∗ = 1 and f(v) = ‖v‖.

This is an easy consequence of the following result.

Theorem. Let (V, ‖ · ‖) be a normed linear space and let W ⊂ V be a subspace. Give W
the norm which is the restriction of the norm on V . If g ∈ W ∗, there exists f ∈ V ∗ satisfying
f |W = g and ‖f‖V ∗ = ‖g‖W ∗ .
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The first Theorem follows from the second as follows. If v 6= 0, take W = span{v} and
define g ∈ W ∗ by g(v) = ‖v‖, extended by linearity. Then ‖g‖W ∗ = 1, so the f produced by
the second Theorem does the job in the first theorem. If v = 0, choose any nonzero vector
in V and apply the previous argument to it to get f .

The second Theorem above is a version of the Hahn-Banach Theorem. Its proof in infinite
dimensions is non-constructive, uses Zorn’s Lemma, and will not be given here. We refer
to a real analysis or functional analysis text for the proof (e.g., Royden Real Analysis or
Folland Real Analysis). In this course we will not have further occasion to consider the
second Theorem. For convenience we will refer to the first Theorem as the Hahn-Banach
Theorem, even though this is not usual terminology.

We will give a direct proof of the first Theorem in the case when V is finite-dimensional.
The proof uses the Proposition above and some basic properties of closed convex sets in Rn.
When we get to the proof of the first Theorem below, the closed convex set will be the closed
unit ball in the given norm.

Let K be a closed convex set in Rn such that K 6= ∅, K 6= Rn. A hyperplane H ⊂ Rn is
said to be a supporting hyperplane for K if the following two conditions hold:

1. K lies completely in (at least) one of the two closed half-spaces determined by H

2. H ∩K 6= ∅.

We associate to K the family HK of all closed half-spaces S containing K and bounded by
a supporting hyperplane for K.

Fact 1. K = ∩S∈HKS.

Fact 2. If x ∈ ∂K, then there is a supporting hyperplane for K containing x.

In order to prove these facts, it is useful to use the constructions of Euclidean geometry
in Rn (even though the above statements just concern the vector space structure and are
independent of the inner product).

Proof of Fact 1. Clearly K ⊂ ∩HKS. For the other inclusion, suppose y /∈ K. Let x ∈ K be
a closest point in K to y. Let H be the hyperplane through x which is normal to y− x. We
claim that K is contained in the half-space S determined by H which does not contain y. If
so, then S ∈ HK and y /∈ S, so y /∈ ∩HKS and we are done. To prove the claim, if there were
a point z in K on the same side of H as y, then by convexity of K, the whole line segment
between z and x would be in K. But then an easy computation shows that points on this
line segment near x would be closer than x to y, a contradiction. Note as a consequence of
this argument that a closed convex set K has a unique closest point to a point in Rn \K.

Proof of Fact 2. Let x ∈ ∂K and choose points yj ∈ Rn \K so that yj → x. For each such
yj, let xj ∈ K be the closest point in K to yj. By the argument in Fact 1, the hyperplane
through xj and normal to yj − xj is supporting for K. Since yj → x, we must have also
xj → x. If we let uj =

yj−xj
|yj−xj | , then uj is a sequence on the Euclidean unit sphere, so a

subsequence converges to a unit vector u. By taking limits, it follows that the hyperplane
through x and normal to u is supporting for K.
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Proof of first Theorem if dim(V ) < ∞. By choosing a basis we may assume that
V = Fn. Clearly it suffices to assume that ‖v‖ = 1. The closed unit ball B is a closed convex
set in Fn (= Rn or R2n). By Fact 2 above, there is a supporting (real) hyperplane H for
B with v ∈ H. Since the origin is in the interior of B, the origin is not in H. Thus this
supporting hyperplane is of the form Hf for some uniquely determined f ∈ Fn∗. Since H
is supporting, B lies completely in the half-space determined by f containing the origin, so
the Proposition above shows that ‖f‖∗ ≤ 1. Then we have

1 = Ref(v) ≤ |f(v)| ≤ ‖f‖∗‖v‖ = ‖f‖∗ ≤ 1.

It follows that all terms in the above string of inequalities must be 1, from which we deduce
that ‖f‖∗ = 1 and f(v) = 1 as desired. �

The Second Dual

Let (V, ‖ · ‖) be a normed linear space, V ∗ be its dual equipped with the dual norm, and
V ∗∗ be the dual of V ∗ with the norm dual to that on V ∗. Given v ∈ V , define v∗∗ ∈ V ∗∗
by v∗∗(f) = f(v); since |v∗∗(f)| ≤ ‖f‖∗ · ‖v‖, v∗∗ ∈ V ∗∗ and ‖v∗∗‖ ≤ ‖v‖. By the Hahn-
Banach theorem, ∃ f ∈ V ∗ with ‖f‖∗ = 1 and f(v) = ‖v‖. Thus v∗∗(f) = ‖v‖, so ‖v∗∗‖ =
sup‖f‖∗=1 |v∗∗(f)| ≥ ‖v‖. Hence ‖v∗∗‖ = ‖v‖, so the mapping v 7→ v∗∗ from V into V ∗∗ is an
isometry of V onto the range of this map. In general, this embedding is not surjective; if it
is, then (V, ‖ · ‖) is called reflexive.

In finite dimensions, dimension arguments imply this map is surjective. Thus we can
identify V with V ∗∗, and under this identification the dual norm to the dual norm is just
the original norm on V .

The second dual provides one way to realize the completion of a normed linear space
(V, ‖ · ‖). Let us identify V with its image under the map v 7→ v∗∗, so that we view V ⊂ V ∗∗.
Since V ∗∗ is always complete whether V is or not, the closure V ⊂ V ∗∗ is a closed subspace
of a complete normed linear space, and hence is complete when given the norm which is the
restriction of the norm on V ∗∗. Since V is dense in V , V is a realization of the completion
of V .

Submultiplicative Norms

If V is a vector space, L(V, V ) = L(V ) is an algebra with composition as multiplication.
A norm on a subalgebra of L(V ) is said to be submultiplicative if ‖A ◦ B‖ ≤ ‖A‖ · ‖B‖.
(Horn-Johnson calls this a matrix norm in finite dimensions.)

Example: For A ∈ Cn×n, define ‖A‖ = sup1≤i,j≤n |aij|. This norm is not submultiplicative:

if A = B =

 1 · · · 1
...

...
1 · · · 1

, then ‖A‖ = ‖B‖ = 1, but AB = A2 = nA so ‖AB‖ = n.

However, the norm A 7→ n sup1≤i,j≤n |aij| is submultiplicative (exercise).

Fact: Operator norms are always submultiplicative.
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In fact, if U, V,W are normed linear spaces and L ∈ B(U, V ) and M ∈ B(V,W ), then for
u ∈ U ,

‖(M ◦ L)(u)‖W = ‖M(Lu)‖W ≤ ‖M‖ · ‖Lu‖V ≤ ‖M‖ · ‖L‖ · ‖u‖U ,

so M ◦ L ∈ B(U,W ) and ‖M ◦ L‖ ≤ ‖M‖ · ‖L‖. The special case U = V = W shows that
the operator norm on B(V ) is submultiplicative (and L,M ∈ B(V )⇒M ◦ L ∈ B(V )).

Norms on Matrices

If A ∈ Cm×n, we denote by AT ∈ Cn×m the transpose of A, and by A∗ = AH = ĀT the
conjugate-transpose (or Hermitian transpose) of A. Commonly used norms on Cm×n are the
following. (We use the notation of H-J.)

‖A‖1 =
m∑
i=1

n∑
j=1

|aij| (the `1-norm on A as if it were in Cmn)

‖A‖∞ = maxi,j |aij| (the `∞-norm on A as if it were in Cmn)

‖A‖2 =

(
m∑
i=1

n∑
j=1

|aij|2
) 1

2

= (trA∗A)
1
2 (the `2-norm on A as if it were in Cmn)

The norm ‖A‖2 is called the Hilbert-Schmidt norm of A, or the Frobenius norm of A,
and is often denoted ‖A‖HS or ‖A‖F . It is sometimes called the Euclidean norm of A. This
norm comes from the inner product 〈B,A〉 =

∑m
i=1

∑n
j=1 bijaij = tr (B∗A).

We also have the following p-norms for matrices: let 1 ≤ p ≤ ∞ and A ∈ Cm×n, then

|||A|||p = max
‖x‖p=1

‖Ax‖p.

This is the operator norm induced by the `p norm ‖ · ‖p on Cm and Cn.

Caution: |||A|||p is a quite non-standard notation; the standard notation is ‖A‖p. In numer-
ical analysis, the Frobenius norm is typically denoted ‖A‖F . We will, however, go ahead and
use the notation of H-J.

Using arguments similar to those identifying the dual norms to the `1- and `∞-norms on
Cn, it can be easily shown that

|||A|||1 = max1≤j≤n
∑m

i=1 |aij| (maximum (absolute) column sum)

|||A|||∞ = max1≤i≤m
∑n

j=1 |aij| (maximum (absolute) row sum)

The norm |||A|||2 is often called the spectral norm (we will show later that it equals the
square root of the largest eigenvalue of A∗A).

Except for ‖ ·‖∞, all the above norms are submultiplicative on Cn×n. In fact, they satisfy
a stronger submultiplicativity property even for non-square matrices known as consistency,
which we discuss next.
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Consistent Matrix Norms

The concept of submultiplicativity can be extended to non-square matrices.

Definition. Let µ, ν, ρ be norms on Cm×n, Cn×k, Cm×k, respectively. We say that µ, ν, ρ
are consistent if ∀A ∈ Cm×n and ∀B ∈ Cn×k,

ρ(AB) ≤ µ(A)ν(B).

Observe that in the case m = n = k and ρ = µ = ν, this definition is equivalent to stating
that the norm on Cn×n is submultiplicative.

The next proposition shows that with the exception of ‖ · ‖∞, each of the norms defined
above constitutes a consistent family of matrix norms.

Proposition. Let ‖ · ‖ be any one of the norms ||| · |||p, 1 ≤ p ≤ ∞, or ‖ · ‖1, or ‖ · ‖2. If
A ∈ Cm×n, B ∈ Cn×k, then we have

‖AB‖ ≤ ‖A‖‖B‖.

Proof. We saw in the previous section that operator norms always satisfy this consistency
property. This establishes the result for the norms ||| · |||p, 1 ≤ p ≤ ∞. We reproduce the
argument:

|||AB|||p = max
‖x‖p=1

‖ABx‖p ≤ max
‖x‖p=1

|||A|||p‖Bx‖p ≤ max
‖x‖p=1

|||A|||p|||B|||p‖x‖p = |||A|||p|||B|||p.

For ‖ · ‖1 and ‖ · ‖2, the proposition follows by direct estimation:

‖AB‖1 =
m∑
i=1

k∑
l=1

∣∣∣∣∣
n∑
j=1

aijbjl

∣∣∣∣∣ ≤
m∑
i=1

k∑
l=1

n∑
j=1

n∑
r=1

|aij||brl| = ‖A‖1‖B‖1

‖AB‖2
2 =

m∑
i=1

k∑
l=1

∣∣∣∣∣
n∑
j=1

aijbjl

∣∣∣∣∣
2

≤
m∑
i=1

k∑
l=1

(
n∑
j=1

|aij|2
)(

n∑
j=1

|bjl|2
)

= ‖A‖2
2‖B‖2

2

�

Note that the proposition fails for ‖ · ‖∞: we have already seen that submultiplicativity fails
for this norm on Cn×n. Note also that ‖ ·‖1 and ‖ ·‖2 on Cn×n are definitely not the operator
norm for any norm on Cn, since ‖I‖ = 1 for any operator norm.

Proposition. For A ∈ Cm×n, we have

|||A|||1 ≤ ‖A‖1 and |||A|||2 ≤ ‖A‖2

Proof. The first of these follows immediately from the explicit description of these norms.
However, both of these also follow from the general fact that the operator norm on Cm×n
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determined by norms on Cm and Cn is the smallest norm consistent with these two norms.
Specifically, using the previous proposition with k = 1, we have

|||A|||2 = max
‖x‖2=1

‖Ax‖2 ≤ max
‖x‖2=1

‖A‖2‖x‖2 = ‖A‖2

and similarly for the 1-norms. �

The bound |||A|||2 ≤ ‖A‖2 is useful for estimating |||A|||2 since this is not explicit, but ‖A‖2

is explicit.

Analysis with Operators

Throughout this discussion, let V be a Banach space. Since V is complete, B(V ) = B(V, V ) is
also complete (in the operator norm). We want to define functions of an operator L ∈ B(V ).
We can compose L with itself, so we can form powers Lk = L ◦ · · · ◦ L, and thus we can
define polynomials in L: if p(z) = a0 + a1z+ · · ·+ anz

n, then p(L) ≡ a0I + a1L+ · · ·+ anL
n.

By taking limits, we can form power series, and thus analytic functions of L. For example,
consider the series

eL =
∞∑
k=0

1

k!
Lk = I + L+

1

2
L2 + · · ·

(note L0 is the identity I by definition). This series converges in the operator norm on B(V ):
by submultiplicativity, ‖Lk‖ ≤ ‖L‖k, so

∞∑
k=0

1

k!
‖Lk‖ ≤

∞∑
k=0

1

k!
‖L‖k = e‖L‖ <∞;

since the series converges absolutely and B(V ) is complete (recall V is a Banach space),
it converges in the operator norm to an operator in B(V ) which we call eL (note that
‖eL‖ ≤ e‖L‖). In the finite dimensional case, this says that for A ∈ Fn×n, each component of
the partial sum

∑N
k=0

1
k!
Ak converges as N →∞; the limiting matrix is eA.

Another fundamental example is the Neumann series. We will say that an operator in
B(V ) is invertible if it is bijective (i.e., invertible as a point-set mapping from V onto V ,
which implies that the inverse map is well-defined and linear) and that its inverse is also
in B(V ). It is a consequence of the closed graph theorem (see Royden or Folland) that if
L ∈ B(V ) is bijective (and V is a Banach space), then its inverse map L−1 is also in B(V ).

Note: B(V ) has a ring structure using the addition of operators and composition of operators
as the multiplication; the identity of multiplication is just the identity operator I. Our
concept of invertibility is equivalent to invertibility in this ring: if L ∈ B(V ) and ∃M ∈
B(V ) 3 LM = ML = I, then ML = I ⇒ L injective and LM = I ⇒ L surjective. Note
that this ring in general is not commutative.

Proposition. If L ∈ B(V ) and ‖L‖ < 1, then I − L is invertible, and the Neumann series∑∞
k=0 L

k converges in the operator norm to (I − L)−1.

Remark. Formally we can guess this result since the power series of 1
1−z centered at z = 0 is∑∞

k=0 z
k with radius of convergence 1.
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Proof. If ‖L‖ < 1, then

∞∑
k=0

‖Lk‖ ≤
∞∑
k=0

‖L‖k =
1

1− ‖L‖
<∞,

so the Neumann series
∑∞

k=0 L
k converges to an operator in B(V ). Now if Sj, S, T ∈ B(V )

and Sj → S in B(V ), then ‖Sj − S‖ → 0, so ‖SjT − ST‖ ≤ ‖Sj − S‖ · ‖T‖ → 0 and
‖TSj − TS‖ ≤ ‖T‖ · ‖Sj − S‖ → 0, and thus SjT → ST and TSj → TS in B(V ). Thus

(I − L)

(
∞∑
k=0

Lk

)
= lim

N→∞
(I − L)

N∑
k=0

Lk = lim
N→∞

(I − LN+1) = I

(using ‖LN+1‖ ≤ ‖L‖N+1 → 0), and similarly
(∑∞

k=0 L
k
)

(I − L) = I. So I − L is invertible
and (I − L)−1 =

∑∞
k=0 L

k. �

This is a very useful fact: a perturbation of I by an operator of norm < 1 is invertible.
This implies, among other things, that the set of invertible operators in B(V ) is an open
subset of B(V ) (in the operator norm); see the homework.

Clearly the power series arguments used above can be generalized. Let f(z) be analytic
on the disk {|z| < R} ⊂ C, with power series f(z) =

∑∞
k=0 akz

k (which has radius of
convergence at least R). If L ∈ B(V ) and ‖L‖ < R, then the series

∑∞
k=0 akL

k converges
absolutely, and thus converges to an element of B(V ) which we call f(L) (recall V is a
Banach space). It is easy to check that usual operational properties hold, for example
(fg)(L) = f(L)g(L) = g(L)f(L). However, one must be careful to remember that operators
do not commute in general. So, for example, eL+M 6= eLeM in general, although if L and M
commute (i.e. LM = ML), then eL+M = eLeM .

Let L(t) be a 1-parameter family of operators in B(V ), where t ∈ (a, b). Since B(V ) is a
metric space, we know what it means for L(t) to be a continuous function of t. We can define

differentiability as well: L(t) is differentiable at t = t0 ∈ (a, b) if L′(t0) = limt→t0
L(t)−L(t0)

t−t0
exists in the norm on B(V ). For example, it is easily checked that for L ∈ B(V ), etL is
differentiable in t for all t ∈ R, and d

dt
etL = LetL = etLL.

We can similarly consider families of operators in B(V ) depending on several real param-
eters or on complex parameter(s). A family L(z) where z = x+ iy ∈ Ωopen ⊂ C (x, y ∈ R) is
said to be holomorphic in Ω if the partial derivatives ∂

∂x
L(z), ∂

∂y
L(z) exist and are con-

tinuous in Ω, and L(z) satisfies the Cauchy-Riemann equation
(
∂
∂x

+ i ∂
∂y

)
L(z) = 0 in

Ω. As in complex analysis, this is equivalent to the assumption that in a neighborhood
of each point z0 ∈ Ω, L(z) is given by the B(V )-norm convergent power series L(z) =∑∞

k=0
1
k!

(z − z0)k
(
d
dz

)k
L(z0).

One can also integrate families of operators. If L(t) depends continuously on t ∈ [a, b],
then it can be shown using the same estimates as for F-valued functions (and the uniform
continuity of L(t) since [a, b] is compact) that the Riemann sums

b− a
N

n−1∑
k=0

L

(
a+

k

N
(b− a)

)



Norms on Operators 41

converge in B(V )-norm (recall V is a Banach space) as n → ∞ to an operator in B(V ),

denoted
∫ b
a
L(t)dt. (More general Riemann sums than just the left-hand “rectangular rule”

with equally spaced points can be used.) Many results from standard calculus carry over,
including ∥∥∥∥∫ b

a

L(t)dt

∥∥∥∥ ≤ ∫ b

a

‖L(t)‖dt

which follows directly from∥∥∥∥∥b− aN

N−1∑
k=0

L

(
a+

k

N
(b− a)

)∥∥∥∥∥ ≤ b− a
N

N−1∑
k=0

∥∥∥∥L(a+
k

N
(b− a)

)∥∥∥∥ .
By parameterizing paths in C, one can define line integrals of holomorphic families of oper-
ators. We will discuss such constructions further as we need them.

Adjoint Transformations

Recall that if L ∈ L(V,W ), the adjoint transformation L′ : W ′ → V ′ is given by (L′g)(v) =
g(Lv).

Proposition. Let V , W be normed linear spaces. If L ∈ B(V,W ), then L′(W ∗) ⊂ V ∗.
Moreover, L′ ∈ B(W ∗, V ∗) and ‖L′‖ = ‖L‖.

Proof. For g ∈ W ∗,

|(L′g)(v)| = |g(Lv)| ≤ ‖g‖ · ‖Lv‖ ≤ ‖g‖ · ‖L‖ · ‖v‖,

so L′g ∈ V ∗, and ‖L′g‖ ≤ ‖g‖ · ‖L‖. Thus L′ ∈ B(W ∗, V ∗) and ‖L′‖ ≤ ‖L‖.
Given v ∈ V , apply the Hahn-Banach theorem to Lv to conclude that ∃ g ∈ W ∗ with

‖g‖ = 1 and (L′g)(v) = g(Lv) = ‖Lv‖. So

‖L′‖ = sup
‖g‖≤1

‖L′g‖ = sup
‖g‖≤1

sup
‖v‖≤1

|(L′g)(v)| ≥ sup
‖v‖≤1

‖Lv‖ = ‖L‖.

Hence ‖L′‖ = ‖L‖. �

Transposes and Adjoints

Recall that if A ∈ Cm×n, we denote by AT ∈ Cn×m the transpose of A, and by A∗ = AH = ĀT

the conjugate-transpose (or Hermitian transpose) of A. If u, v ∈ Cl are represented as
column vectors, then the Euclidean inner product can be represented in terms of matrix
multiplication as 〈v, u〉 = v∗u. For A ∈ Cm×n, x ∈ Cn, y ∈ Cm, we then have 〈y, Ax〉 =
〈A∗y, x〉 since y∗Ax = (A∗y)∗x.

If (V, 〈·, ·〉V ) and (W, 〈·, ·〉W ) are finite dimensional inner product spaces and L ∈ L(V,W ),
then the adjoint operator L∗ ∈ L(W,V ) is defined as follows. For w ∈ W , the assignment
v → 〈w,Lv〉W defines a linear functional on V . We have seen that every linear functional on
a finite-dimensional inner product space arises by taking the inner product with a uniquely
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determined vector in that space. So there exists a unique vector in V which we denote L∗w
with the property that

〈L∗w, v〉V = 〈w,Lv〉W

for all v ∈ V . The map w → L∗w defined in this way is a linear transformation L∗ ∈ L(W,V ).
However, L∗ depends conjugate-linearly on L: (αL)∗ = ᾱL∗.

In the special case in which V = Cn, W = Cm, the inner products are Euclidean, and
L is multiplication by A ∈ Cm×n, it follows that L∗ is multiplication by A∗. Compare this
with the dual operator L′. Recall that L′ ∈ L(W ′, V ′) is given by right multiplication by A
on row vectors, or equivalently by left multiplication by AT on column vectors. Thus the
matrices representing L∗ and L′ differ by a complex conjugation. In the abstract setting,
the operators L∗ and L′ are related by the conjugate linear isomorphisms V ∼= V ′, W ∼= W ′

induced by the inner products.

Condition Number and Error Sensitivity

In this section we apply our material on norms to the analysis of error sensitivity when
solving inhomogeneous systems of linear equations.

Throughout this discussion A ∈ Cn×n will be assumed to be invertible. We are interested
in determining the sensitivity of the solution of the linear system Ax = b (for a given
b ∈ Cn) to perturbations in the right-hand-side (RHS) vector b or to perturbations in A.
One can think of such perturbations as arising from errors in measured data in computational
problems, as often occurs when the entries in A and/or b are measured. As we will see, the
fundamental quantity is the condition number

κ(A) = ‖A‖ · ‖A−1‖

of A, relative to a submultiplicative norm ‖·‖ on Cn×n. Since ‖I‖ ≥ 1 in any submultiplicative
norm (‖I‖ = ‖I2‖ ≤ ‖I‖2 ⇒ ‖I‖ ≥ 1), we have κ(A) = ‖A‖ · ‖A−1‖ ≥ ‖A ·A−1‖ = ‖I‖ ≥ 1.

Suppose ‖ ·‖ is a norm on Cn×n consistent with a norm ‖ ·‖ on Cn (i.e. ‖Ax‖ ≤ ‖A‖ ·‖x‖
as defined previously). Suppose first that the RHS vector b is subject to error, but the

matrix A is not. Then one actually solves the system Ax̂ = b̂ for x̂, where b̂ is presumably
close to b, instead of the system Ax = b for x. Let x, x̂ be the solutions of Ax = b, Ax̂ = b̂,
respectively. Define the error vector e = x− x̂, and the residual vector r = b− b̂ = b− Ax̂
(the amount by which Ax̂ fails to match b). Then Ae = A(x− x̂) = b− b̂ = r, so e = A−1r.
Thus ‖e‖ ≤ ‖A−1‖ · ‖r‖. Since Ax = b, ‖b‖ ≤ ‖A‖ · ‖x‖. Multiplying these two inequalities
gives ‖e‖ · ‖b‖ ≤ ‖A‖ · ‖A−1‖ · ‖x‖ · ‖r‖, i.e.

‖e‖
‖x‖
≤ κ(A)

‖r‖
‖b‖

.

So the relative error ‖e‖‖x‖ is bounded by the condition number κ(A) times the relative residual
‖r‖
‖b‖ .

Exercise: Show that also ‖e‖‖x‖ ≥
1

κ(A)
‖r‖
‖b‖ .
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Matrices for which κ(A) is large are called ill-conditioned (relative to the norm ‖ · ‖);
those for which κ(A) is close to ‖I‖ (which is 1 if ‖ · ‖ is the operator norm) are called
well-conditioned (and perfectly conditioned if κ(A) = ‖I‖). If A is ill-conditioned, small
relative errors in the data (RHS vector b) can result in large relative errors in the solution.

If x̂ is the result of a numerical algorithm (with round-off error) for solving Ax = b, then
the error e = x − x̂ is not computable, but the residual r = b − Ax̂ is computable, so we
obtain an upper bound on the relative error ‖e‖‖x‖ ≤ κ(A)‖r‖‖b‖ . In practice, we don’t know κ(A)

(although we may be able to estimate it), and this upper bound may be much larger than
the actual relative error.

Suppose now that A is subject to error, but b is not. Then x̂ is now the solution of
(A + E)x̂ = b, where we assume that the error E ∈ Cn×n in the matrix is small enough
that ‖A−1E‖ < 1, so (I +A−1E)−1 exists and can be computed by a Neumann series. Then

A+E is invertible and (A+E)−1 = (I +A−1E)−1A−1. The simplest inequality bounds ‖e‖‖x̂‖ ,

the error relative to x̂, in terms of the relative error ‖E‖‖A‖ in A: the equations Ax = b and

(A+E)x̂ = b imply A(x− x̂) = Ex̂, x− x̂ = A−1Ex̂, and thus ‖x− x̂‖ ≤ ‖A−1‖ · ‖E‖ · ‖x̂‖,
so that

‖e‖
‖x̂‖
≤ κ(A)

‖E‖
‖A‖

.

To estimate the error relative to x is more involved; see below.
Consider next the problem of estimating the change in A−1 due to a perturbation in A.

Suppose ‖A−1‖ · ‖E‖ < 1. Then as above A+ E is invertible, and

A−1 − (A+ E)−1 = A−1 −
∞∑
k=0

(−1)k(A−1E)kA−1

=
∞∑
k=1

(−1)k+1(A−1E)kA−1,

so

‖A−1 − (A+ E)−1‖ ≤
∞∑
k=1

‖A−1E‖k · ‖A−1‖

=
‖A−1E‖

1− ‖A−1E‖
‖A−1‖

≤ ‖A−1‖ · ‖E‖
1− ‖A−1‖ · ‖E‖

‖A−1‖

=
κ(A)

1− κ(A)‖E‖/‖A‖
‖E‖
‖A‖
‖A−1‖.

So the relative error in the inverse satisfies

‖A−1 − (A+ E)−1‖
‖A−1‖

≤ κ(A)

1− κ(A)‖E‖/‖A‖
‖E‖
‖A‖

.

Note that if κ(A)‖E‖‖A‖ = ‖A−1‖ · ‖E‖ is small, then κ(A)
1−κ(A)‖E‖/‖A‖ ≈ κ(A). So the relative

error in the inverse is bounded (approximately) by the condition number κ(A) of A times

the relative error ‖E‖‖A‖ in the matrix A.
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Using a similar argument, one can derive an estimate for the error relative to x for the
computed solution to Ax = b when A and b are simultaneously subject to error. One can
show that if x̂ is the solution of (A+ E)x̂ = b̂ with both A and b perturbed, then

‖e‖
‖x‖
≤ κ(A)

1− κ(A)‖E‖/‖A‖

(
‖E‖
‖A‖

+
‖r‖
‖b‖

)
.

(Use (A + E)x = b + Ex and (A + E)x̂ = b̂ to show x − x̂ = (A + E)−1(Ex + r), and also

use ‖r‖ ≤ ‖r‖
‖b‖‖A‖ · ‖x‖.)
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Finite Dimensional Spectral Theory

We begin with a brief review; see Chapter 1 of H-J for more details. Let V be finite
dimensional and let L ∈ L(V ). Unless stated otherwise, F = C.

Definition. λ ∈ C is an eigenvalue of L if ∃ v ∈ V , v 6= 0 such that Lv = λv. The vector v
is called an eigenvector associated with the eigenvalue λ.

Thus, if (λ, v) is a eigenvalue-eigenvector pair for L, then span{v} is a one-dimensional
invariant subspace under L, and L acts on span{v} by scalar multiplication by λ. Denote
by Eλ = N (λI − L) the λ-eigenspace of L. Every nonzero vector in Eλ is an eigenvector of
L associated with the eigenvalue λ. Define the geometric multiplicity of λ to be mG(λ) =
dimEλ, i.e., the maximum number of linearly independent eigenvectors associated with λ.
The spectrum σ(L) of L is the set of its eigenvalues, and the spectral radius of L is

ρ(L) = max{|λ| : λ ∈ σ(L)}.

Clearly λ ∈ σ(L) ⇔ λI − L is singular ⇔ det (λI − L) = 0 ⇔ pL(λ) = 0, where pL(t) =
det (tI − L) is the characteristic polynomial of L; pL is a monic polynomial of degree
n = dimV whose roots are exactly the eigenvalues of L. By the fundamental theorem of
algebra, pL has n roots counting multiplicity; we define the algebraic multiplicity mA(λ) of
an eigenvalue λ of L to be its multiplicity as a root of pL.

Facts:

(1) mG(λ) ≤ mA(λ) for λ ∈ σ(L)

(2) Eigenvectors corresponding to different eigenvalues are linearly independent; i.e., if
vi ∈ Eλi\{0} for 1 ≤ i ≤ k and λi 6= λj for i 6= j, then {v1, . . . , vk} is linearly
independent. Moreover, if {v1, . . . , vk} is a set of eigenvectors with the property that
for each λ ∈ σ(L), the subset of {v1, . . . , vk} corresponding to λ (if nonempty) is
linearly independent, then {v1, . . . , vk} is linearly independent.

Definition. L ∈ L(V ) is diagonalizable if there is a basis B = {v1, . . . , vn} of V consisting
of eigenvectors of L. This definition is clearly equivalent to the alternate definition: L is
diagonalizable if there is a basis B = {v1, . . . , vn} of V for which the matrix of L with respect
to B is a diagonal matrix in Cn×n.

Since
∑

λ∈σ(L) mA(λ) = n = dimV and mG(λ) ≤ mA(λ), it follows that
∑

λ∈σ(L)mG(λ) ≤
n with equality iff mG(λ) = mA(λ) for all λ ∈ σ(L). By Fact 2,

∑
λ∈σ(L) mG(λ) is the

maximum number of linearly independent eigenvectors of L. Thus L is diagonalizable ⇔
mG(λ) = mA(λ) for all λ ∈ σ(L). In particular, since mG(λ) ≥ 1 for all λ ∈ σ(L)), it follows
that if L has n distinct eigenvalues, then L is diagonalizable.

We say that a matrix A ∈ Cn×n is diagonalizable iff A is similar to a diagonal matrix, i.e.,
there exists an invertible S ∈ Cn×n for which S−1AS = D is diagonal. Consider the linear
transformation L : Cn → Cn given by L : x 7→ Ax. Since matrices similar to A correspond
to the matrices of L with respect to different bases, clearly the matrix A is diagonalizable iff
L is diagonalizable. Since S is the change of basis matrix and e1, . . . , en are eigenvectors of
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D, it follows that the columns of S are linearly independent eigenvectors of A. This is also
clear by computing the matrix equality AS = SD column by column.

We will restrict our attention to Cn with the Euclidean inner product 〈·, ·〉; here ‖ · ‖
will denote the norm induced by 〈·, ·〉 (i.e., the `2-norm on Cn), and we will denote by ‖A‖
the operator norm induced on Cn×n (previously denoted |||A|||2). Virtually all the classes of
matrices we are about to define generalize to any Hilbert space V , but we must first know
that for y ∈ V and A ∈ B(V ), ∃A∗y ∈ V 3 〈y, Ax〉 = 〈A∗y, x〉; we will prove this next
quarter. So far, we know that we can define the transpose operator A′ ∈ B(V ∗), so we need
to know that we can identify V ∗ ∼= V as we can do in finite dimensions in order to obtain
A∗. For now we restrict to Cn.

One can think of many of our operations and sets of matrices in Cn×n as analogous to
corresponding objects in C. For example, the operation A 7→ A∗ is thought of as analogous
to conjugation z 7→ z̄ in C. The analogue of a real number is a Hermitian matrix.

Definition. A ∈ Cn×n is said to be Hermitian symmetric (or self-adjoint or just Hermitian)
if A = A∗. A ∈ Cn×n is said to be skew-Hermitian if A∗ = −A.

Recall that we have already given a definition of what it means for a sesquilinear form to
be Hermitian symmetric. Recall also that there is a 1−1 correspondence between sesquilinear
forms and matrices A ∈ Cn×n: A corresponds to the form 〈y, x〉A = 〈y, Ax〉. It is easy to
check that A is Hermitian iff the sesquilinear form 〈·, ·〉A is Hermitian-symmetric.

Fact: A is Hermitian iff iA is skew-Hermitian (exercise).

The analogue of the imaginary numbers in C are the skew-Hermitian matrices. Also,
any A ∈ Cn×n can be written uniquely as A = B + iC where B and C are Hermitian:
B = 1

2
(A+A∗), C = 1

2i
(A−A∗). Then A∗ = B − iC. Almost analogous to the Re and Im

part of a complex number, B is called the Hermitian part of A, and iC (not C) is called the
skew-Hermitian part of A.

Proposition. A ∈ Cn×n is Hermitian iff (∀x ∈ Cn)〈x,Ax〉 ∈ R.

Proof. If A is Hermitian, 〈x,Ax〉 = 1
2
(〈x,Ax〉 + 〈Ax, x〉) = Re〈x,Ax〉 ∈ R. Conversely,

suppose (∀x ∈ Cn)〈x,Ax〉 ∈ R. Write A = B + iC where B,C are Hermitian. Then
〈x,Bx〉 ∈ R and 〈x,Cx〉 ∈ R, so 〈x,Ax〉 ∈ R ⇒ 〈x,Cx〉 = 0. Since any sesquilinear form
{y, x} over C can be recovered from the associated quadratic form {x, x} by polarization:

4{y, x} = {y + x, y + x} − {y − x, y − x} − i{y + ix, y + ix}+ i{y − ix, y − ix},

we conclude that 〈y, Cx〉 = 0 ∀x, y ∈ Cn, and thus C = 0, so A = B is Hermitian. �

The analogue of the nonnegative reals are the positive semi-definite matrices.

Definition. A ∈ Cn×n is called positive semi-definite (or nonnegative) if 〈x,Ax〉 ≥ 0 for
all x ∈ Cn. By the previous proposition, a positive semi-definite A ∈ Cn×n is automatically
Hermitian, but one often says Hermitian positive semi-definite anyway.

Caution: If A ∈ Rn×n and (∀x ∈ Rn) 〈x,Ax〉 ≥ 0, A need not be symmetric. For example,

if A =

[
1 1
−1 1

]
, then 〈Ax, x〉 = 〈x, x〉 ∀ x ∈ Rn.
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If A ∈ Cn×n then we can think of A∗A as the analogue of |z|2 for z ∈ C. Observe that
A∗A is positive semi-definite: 〈A∗Ax, x〉 = 〈Ax,Ax〉 = ‖Ax‖2 ≥ 0. It is also the case that
‖A∗A‖ = ‖A‖2. To see this, we first show that ‖A∗‖ = ‖A‖. In fact, we previously proved
that if L ∈ B(V,W ) for normed vector spaces V , W , then ‖L′‖ = ‖L‖, and we also showed
that for A ∈ Cn×n, A′ can be identified with AT = Ā∗. Since it is clear from the definition
that ‖Ā‖ = ‖A‖, we deduce that ‖A∗‖ = ‖Ā∗‖ = ‖A′‖ = ‖A‖. Using this, it follows on the
one hand that

‖A∗A‖ ≤ ‖A∗‖ · ‖A‖ = ‖A‖2

and on the other hand that

‖A∗A‖ = sup
‖x‖=1

‖A∗Ax‖

= sup
‖x‖=1

sup
‖y‖=1

|〈y, A∗Ax〉|

≥ sup
‖x‖=1

〈x,A∗Ax〉

= sup
‖x‖=1

‖Ax‖2 = ‖A‖2 .

Together these imply ‖A∗A‖ = ‖A‖2.

The analogue of complex numbers of modulus 1 are the unitary matrices.

Definition. A ∈ Cn×n is unitary if A∗A = I.

Since injectivity is equivalent to surjectivity for A ∈ Cn×n, it follows that A∗ = A−1 and
AA∗ = I (each of these is equivalent to A∗A = I).

Proposition. For A ∈ Cn×n, the following conditions are all equivalent:

(1) A is unitary.

(2) The columns of A form an orthonormal basis of Cn.

(3) The rows of A form an orthonormal basis of Cn.

(4) A preserves the Euclidean norm: (∀x ∈ Cn) ‖Ax‖ = ‖x‖.

(5) A preserves the Euclidean inner product: (∀x, y ∈ Cn) 〈Ay,Ax〉 = 〈y, x〉.

Proof Sketch. Let a1, . . . , an be the columns of A. Clearly A∗A = I ⇔ a∗i aj = δij. So
(1) ⇔ (2). Similarly (1) ⇔ AA∗ = I ⇔ (3). Since ‖Ax‖2 = 〈Ax,Ax〉 = 〈x,A∗Ax〉, (4)
⇔ 〈x, (A∗A − I)x〉 = 0 ∀x ∈ Cn ⇔ A∗A = I ⇔ (1). Finally, clearly (5) ⇒ (4), and (4) ⇒
(5) by polarization. �

Normal matrices don’t really have an analogue in C.

Definition. A ∈ Cn×n is normal if AA∗ = A∗A.

Proposition. For A ∈ Cn×n, the following conditions are equivalent:
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(1) A is normal.

(2) The Hermitian and skew-Hermitian parts of A commute, i.e., if A = B+ iC with B,C
Hermitian, BC = CB.

(3) (∀x ∈ Cn) ‖Ax‖ = ‖A∗x‖.

Proof sketch. (1) ⇔ (2) is an easy exercise. Since ‖Ax‖2 = 〈x,A∗Ax〉 and ‖A∗x‖2 =
〈x,AA∗x〉, we get

(3) ⇔ (∀x ∈ Cn) 〈x, (A∗A− AA∗)x〉 = 0 ⇔ (1).

�

Observe that Hermitian, skew-Hermitian, and unitary matrices are all normal.
The above definitions can all be specialized to the real case. Real Hermitian matrices

are (real) symmetric matrices: AT = A. Every A ∈ Rn×n can be written uniquely as
A = B + C where B = BT is symmetric and C = −CT is skew-symmetric: B = 1

2
(A+ AT )

is called the symmetric part of A; C = 1
2
(A−AT ) is the skew-symmetric part. Real unitary

matrices are called orthogonal matrices, characterized by ATA = I or AT = A−1. Since
(∀A ∈ Rn×n)(∀x ∈ Rn)〈x,Ax〉 ∈ R, there is no characterization of symmetric matrices
analogous to that given above for Hermitian matrices. Also unlike the complex case, the
values of the quadratic form 〈x,Ax〉 for x ∈ Rn only determine the symmetric part of
A, not A itself (the real polarization identity 4{y, x} = {y + x, y + x} − {y − x, y − x}
is valid only for symmetric bilinear forms {y, x} over Rn). Consequently, the definition
of real positive semi-definite matrices includes symmetry in the definition, together with
(∀x ∈ Rn) 〈x,Ax〉 ≥ 0. (This is standard, but not universal. In some mathematical settings,
symmetry is not assumed automatically. This is particularly the case in monotone operator
theory and optimization theory where it is essential to the theory and the applications that
positive definite matrices and operators are not assumed to be symmetric.)

The analogy with the complex numbers is particularly clear when considering the eigen-
values of matrices in various classes. For example, consider the characteristic polynomial of
a matrix A ∈ Cn×n, pA(t). Since pA(t) = pA∗(t̄), we have λ ∈ σ(A) ⇔ λ̄ ∈ σ(A∗). If A is
Hermitian, then all eigenvalues of A are real: if x is an eigenvector associated with λ, then

λ〈x, x〉 = 〈x,Ax〉 = 〈Ax, x〉 = λ̄〈x, x〉,

so λ = λ̄. Also eigenvectors corresponding to different eigenvalues are orthogonal: if Ax = λx
and Ay = µy, then

λ〈y, x〉 = 〈y, Ax〉 = 〈Ay, x〉 = µ〈y, x〉,

so 〈y, x〉 = 0 if λ 6= µ. Any eigenvalue λ of a unitary matrix satisfies |λ| = 1 since |λ| · ‖x‖ =
‖Ax‖ = ‖x‖. Again, eigenvectors corresponding to different eigenvalues of a unitary matrix
are orthogonal: if Ax = λx and Ay = µy, then

λ〈y, x〉 = 〈y, Ax〉 = 〈A−1y, x〉 = 〈µ−1y, x〉 = µ̄−1〈y, x〉 = µ〈y, x〉.
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Matrices which are both Hermitian and unitary, i.e., A = A∗ = A−1, satisfy A2 = I. The
linear transformations determined by such matrices can be thought of as generalizations of
reflections: one example is A = −I, corresponding to reflections about the origin. House-
holder transformations are also examples of matrics which are both Hermitian and unitary:
by definition, they are of the form

I − 2

〈y, y〉
yy∗

where y ∈ Cn\{0}. Such a transformation corresponds to reflection about the hyperplane
orthogonal to y. This follows since

x 7→ x− 2
〈y, x〉
〈y, y〉

y;

〈y,x〉
〈y,y〉y is the orthogonal projection onto span{y} and x− 〈y,x〉〈y,y〉y is the projection onto {y}⊥.

(Or simply note that y 7→ −y and 〈y, x〉 = 0⇒ x 7→ x.)

Unitary Equivalence

Similar matrices represent the same linear transformation. There is a special case of similarity
which is of particular importance.

Definition. We say that A,B ∈ Cn×n are unitarily equivalent (or unitarily similar) if there
is a unitary matrix U ∈ Cn×n such that B = U∗AU , i.e., A and B are similar via a unitary
similarity transformation (recall: U∗ = U−1).

Unitary equivalence is important for several reasons. One is that the Hermitian transpose
of a matrix is much easier to compute than its inverse, so unitary similarity is computationally
advantageous. Another is that, with respect to the operator norm ‖ · ‖ on Cn×n induced by
the Euclidean norm on Cn, a unitary matrix U is perfectly conditioned: (∀x ∈ Cn) ‖Ux‖ =
‖x‖ = ‖U∗x‖ implies ‖U‖ = ‖U∗‖ = 1, so κ(U) = ‖U‖ · ‖U−1‖ = ‖U‖ · ‖U∗‖ = 1.
Moreover, unitary similarity preserves the condition number of a matrix relative to ‖ · ‖:
κ(U∗AU) = ‖U∗AU‖ · ‖U∗A−1U‖ ≤ κ(A) and likewise κ(A) ≤ κ(U∗AU). (In general,
for any submultiplicative norm on Cn×n, we obtain the often crude estimate κ(S−1AS) =
‖S−1AS‖ · ‖S−1A−1S‖ ≤ ‖S−1‖2‖A‖ · ‖A−1‖ · ‖S‖2 = κ(S)2κ(A), indicating that similarity
transformations can drastically change the condition number of A if the transition matrix S
is poorly conditioned; note also that κ(A) ≤ κ(S)2κ(S−1AS).) Another basic reason is that
unitary similarity preserves the Euclidean operator norm ‖ · ‖ and the Frobenius norm ‖ · ‖F
of a matrix.

Proposition. Let U ∈ Cn×n be unitary, and A ∈ Cm×n, B ∈ Cn×k. Then

(1) In the operator norms induced by the Euclidean norms, ‖AU‖ = ‖A‖ and ‖UB‖ =
‖B‖.

(2) In the Frobenius norms, ‖AU‖F = ‖A‖F and ‖UB‖F = ‖B‖F .

So multiplication by a unitary matrix on either side preserves ‖ · ‖ and ‖ · ‖F .

Proof sketch.
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(1) (∀x ∈ Ck) ‖UBx‖ = ‖Bx‖, so ‖UB‖ = ‖B‖. Likewise, since U∗ is also unitary,
‖AU‖ = ‖(AU)∗‖ = ‖U∗A∗‖ = ‖A∗‖ = ‖A‖.

(2) Let b1, . . . , bk be the columns of B. Then ‖UB‖2
F =

∑k
j=1 ‖Ubj‖2

2 =
∑k

j=1 ‖bj‖2
2 =

‖B‖2
F . Likewise, since U∗ is also unitary, ‖AU‖F = ‖U∗A∗‖F = ‖A∗‖F = ‖A‖F .

�

Observe that ‖U‖F =
√
n.

Schur Unitary Triangularization Theorem

Theorem. Any matrix A ∈ Cn×n is unitarily equivalent to an upper triangular matrix T .
If λ1, . . . , λn are the eigenvalues of A in any prescribed order, then one can choose a unitary
similarity transformation so that the diagonal entries of T are λ1, . . . , λn in that order.

Proof sketch (see also pp. 79–80 of H-J). By induction on n. Obvious for n = 1. Assume
true for n − 1. Given A ∈ Cn×n and an ordering λ1, . . . , λn of its eigenvalues, choose an
eigenvector x for λ1 with Euclidean norm ‖x‖ = 1. Extend {x} to a basis of Cn and
apply the Gram-Schmidt procedure to obtain an orthonormal basis {x, u2, . . . , un} of Cn.
Let U1 = [xu2 · · ·un] ∈ Cn×n be the unitary matrix whose columns are x, u2, . . . , un. Since

Ax = λ1x, U∗1AU1 =

[
λ1 y∗1
0 B

]
for some y1 ∈ Cn−1, B ∈ C(n−1)×(n−1). Since similar

matrices have the same characteristic polynomial,

pA(t) = det

(
tI −

[
λ1 y∗1
0 B

])
= (t− λ1)det (tI −B)

= (t− λ1)pB(t),

so the eigenvalues of B are λ2, . . . , λn. By the induction hypothesis, ∃ a unitary Ũ ∈
C(n−1)×(n−1) and upper triangular T̃ ∈ C(n−1)×(n−1) 3 Ũ∗BŨ = T̃ and the diagonal entries

of T̃ are λ2, . . . , λn in that order. Let U2 =

[
1 0

0 Ũ

]
∈ Cn×n. Then U2 is unitary, and

U∗2U
∗
1AU1U2 =

[
λ1 y∗1Ũ

0 Ũ∗BŨ

]
=

[
λ1 y∗1Ũ

0 T̃

]
≡ T.

Since U ≡ U1U2 is unitary and U∗AU = T , the statement is true for n as well. �

Note: The basic iterative step that reduces the dimension by 1 is called a deflation. The
deflation trick is used to derive a number of important matrix factorizations.

Fact: Unitary equivalence preserves the classes of Hermitian, skew-Hermitian, and normal
matrices: e.g., if A∗ = A, then (U∗AU)∗ = U∗A∗U = U∗AU is also Hermitian; if A∗A = AA∗,
then (U∗AU)∗(U∗AU) = U∗A∗AU = U∗AA∗U = (U∗AU)(U∗AU)∗ is normal.

Spectral Theorem. Let A ∈ Cn×n be normal. Then A is unitarily diagonalizable, i.e., A
is unitarily similar to a diagonal matrix; so there is an orthonormal basis of eigenvectors.
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Proof sketch. By the Schur Triangularization Theorem, ∃ unitary U 3 U∗AU = T is upper
triangular. Since A is normal, T is normal: T ∗T = TT ∗. By equating the diagonal entries
of T ∗T and TT ∗, we show T is diagonal. The (1, 1) entry of T ∗T is |t11|2; that of TT ∗ is∑n

j=1 |t1j|2. Since |t11|2 =
∑n

j=1 |t1j|2, it must be the case that t1j = 0 for j ≥ 2. Now the

(2, 2) entry of T ∗T is |t22|2; that of TT ∗ is
∑n

j=2 |t2j|2; so again it must be the case that
t2j = 0 for j ≥ 3. Continuing with the remaining rows yields the result. �

Cayley-Hamilton Theorem

The Schur Triangularization Theorem gives a quick proof of:

Theorem. (Cayley-Hamilton) Every matrix A ∈ Cn×n satisfies its characteristic polyno-
mial: pA(A) = 0.

Proof. By Schur, ∃ unitary U ∈ Cn×n and upper triangular T ∈ Cn×n 3 U∗AU = T ,
where the diagonal entries of T are the eigenvalues λ1, . . . , λn of A (in some order). Since
A = UTU∗, Ak = UT kU∗, so pA(A) = UpA(T )U∗. Writing pA(t) as

pA(t) = (t− λ1)(t− λ2) · · · (t− λn)

gives
pA(T ) = (T − λ1I)(T − λ2I) · · · (T − λnI).

Since T−λjI is upper triangular with its jj entry being zero, it follows easily that pA(T ) = 0
(accumulate the product from the left, in which case one shows by induction on k that the
first k columns of (T − λ1I) · · · (T − λkI) are zero). �

Rayleigh Quotients and the Courant-Fischer Minimax Theorem

There is a very useful variational characterization of the eigenvalues of a Hermitian matrix.
We will use this approach later in the course to prove the existence of eigenvalues of compact
Hermitian operators in infinite dimensions.

For A ∈ Cn×n and x ∈ Cn\{0}, define the Rayleigh quotient of x (for A) to be

rA(x) =
〈x,Ax〉
〈x, x〉

(This is not a standard notation; often ρ(x) is used, but we avoid this notation to prevent
possible confusion with the spectral radius ρ(A).) Rayleigh quotients are most useful for
Hermitian matrices A ∈ Cn×n because rA(x) ∈ R if A is Hermitian. Note that rA(x) =

〈x,Ax〉 if ‖x‖ = 1, and in general rA(x) = rA

(
x
‖x‖

)
, so consideration of rA(x) for general

x 6= 0 is equivalent to consideration of 〈x,Ax〉 for ‖x‖ = 1.

Proposition. Let A ∈ Cn×n be Hermitian with eigenvalues λ1 ≤ · · · ≤ λn. For x 6= 0,
λ1 ≤ rA(x) ≤ λn. Moreover, minx 6=0 rA(x) = λ1 and maxx 6=0 rA(x) = λn.

The Proposition is a consequence of an explicit formula for 〈x,Ax〉 in terms of the coordinates
relative to an orthonormal basis of eigenvectors for A. By the spectral theorem, there is
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an orthonormal basis {u1, . . . , un} of Cn consisting of eigenvectors of A corresponding to
λ1, . . . , λn. Let U = [u1 · · ·un] ∈ Cn×n, so U is unitary and

U∗AU = Λ = diag (λ1, . . . , λn).

Given x ∈ Cn, let y = U∗x, so x = Uy = y1u1 + · · ·+ ynun. Then

〈x,Ax〉 = x∗Ax = y∗U∗AUy = y∗Λy =
n∑
i=1

λi|yi|2,

and of course ‖x‖2 = ‖y‖2. It is clear that if ‖y‖2 = 1, then λ1 ≤
∑n

i=1 λi|yi|2 ≤ λn, with
equality for y = e1 and y = en, corresponding to x = u1 and x = un. This proves the
Proposition.

Analogous reasoning identifies the Euclidean operator norm of a normal matrix.

Proposition. If A ∈ Cn×n is normal, then the Euclidean operator norm of A satisfies
‖A‖ = ρ(A), the spectral radius of A.

Proof. If U ,λi and yi are as above, then

‖Ax‖2 = ‖U∗Ax‖2 = ‖U∗AUy‖2 = ‖Λy‖2 =
n∑
i=1

|λi|2|yi|2.

Just as above, it follows that

sup
‖x‖=1

‖Ax‖2 = sup
‖y‖=1

n∑
i=1

|λi|2|yi|2 = max |λi|2 = ρ(A)2.

�

Caution. It is not true that ‖A‖ = ρ(A) for all A ∈ Cn×n. For example, take A =

(
0 1
0 0

)
.

There follows an identification of the Euclidean operator norm of any, possibly nonsquare,
matrix.

Corollary. If A ∈ Cm×n, then ‖A‖ =
√
ρ(A∗A), where ‖A‖ is the operator norm induced

by the Euclidean norms on Cm and Cn.

Proof. Note that A∗A ∈ Cn×n is positive semidefinite Hermitian, so the first proposition
of this section shows that max‖x‖=1〈x,A∗Ax〉 = max‖x‖=1 rA∗A(x) = ρ(A∗A). But ‖Ax‖2 =
〈x,A∗Ax〉, giving

‖A‖2 = max
‖x‖=1

‖Ax‖2 = max
‖x‖=1

〈x,A∗Ax〉 = ρ(A∗A).

�

The first proposition of this section gives a variational characterization of the largest and
smallest eigenvalues of an Hermitian matrix. The next Theorem extends this to provide a
variational characterization of all the eigenvalues.

Courant-Fischer Minimax Theorem. Let A ∈ Cn×n be Hermitian. In what follows, Sk
will denote an arbitrary subspace of Cn of dimension k, and minSk and maxSk denote taking
the min or max over all subspaces of Cn of dimension k.



Finite Dimensional Spectral Theory 53

(1) For 1 ≤ k ≤ n, minSk maxx 6=0,x∈Sk rA(x) = λk (minimax)

(2) For 1 ≤ k ≤ n, maxSn−k+1
minx 6=0,x∈Sn−k+1

rA(x) = λk (maximin)

where λ1 ≤ λ2 ≤ · · · ≤ λn are the eigenvalues of A.

Proof. Let u1, . . . , un be orthonormal eigenvectors of A corresponding to λ1, . . . , λn. Let
U = [u1 · · ·un] ∈ Cn×n, so U∗AU = Λ = diag (λ1, . . . , λn), and for x ∈ Cn, let y = U∗x, so
x = Uy = y1u1 + · · ·+ ynun. To prove (1), let W = span{uk, . . . , un}, so dimW = n− k+ 1.
If dimSk = k, then by dimension arguments ∃x ∈ Sk ∩W\{0}, which we can assume to
satisfy ‖x‖ = 1. Then rA(x) =

∑n
i=k λi|yi|2 ≥ λk. Thus ∀Sk, max‖x‖=1,x∈Sk rA(x) ≥ λk. But

for x ∈ span{u1, . . . , uk}\{0}, rA(x) =
∑k

i=1 λi|yi|2 ≤ λk. So for Sk = span{u1, . . . , uk}, the
max = λk. Thus min max = λk.

The proof of (2) is similar. Let W = span{u1, . . . , uk}, so dimW = k. If dimSn−k+1 =
n − k + 1, then ∃x ∈ Sn−k+1 ∩ W\{0} with ‖x‖ = 1, and rA(x) ≤ λk. Thus ∀Sn−k+1,
min‖x‖=1,x∈Sn−k+1

rA(x) ≤ λk. But if we take Sn−k+1 = span{uk, . . . , un}, the min is λk, so
max min = λk. �

Remark. (1) for k = 1 and (2) for k = n give the previous result for the largest and smallest
eigenvalues.

Non-Unitary Similarity Transformations

Despite the advantages of unitary equivalence, there are limitations. Not every diagonalizable
matrix is unitarily diagonalizable. For example, consider an upper-triangular matrix T with
distinct eigenvalues λ1, . . . , λn. We know that T is diagonalizable. However, T is not unitarily
similar to a diagonal matrix unless it is already diagonal. This is because unitary equivalence
preserves the Frobenius norm: ‖T‖2

F =
∑n

i=1 |λi|2 +
∑

i<j |tij|2, but any diagonal matrix

similar to T has Frobenius norm
∑n

i=1 |λi|2. In order to diagonalize T it is necessary to use
non-unitary similarity transformations.

Proposition. Let A ∈ Cn×n and let λ1, . . . , λk be the distinct eigenvalues of A, with
multiplicities m1, . . . ,mk, respectively (so m1 + · · ·+mk = n). Then A is similar to a block
diagonal matrix of the form 

T1 0
T2

. . .

0 Tk

 ,
where each Ti ∈ Cmi×mi is upper triangular with λi as each of its diagonal entries.

Proof. By Schur, A is similar to an upper triangular T with diagonal entries ordered
m1︷ ︸︸ ︷

λ1, . . . , λ1,

m2︷ ︸︸ ︷
λ2, . . . , λ2, · · · ,

mk︷ ︸︸ ︷
λk, . . . , λk. We use a strategy as in Gaussian elimination (but

must be sure to do similarity transformations). Let Ers ∈ Cn×n have 1 in the (r, s)-entry
and 0 elsewhere. Left multiplication of T by Ers moves the sth row of T to the rth row and
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zeros out all other elements, that is, the elements of the matrix ErsT are all zero except for
those in the rth row which is just the sth row of T . Therefore, left multiplication of T by
the matrix (I −αErs) corresponds to subtracting α times the sth row of T from the rth row
of T . This is one of the elementary row operations used in Gaussian elimination. Note that
if r < s, then this operation introduces no new non-zero entries below the main diagonal of
T , that is, ErsT is still upper triangular.

Similarly, right multiplication of T by Ers moves the rth column of T to the sth column
and zeros out all other entries in the matrix, that is, the elements of the matrix TErs are all
zero except for those in the sth column which is just the rth column of T . Therefore, right
multiplication of T by (I +αErs) corresponds to adding α times the rth column of T to the
sth column of T . If r < s, then this operation introduces no new non-zero entries below the
main diagonal of T , that is, TErs is still upper triangular.

Because of the properties described above, the matrices (I±αErs) are sometimes referred
to as Gaussian elimination matrices. Note that E2

rs = 0 whenever r 6= s, and so

(I − αErs)(I + αErs) = I − αErs + αErs − α2E2
rs = I.

Thus (I + αErs)
−1 = (I − αErs).

Now consider the similarity transformation

T 7→ (I + αErs)
−1T (I + αErs) = (I − αErs)T (I + αErs)

with α ∈ C and r < s. Since T is upper triangular (as are I±αErs for r < s), it follows that
this similarity transformation only changes T in the sth column above (and including) the
rth row, and in the rth row to the right of (and including) the sth column, and that trs gets
replaced by trs +α(trr − tss). So if trr 6= tss it is possible to choose α to make trs = 0. Using
these observations, it is easy to see that such transformations can be performed successively
without destroying previously created zeroes to zero out all entries except those in the desired
block diagonal form (work backwards row by row starting with row n − mk; in each row,
zero out entries from left to right). �

Jordan Form

Let T ∈ Cn×n be an upper triangular matrix in block diagonal form

T =

 T1 0
. . .

0 Tk


as in the previous Proposition, i.e., Ti ∈ Cmi×mi satisfies Ti = λiI + Ni where Ni ∈ Cmi×mi

is strictly upper triangular, and λ1, . . . , λk are distinct. Then for 1 ≤ i ≤ k, Nmi
i = 0, so

N is nilpotent. Recall that any nilpotent operator is a direct sum of shift operators in an
appropriate basis, so the matrix Ni is similar to a direct sum of shift matrices

Sl =

 0 1 0
. . . . . . 1

0 0

 ∈ Cl×l
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of varying sizes l. Thus each Ti is similar to a direct sum of Jordan blocks

Jl(λ) = λIl + Sl =

 λ 1 0
. . . . . . 1

0 λ

 ∈ Cl×l

of varying sizes l (with λ = λi).

Definition. A matrix J is in Jordan normal form if it is the direct sum of finitely many
Jordan blocks (with, of course, possibly different values of λ and l).

The previous Proposition, together with our results on the structure of nilpotent operators
as discussed above, establishes the following Theorem.

Theorem. Every matrix A ∈ Cn×n is similar to a matrix in Jordan normal form.

Remarks:

(1) The Jordan form of A is not quite unique since the blocks may be arbitrarily reordered
by a similarity transformation. As we will see, this is the only nonuniqueness: the
number of blocks of each size for each eigenvalue λ is determined by A.

(2) Pick a Jordan matrix similar to A. For λ ∈ σ(A) and j ≥ 1, let bj(λ) denote the
number of j × j blocks associated with λ, and let r(λ) = max{j : bj(λ) > 0} be the
size of the largest block associated with λ. Let kj(λ) = dim(N (A− λI)j). Then from
our remarks on nilpotent operators,

0 < k1(λ) < k2(λ) < · · · < kr(λ)(λ) = kr(λ)+1(λ) = · · · = m(λ),

where m(λ) is the algebraic multiplicity of λ. By considering the form of powers of
shift matrices, one can easily show that

bj(λ) + bj+1(λ) + · · ·+ br(λ)(λ) = kj(λ)− kj−1(λ),

i.e., the number of blocks of size ≥ j associated with λ is kj(λ)−kj−1(λ). (In particular,
for j = 1, the number of Jordan blocks associated with λ is k1(λ) = the geometric
multiplicity of λ.) Thus,

bj(λ) = −kj+1(λ) + 2kj(λ)− kj−1(λ),

which is completely determined by A. (Compare with problem (6) on HW # 2.) Since
kj(λ) is invariant under similarity transformations, we conclude:

Proposition. (a) The Jordan form of A is unique up to reordering of the Jordan blocks.
(b) Two matrices in Jordan form are similar iff they can be obtained from each other by
reordering the blocks.

Remarks continued:
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(3) Knowing the algebraic and geometric multiplicities of each eigenvalue of A is not suffi-
cient to determine the Jordan form (unless the algebraic multiplicity of each eigenvalue
is at most one greater than its geometric multiplicity).

Exercise: Why is it determined in this case?

For example,

N1 =


0 1

0 1
0

0

 and N2 =


0 1
0 0

0 1
0 0


are not similar as N2

1 6= 0 = N2
2 , but both have 0 as the only eigenvalue with algebraic

multiplicity 4 and geometric multiplicity 2.

(4) The expression for bj(λ) in remark (2) above can also be given in terms of rj(λ) ≡
rank ((A− λI)j) = dim(R(A− λI)j) = m(λ)− kj(λ): bj = rj+1 − 2rj + rj−1.

(5) A necessary and sufficient condition for two matrices in Cn×n to be similar is that they
are both similar to the same Jordan normal form matrix.

Spectral Decomposition

There is a useful invariant (i.e., basis-free) formulation of some of the above. Let L ∈ L(V )
where dimV = n < ∞ (and F = C). Let λ1, . . . , λk be the distinct eigenvalues of L,

with algebraic multiplicities m1, . . . ,mk. Define the generalized eigenspaces Ẽi of L to be
Ẽi = N ((L − λiI)mi). (The eigenspaces are Eλi = N (L − λiI). Vectors in Ẽi\Eλi are
sometimes called generalized eigenvectors.) Upon choosing a basis for V in which L is
represented as a block-diagonal upper triangular matrix as above, one sees that

dim Ẽi = mi (1 ≤ i ≤ k) and V =
k⊕
i=1

Ẽi.

Let Pi (1 ≤ i ≤ k) be the projections associated with this decomposition of V , and define
D =

∑k
i=1 λiPi. Then D is a diagonalizable transformation since it is diagonal in the basis in

which L is block diagonal upper triangular. Using the same basis, one sees that the matrix
of N ≡ L −D is strictly upper triangular, and thus N is nilpotent (in fact Nm = 0 where

m = maxmi); moreover, N =
∑k

i=1Ni where Ni = PiNPi. Also LẼi ⊂ Ẽi, and LD = DL

since D is a multiple of the identity on each of the L-invariant subspaces Ẽi, and thus also
ND = DN . We have proved:

Theorem. Any L ∈ L(V ) can be written as L = D + N where D is diagonalizable, N is
nilpotent, and DN = ND. If Pi is the projection onto the λi-generalized eigenspace and
Ni = PiNPi, then D =

∑k
i=1 λiPi and N =

∑k
i=1 Ni. Moreover,

LPi = PiL = PiLPi = λiPi +Ni (1 ≤ i ≤ k),
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PiPj = δijPi and PiNj = NjPi = δijNj (1 ≤ i ≤ k)(1 ≤ j ≤ k),

and
NiNj = NjNi = 0 (1 ≤ i < j ≤ k),

where δij = 0 if i 6= j and δij = 1 if i = j.

Note: D and N are uniquely determined by L, but we will not prove this here.

If V has an inner product 〈·, ·〉, and L is normal, then we know that L is diagonalizable,
so N = 0. In this case we know that eigenvectors corresponding to different eigenvalues are
orthogonal, so the subspaces Ẽi (= Eλi in this situation) are mutually orthogonal in V . The
associated projections Pi are orthogonal projections (since E⊥λi = Eλ1 ⊕· · ·⊕Eλi−1

⊕Eλi+1
⊕

· · · ⊕ Eλk).
There is a useful characterization of when a projection is orthogonal. Recall that any

P ∈ L(V ) satisfying P 2 = P is a projection: one has V = R(P ) ⊕ N (P ), and P is the
projection of V onto R(P ) along N (P ). Recall also that P is called an orthogonal projection
relative to an inner product on V if R(P ) ⊥ N (P ).

Proposition. A projection P on an inner product space is orthogonal iff it is self-adjoint
(i.e., P is Hermitian: P ∗ = P , where P ∗ is the adjoint of P with respect to the inner
product).

Proof. Let P ∈ L(V ) be a projection. If P ∗ = P , then 〈y, Px〉 = 〈Py, x〉 ∀x, y ∈ V .
So y ∈ N (P ) iff (∀x ∈ V ) 〈y, Px〉 = 〈Py, x〉 = 0 iff y ∈ R(P )⊥, so P is an orthogonal
projection. Conversely, suppose R(P ) ⊥ N (P ). We must show that 〈y, Px〉 = 〈Py, x〉 for
all x, y ∈ V . Since V = R(P ) ⊕N (P ), it suffices to check this separately in the four cases
x, y ∈ R(P ), N (P ). Each of these cases is straightforward since Pv = v for v ∈ R(P ) and
Pv = 0 for v ∈ N (P ). �

Jordan form depends discontinuously on A

Ignoring the reordering question, the Jordan form of A is discontinuous at every matrix
A except those with distinct eigenvalues. For example, when ε = 0, the Jordan form of(
ε 1
0 0

)
is

(
0 1
0 0

)
, but for ε 6= 0, the Jordan form is

(
ε 0
0 0

)
. So small perturbations

in A can significantly change the Jordan form. For this reason, the Jordan form is almost
never used for numerical computation.

Jordan Form over R
The previous results do not hold for real matrices: for example, in general a real matrix
is not similar to a real upper-triangular matrix via a real similarity transformation. If it
were, then its eigenvalues would be the real diagonal entries, but a real matrix need not have
only real eigenvalues. However, nonreal eigenvalues are the only obstruction to carrying out
our previous arguments. Precisely, if A ∈ Rn×n has real eigenvalues, then A is orthogonally
similar to a real upper triangular matrix, and A can be put into block diagonal and Jordan
form using real similarity transformations, by following the same arguments as before. If A
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does have some nonreal eigenvalues, then there are substitute normal forms which can be
obtained via real similarity transformations.

Recall that nonreal eigenvalues of a real matrix A ∈ Rn×n came in complex conjugate
pairs: if λ = a + ib (with a, b ∈ R, b 6= 0) is an eigenvalue of A, then since pA(t) has real
coefficients, 0 = pA(λ) = pA(λ̄), so λ̄ = a− ib is also an eigenvalue. If u+ iv (with u, v ∈ Rn)
is an eigenvector of A for λ, then

A(u− iv) = A(u+ iv) = A(u+ iv) = λ(u+ iv) = λ̄(u− iv),

so u− iv is an eigenvector of A for λ̄. It follows that u + iv and u− iv (being eigenvectors
for different eigenvalues) are linearly independent over C, and thus u = 1

2
(u+ iv) + 1

2
(u− iv)

and v = 1
2i

(u+ iv)− 1
2i

(u− iv) are linearly independent over C, and consequently also over
R. Since A(u+ iv) = (a+ ib)(u+ iv) = (au− bv) + i(bu+ av), it follows that Au = au− bv
and Av = bu + av. Thus span{u, v} is a 2-dimensional real invariant subspace of Rn for A,
and the matrix of A restricted to the subspace span{u, v} with respect to the basis {u, v} is[

a b
−b a

]
(observe that this 2× 2 matrix has eigenvalues λ, λ̄).

Over R, the best one can generally do is to have such 2 × 2 diagonal blocks instead of
upper triangular matrices with λ, λ̄ on the diagonal. For example, the real Jordan blocks for
λ, λ̄ are

Jl(λ, λ̄) =



[
a b
−b a

] [
1 0
0 1

]
0

. . . . . .

[
1 0
0 1

]
0

[
a b
−b a

]


∈ R2l×2l.

The real Jordan form of A ∈ Rn×n is a direct sum of such blocks, with the usual Jordan
blocks for the real eigenvalues. See H-J for details.
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Non-Square Matrices

There is a useful variation on the concept of eigenvalues and eigenvectors which is defined
for both square and non-square matrices. Throughout this discussion, for A ∈ Cm×n, let
‖A‖ denote the operator norm induced by the Euclidean norms on Cn and Cm (which we
denote by ‖ · ‖), and let ‖A‖F denote the Frobenius norm of A. Note that we still have

〈y, Ax〉Cm = y∗Ax = 〈A∗y, x〉Cn for x ∈ Cn, y ∈ Cm.

From A ∈ Cm×n one can construct the square matrices A∗A ∈ Cn×n and AA∗ ∈ Cm×m.
Both of these are Hermitian positive semi-definite. In particular A∗A and AA∗ are diagonal-
izable with real non-negative eigenvalues. Except for the multiplicities of the zero eigenvalue,
these matrices have the same eigenvalues; in fact, we have:

Proposition. Let A ∈ Cm×n and B ∈ Cn×m with m ≤ n. Then the eigenvalues of BA
(counting multiplicity) are the eigenvalues of AB, together with n−m zeroes. (Remark: For
n = m, this was Problem 4 on Problem Set 5.)

Proof. Consider the (n+m)× (n+m) matrices

C1 =

[
AB 0
B 0

]
and C2 =

[
0 0
B BA

]
.

These are similar since S−1C1S = C2 where

S =

[
I A
0 I

]
and S−1 =

[
I −A
0 I

]
.

But the eigenvalues of C1 are those of AB along with n zeroes, and the eigenvalues of C2 are
those of BA along with m zeroes. The result follows. �

So for any m,n, the eigenvalues of A∗A and AA∗ differ by |n − m| zeroes. Let p =
min(m,n) and let λ1 ≥ λ2 ≥ · · · ≥ λp (≥ 0) be the joint eigenvalues of A∗A and AA∗.

Definition. The singular values of A are the numbers

σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0,

where σi =
√
λi. (When n > m, one often also defines singular values σm+1 = · · · = σn = 0.)

It is a fundamental result that one can choose orthonormal bases for Cn and Cm so that
A maps one basis into the other, scaled by the singular values. Let Σ = diag (σ1, . . . , σp) ∈
Cm×n be the “diagonal” matrix whose ii entry is σi (1 ≤ i ≤ p).

Singular Value Decomposition (SVD)

If A ∈ Cm×n, then there exist unitary matrices U ∈ Cm×m, V ∈ Cn×n such that A = UΣV ∗,
where Σ ∈ Cm×n is the diagonal matrix of singular values.
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Proof. By the same argument as in the square case, ‖A‖2 = ‖A∗A‖. But

‖A∗A‖ = λ1 = σ2
1, so ‖A‖ = σ1.

So we can choose x ∈ Cn with ‖x‖ = 1 and ‖Ax‖ = σ1. Write Ax = σ1y where ‖y‖ = 1.
Complete x and y to unitary matrices

V1 = [x, ṽ2, · · · , ṽn] ∈ Cn×n and U1 = [y, ũ2, · · · , ũm] ∈ Cm×m.

Since U∗1AV1 ≡ A1 is the matrix of A in these bases it follows that

A1 =

[
σ1 w∗

0 B

]
for some w ∈ Cn−1 and B ∈ C(m−1)×(n−1). Now observe that

σ2
1 + w∗w ≤

∥∥∥∥[ σ2
1 + w∗w
Bw

]∥∥∥∥
=

∥∥∥∥A1

[
σ1

w

]∥∥∥∥
≤ ‖A1‖ ·

∥∥∥∥[ σ1

w

]∥∥∥∥
= σ1(σ2

1 + w∗w)
1
2

since ‖A1‖ = ‖A‖ = σ1 by the invariance of ‖ · ‖ under unitary multiplication.

It follows that (σ2
1 + w∗w)

1
2 ≤ σ1, so w = 0, and thus

A1 =

[
σ1 0
0 B

]
.

Now apply the same argument to B and repeat to get the result. For this, observe that[
σ2

1 0
0 B∗B

]
= A∗1A1 = V ∗1 A

∗AV1

is unitarily similar to A∗A, so the eigenvalues of B∗B are λ2 ≥ · · · ≥ λn (≥ 0). Observe
also that the same argument shows that if A ∈ Rm×n, then U and V can be taken to be real
orthogonal matrices. �

This proof given above is direct, but it masks some of the key ideas. We now sketch an
alternative proof that reveals more of the underlying structure of the SVD decomposition.

Alternative Proof of SVD: Let {v1, . . . , vn} be an orthonormal basis of Cn consisting
of eigenvectors of A∗A associated with λ1 ≥ λ2 ≥ · · · ≥ λn (≥ 0), respectively, and let
V = [v1 · · · vn] ∈ Cn×n. Then V is unitary, and

V ∗A∗AV = Λ ≡ diag (λ1, . . . , λn) ∈ Rn×n.
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For 1 ≤ i ≤ n,

‖Avi‖2 = e∗iV
∗A∗AV ei = λi = σ2

i .

Choose the integer r such that

σ1 ≥ · · · ≥ σr > σr+1 = · · · = σn = 0

(r turns out to be the rank of A). Then for 1 ≤ i ≤ r, Avi = σiui for a unique ui ∈ Cm with
‖ui‖ = 1. Moreover, for 1 ≤ i, j ≤ r,

u∗iuj =
1

σiσj
v∗iA

∗Avj =
1

σiσj
e∗iΛej = δij.

So we can append vectors ur+1, . . . , um ∈ Cm (if necessary) so that U = [u1 · · ·um] ∈ Cm×m

is unitary. It follows easily that AV = UΣ, so A = UΣV ∗. �

The ideas in this second proof are derivable from the equality A = UΣV ∗ expressing the
SVD of A (no matter how it is constructed). The SVD equality is equivalent to AV = UΣ .
Interpreting this equation columnwise gives

Avi = σiui (1 ≤ i ≤ p),

and

Avi = 0 for i > m if n > m,

where {v1, . . . , vn} are the columns of V and {u1, . . . , um} are the columns of U . So A maps
the orthonormal vectors {v1, . . . , vp} into the orthogonal directions {u1, . . . , up} with the
singular values σ1 ≥ · · · ≥ σp as scale factors. (Of course if σi = 0 for an i ≤ p, then Avi = 0,
and the direction of ui is not represented in the range of A.)

The vectors v1, . . . , vn are called the right singular vectors of A, and u1, . . . , um are called
the left singular vectors of A. Observe that

A∗A = V Σ∗ΣV ∗ and Σ∗Σ = diag (σ2
1, . . . , σ

2
n) ∈ Rn×n

even if m < n. So

V ∗A∗AV = Λ = diag (λ1, . . . λn),

and thus the columns of V form an orthonormal basis consisting of eigenvectors of A∗A ∈
Cn×n. Similarly AA∗ = UΣΣ∗U∗, so

U∗AA∗U = ΣΣ∗ = diag (σ2
1, . . . , σ

2
p,

m−n zeroes if m>n︷ ︸︸ ︷
0, . . . , 0 ) ∈ Rm×m,

and thus the columns of U form an orthonormal basis of Cm consisting of eigenvectors of
AA∗ ∈ Cm×m.

Caution. We cannot choose the bases of eigenvectors {v1, . . . , vn} of A∗A (corresponding to
λ1, . . . , λn) and {u1, . . . , um} of AA∗ (corresponding to λ1, . . . , λp, [0, . . . , 0]) independently:
we must have Avi = σiui for σi > 0.
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In general, the SVD is not unique. Σ is uniquely determined but if A∗A has multiple
eigenvalues, then one has freedom in the choice of bases in the corresponding eigenspace,
so V (and thus U) is not uniquely determined. One has complete freedom of choice of
orthonormal bases of N (A∗A) and N (AA∗): these form the right-most columns of V and U ,
respectively. For a nonzero multiple singular value, one can choose the basis of the eigenspace
of A∗A (choosing columns of V ), but then the corresponding columns of U are determined;
or, one can choose the basis of the eigenspace of AA∗ (choosing columns of U), but then the
corresponding columns of V are determined. If all the singular values σ1, . . . , σn of A are
distinct, then each column of V is uniquely determined up to a factor of modulus 1, i.e., V
is determined up to right multiplication by a diagonal matrix

D = diag (eiθ1 , . . . , eiθn).

Such a change in V must be compensated for by multiplying the first n columns of U by D
(the first n − 1 cols. of U by diag (eiθ1 , . . . , eiθn−1) if σn = 0); of course if m > n, then the
last m− n columns of U have further freedom (they are in N (AA∗)).

There is an abbreviated form of SVD useful in computation. Since rank is preserved under
unitary multiplication, rank (A) = r iff σ1 ≥ · · · ≥ σr > 0 = σr+1 = · · · . Let Ur ∈ Cm×r,
Vr ∈ Cn×r be the first r columns of U , V , respectively, and let Σr = diag (σ1, . . . , σr) ∈ Rr×r.
Then A = UrΣrV

∗
r (exercise).

Applications of SVD

If m = n, then A ∈ Cn×n has eigenvalues as well as singular values. These can differ
significantly. For example, if A is nilpotent, then all of its eigenvalues are 0. But all of the
singular values of A vanish iff A = 0. However, for A normal, we have:

Proposition. Let A ∈ Cn×n be normal, and order the eigenvalues of A as

|λ1| ≥ |λ2| ≥ · · · ≥ |λn|.

Then the singular values of A are σi = |λi|, 1 ≤ i ≤ n.

Proof. By the Spectral Theorem for normal operators, there is a unitary V ∈ Cn×n for
which A = V ΛV ∗, where Λ = diag (λ1, . . . , λn). For 1 ≤ i ≤ n, choose di ∈ C for which
d̄iλi = |λi| and |di| = 1, and let D = diag (d1, . . . , dn). Then D is unitary, and

A = (V D)(D∗Λ)V ∗ ≡ UΣV ∗,

where U = V D is unitary and Σ = D∗Λ = diag (|λ1|, . . . , |λn|) is diagonal with decreasing
nonnegative diagonal entries. �

Note that both the right and left singular vectors (columns of V , U) are eigenvectors of
A; the columns of U have been scaled by the complex numbers di of modulus 1.

The Frobenius and Euclidean operator norms of A ∈ Cm×n are easily expressed in terms
of the singular values of A:

‖A‖F =

(
n∑
i=1

σ2
i

) 1
2

and ‖A‖ = σ1 =
√
ρ(A∗A),
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as follows from the unitary invariance of these norms. There are no such simple expressions
(in general) for these norms in terms of the eigenvalues of A if A is square (but not normal).
Also, one cannot use the spectral radius ρ(A) as a norm on Cn×n because it is possible for
ρ(A) = 0 and A 6= 0; however, on the subspace of Cn×n consisting of the normal matrices,
ρ(A) is a norm since it agrees with the Euclidean operator norm for normal matrices.

The SVD is useful computationally for questions involving rank. The rank of A ∈ Cm×n

is the number of nonzero singular values of A since rank is invariant under pre- and post-
multiplication by invertible matrices. There are stable numerical algorithms for computing
SVD (try on matlab). In the presence of round-off error, row-reduction to echelon form
usually fails to find the rank of A when its rank is < min(m,n); for such a matrix, the
computed SVD has the zero singular values computed to be on the order of machine ε, and
these are often identifiable as “numerical zeroes.” For example, if the computed singular
values of A are 102, 10, 1, 10−1, 10−2, 10−3, 10−4, 10−15, 10−15, 10−16 with machine ε ≈ 10−16,
one can safely expect rank (A) = 7.

Another application of the SVD is to derive the polar form of a matrix. This is the
analogue of the polar form z = reiθ in C. (Note from problem 1 on Prob. Set 6, U ∈ Cn×n

is unitary iff U = eiH for some Hermitian H ∈ Cn×n).

Polar Form

Every A ∈ Cn×n may be written as A = PU , where P is positive semi-definite Hermitian
and U is unitary.

Proof. Let A = UΣV ∗ be a SVD for A, and write

A = (UΣU∗)(UV ∗).

Then UΣU∗ is positive semi-definite Hermitian and UV ∗ is unitary. �

Observe in the proof that the eigenvalues of P are the singular values of A; this is true
for any polar decomposition of A (exercise). We note that in the polar form A = PU , P is
always uniquely determined and U is uniquely determined if A is invertible (as in z = reiθ).
The uniqueness of P follows from the following two facts:

(i) AA∗ = PUU∗P ∗ = P 2 and

(ii) every positive semi-definite Hermitian matrix has a unique positive semi-definite Her-
mitian square root (see H-J, Theorem 7.2.6).

If A is invertible, then so is P , so U = P−1A is also uniquely determined. There is also a
version of the polar form for non-square matrices; see H-J for details.

Linear Least Squares Problems

If A ∈ Cm×n and b ∈ Cm, the linear system Ax = b might not be solvable. Instead, we can
solve the minimization problem: find x ∈ Cn to attain infx∈Cn ‖Ax− b‖2 (Euclidean norm).
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This is called a least-squares problem since the square of the Euclidean norm is a sum of
squares. At a minimum of ϕ(x) = ‖Ax− b‖2 we must have ∇ϕ(x) = 0, or equivalently

ϕ′(x; v) = 0 ∀ v ∈ Cn,

where

ϕ′(x; v) =
d

dt
ϕ(x+ tv)

∣∣∣∣∣
t=0

is the directional derivative. If y(t) is a differentiable curve in Cm, then

d

dt
‖y(t)‖2 = 〈y′(t), y(t)〉+ 〈y(t), y′(t)〉 = 2Re〈y(t), y′(t)〉.

Taking y(t) = A(x+ tv)− b, we obtain that

∇ϕ(x) = 0⇔ (∀ v ∈ Cn) 2Re〈Ax− b, Av〉 = 0⇔ A∗(Ax− b) = 0,

i.e.,
A∗Ax = A∗b .

These are called the normal equations (they say (Ax− b) ⊥ R(A)).

Linear Least Squares, SVD, and Moore-Penrose Pseudoinverse

The Projection Theorem (for finite dimensional S)

Let V be an inner product space and let S ⊂ V be a finite dimensional subspace. Then

(1) V = S ⊕ S⊥, i.e., given v ∈ V , ∃ unique y ∈ S and z ∈ S⊥ for which

v = y + z

(so y = Pv, where P is the orthogonal projection of V onto S; also
z = (I − P )v, and I − P is the orthogonal projection of V onto S⊥).

(2) Given v ∈ V , the y in (1) is the unique element of S which satisfies
v − y ∈ S⊥.

(3) Given v ∈ V , the y in (1) is the unique element of S realizing the
minimum

min
s∈S
‖v − s‖2 .
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Remark. The content of the Projection Theorem is contained in the following picture:
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Proof. (1) Let {ψ1, . . . , ψr} be an orthonormal basis of S. Given v ∈ V , let

y =
r∑
j=1

〈ψj, v〉ψj and z = v − y.

Then v = y + z and y ∈ S. For 1 ≤ k ≤ r,

〈ψk, z〉 = 〈ψk, v〉 − 〈ψk, y〉 = 〈ψk, v〉 − 〈ψk, v〉 = 0,

so z ∈ S⊥. Uniqueness follows from the fact that S ∩ S⊥ = {0}.

(2) Since z = v − y, this is just a restatement of z ∈ S⊥.

(3) For any s ∈ S,

v − s = y − s︸ ︷︷ ︸
∈S

+ z︸︷︷︸
∈S⊥

,

so by the Pythagorean Theorem (p ⊥ q ⇒ ‖p± q‖2 = ‖p‖2 + ‖q‖2),

‖v − s‖2 = ‖y − s‖2 + ‖z‖2.

Therefore, ‖v − s‖2 is minimized iff s = y, and then ‖v − y‖2 = ‖z‖2. �

Theorem: [Normal Equations for Linear Least Squares]

Let A ∈ Cm×n, b ∈ Cm and ‖ · ‖ be the Euclidean norm. Then x ∈ Cn realizes the minimum:

min
x∈Cn

‖b− Ax‖2

if and only if x is a solution to the normal equations A∗Ax = A∗b.

Proof. Recall from early in the course that we showed that R(L)a = N (L′) for any linear
transformation L. If we identify Cn and Cm with their duals using the Euclidean inner
product and take L to be multiplication by A, this can be rewritten as R(A)⊥ = N (A∗).
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Now apply the Projection Theorem, taking S = R(A) and v = b. Any s ∈ S can be
represented as Ax for some x ∈ Cn (not necessarily unique if rank (A) < n). We conclude
that y = Ax realizes the minimum iff

b− Ax ∈ R(A)⊥ = N (A∗),

or equivalently A∗Ax = A∗b. �

The minimizing element s = y ∈ S is unique. Since y ∈ R(A), there exists x ∈ Cn for
which Ax = y, or equivalently, there exists x ∈ Cn minimizing ‖b − Ax‖2. Consequently,
there is an x ∈ Cn for which A∗Ax = A∗b, that is, the normal equations are consistent.

If rank (A) = n, then there is a unique x ∈ Cn for which Ax = y. This x is the unique
minimizer of ‖b−Ax‖2 as well as the unique solution of the normal equations A∗Ax = A∗b.
However, if rank (A) = r < n, then the minimizing vector x is not unique; x can be modified
by adding any element of N (A). (Exercise. Show N (A) = N (A∗A).) However, there is a
unique

x† ∈ {x ∈ Cn : x minimizes ‖b− Ax‖2} = {x ∈ Cn : Ax = y}

of minimum norm (x† is read “x dagger”).

H
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HHH
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x†

{x : Ax = y}
(in Cn)

To see this, note that since {x ∈ Cn : Ax = y} is an affine translate of the subspace N (A),
a translated version of the Projection Theorem shows that there is a unique x† ∈ {x ∈ Cn :
Ax = y} for which x† ⊥ N (A) and this x† is the unique element of {x ∈ Cn : Ax = y} of
minimum norm. Notice also that {x : Ax = y} = {x : A∗Ax = A∗b}.

In summary: given b ∈ Cm, then x ∈ Cn minimizes ‖b− Ax‖2 over x ∈ Cn iff Ax is the
orthogonal projection of b onto R(A), and among this set of solutions there is a unique x† of
minimum norm. Alternatively, x† is the unique solution of the normal equations A∗Ax = A∗b
which also satisfies x† ∈ N (A)⊥.

The map A† : Cm → Cn which maps b ∈ Cm into the unique minimizer x† of ‖b− Ax‖2

of minimum norm is called the Moore-Penrose pseudo-inverse of A. We will see momentarily
that A† is linear, so it is represented by an n×m matrix which we also denote by A† (and we
also call this matrix the Moore-Penrose pseudo-inverse of A). If m = n and A is invertible,
then every b ∈ Cn is in R(A), so y = b, and the solution of Ax = b is unique, given by
x = A−1b. In this case A† = A−1. So the pseudo-inverse is a generalization of the inverse to
possibly non-square, non-invertible matrices.

The linearity of the map A† can be seen as follows. For A ∈ Cm×n, the above considera-
tions show that A|N (A)⊥ is injective and maps onto R(A). Thus A|N (A)⊥ : N (A)⊥ → R(A)
is an isomorphism. The definition of A† amounts to the formula

A† = (A|N (A)⊥)−1 ◦ P1,
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where P1 : Cm → R(A) is the orthogonal projection onto R(A). Since P1 and (A|N (A)⊥)−1

are linear transformations, so is A†.
The pseudo-inverse of A can be written nicely in terms of the SVD of A. Let A = UΣV ∗

be an SVD of A, and let r = rank (A) (so σ1 ≥ · · · ≥ σr > 0 = σr+1 = · · · ). Define

Σ† = diag (σ−1
1 , . . . , σ−1

r , 0, . . . , 0) ∈ Cn×m.

(Note: It is appropriate to call this matrix Σ† as it is easily shown that the pseudo-inverse
of Σ ∈ Cm×n is this matrix (exercise).)

Proposition. If A = UΣV ∗ is an SVD of A, then A† = V Σ†U∗ is an SVD of A†.

Proof. Denote by u1, · · ·um the columns of U and by v1, · · · , vn the columns of V . The
statement that A = UΣV ∗ is an SVD of A is equivalent to the three conditions:

1. {u1, · · ·um} is an orthonormal basis of Cm such that span{u1, · · ·ur} = R(A)

2. {v1, · · · , vn} is an orthonormal basis for Cn such that span{vr+1, · · · , vn} = N (A)

3. Avi = σiui for 1 ≤ i ≤ r.

The conditions on the spans in 1. and 2. are equivalent to span{ur+1, · · ·um} = R(A)⊥ and
span{v1, · · · , vr} = N (A)⊥. The formula

A† = (A|N (A)⊥)−1 ◦ P1

shows that span{ur+1, · · ·um} = N (A†), span{v1, · · · , vr} = R(A†), and that A†ui = σ−1
i vi

for 1 ≤ i ≤ r. Thus the conditions 1.-3. hold for A† with U and V interchanged and with σi
replaced by σ−1

i . Hence A† = V Σ†U∗ is an SVD for A†. �

A similar formula can be written for the abbreviated form of the SVD. If Ur ∈ Cm×r and
Vr ∈ Cn×r are the first r columns of U , V , respectively, and

Σr = diag (σ1, . . . , σr) ∈ Cr×r,

then the abbreviated form of the SVD of A is A = UrΣrV
∗
r . The above Proposition shows

that A† = VrΣ
−1
r U∗r .

One rarely actually computes A†. Instead, to minimize ‖b − Ax‖2 using the SVD of A
one computes

x† = Vr(Σ
−1
r (U∗r b)) .

For b ∈ Cm, we saw above that if x† = A†b, then Ax† = y is the orthogonal projection
of b onto R(A). Thus AA† is the orthogonal projection of Cm onto R(A). This is also clear
directly from the SVD:

AA† = UrΣrV
∗
r VrΣ

−1
r U∗r = UrΣrΣ

−1
r U∗r = UrU

∗
r = Σr

j=1uju
∗
j

which is clearly the orthogonal projection onto R(A). (Note that V ∗r Vr = Ir since the
columns of V are orthonormal.) Similarly, since w = A†(Ax) is the vector of least length



68 Linear Algebra and Matrix Analysis

satisfying Aw = Ax, A†A is the orthogonal projection of Cn onto N (A)⊥. Again, this also
is clear directly from the SVD:

A†A = VrΣ
−1
r U∗rUrΣrV

∗
r = VrV

∗
r = Σr

j=1vjv
∗
j

is the orthogonal projection onto R(Vr) = N (A)⊥. These relationships are substitutes for
AA−1 = A−1A = I for invertible A ∈ Cn×n. Similarly, one sees that

(i) AXA = A,

(ii) XAX = X,

(iii) (AX)∗ = AX,

(iv) (XA)∗ = XA,

where X = A†. In fact, one can show that X ∈ Cn×m is A† if and only if X satisfies (i), (ii),
(iii), (iv). (Exercise — see section 5.54 in Golub and Van Loan.)

The pseudo inverse can be used to extend the (Euclidean operator norm) condition
number to general matrices: κ(A) = ‖A‖ · ‖A†‖ = σ1/σr (where r = rankA).

LU Factorization

All of the matrix factorizations we have studied so far are spectral factorizations in the
sense that in obtaining these factorizations, one is obtaining the eigenvalues and eigenvec-
tors of A (or matrices related to A, like A∗A and AA∗ for SVD). We end our discussion
of matrix factorizations by mentioning two non-spectral factorizations. These non-spectral
factorizations can be determined directly from the entries of the matrix, and are compu-
tationally less expensive than spectral factorizations. Each of these factorizations amounts
to a reformulation of a procedure you are already familiar with. The LU factorization is
a reformulation of Gaussian Elimination, and the QR factorization is a reformulation of
Gram-Schmidt orthogonalization.

Recall the method of Gaussian Elimination for solving a system Ax = b of linear equa-
tions, where A ∈ Cn×n is invertible and b ∈ Cn. If the coefficient of x1 in the first equation
is nonzero, one eliminates all occurrences of x1 from all the other equations by adding ap-
propriate multiples of the first equation. These operations do not change the set of solutions
to the equation. Now if the coefficient of x2 in the new second equation is nonzero, it can
be used to eliminate x2 from the further equations, etc. In matrix terms, if

A =

[
a vT

u Ã

]
∈ Cn×n

with a 6= 0, a ∈ C, u, v ∈ Cn−1, and Ã ∈ C(n−1)×(n−1), then using the first row to zero out u
amounts to left multiplication of the matrix A by the matrix[

1 0
−u
a

I

]
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to get

(*)

[
1 0
−u
a

I

] [
a vT

u Ã

]
=

[
a vT

0 A1

]
.

Define

L1 =

[
1 0
u
a

I

]
∈ Cn×n and U1 =

[
a vT

0 A1

]
and observe that

L−1
1 =

[
1 0
−u
a

I

]
.

Hence (*) becomes

L−1
1 A = U1, or equivalently, A = L1U1 .

Note that L1 is lower triangular and U1 is block upper-triangular with one 1× 1 block and
one (n− 1)× (n− 1) block on the block diagonal. The components of u

a
∈ Cn−1 are called

multipliers, they are the multiples of the first row subtracted from subsequent rows, and they
are computed in the Gaussian Elimination algorithm. The multipliers are usually denoted

u/a =


m21

m31
...

mn1

 .
Now, if the (1, 1) entry of A1 is not 0, we can apply the same procedure to A1: if

A1 =

[
a1 vT1
u1 Ã1

]
∈ C(n−1)×(n−1)

with a1 6= 0, letting

L̃2 =

[
1 0
u1
a1

I

]
∈ C(n−1)×(n−1)

and forming

L̃−1
2 A1 =

[
1 0
−u1
a1

I

] [
a1 vT1
u1 Ã1

]
=

[
a1 vT1
0 A2

]
≡ Ũ2 ∈ C(n−1)×(n−1)

(where A2 ∈ C(n−2)×(n−2)) amounts to using the second row to zero out elements of the

second column below the diagonal. Setting L2 =

[
1 0

0 L̃2

]
and U2 =

[
a vT

0 Ũ2

]
, we have

L−1
2 L−1

1 A =

[
1 0

0 L̃−1
2

] [
a vT

0 A1

]
= U2,
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which is block upper triangular with two 1× 1 blocks and one (n− 2)× (n− 2) block on the
block diagonal. The components of u1

a1
are multipliers, usually denoted

u1

a1

=


m32

m42
...

mn2

 .
Notice that these multipliers appear in L2 in the second column, below the diagonal. Con-
tinuing in a similar fashion,

L−1
n−1 · · ·L−1

2 L−1
1 A = Un−1 ≡ U

is upper triangular (provided along the way that the (1, 1) entries of A,A1, A2, . . . , An−2 are
nonzero so the process can continue). Define L = (L−1

n−1 · · ·L−1
1 )−1 = L1L2 · · ·Ln−1. Then

A = LU . (Remark: A lower triangular matrix with 1’s on the diagonal is called a unit lower
triangular matrix, so Lj, L

−1
j , L−1

j−1 · · ·L−1
1 , L1 · · ·Lj, L−1, L are all unit lower triangular.) For

an invertible A ∈ Cn×n, writing A = LU as a product of a unit lower triangular matrix L
and a (necessarily invertible) upper triangular matrix U (both in Cn×n) is called the LU
factorization of A.

Remarks:

(1) If A ∈ Cn×n is invertible and has an LU factorization, it is unique (exercise).

(2) One can show that A ∈ Cn×n has an LU factorization iff for 1 ≤ j ≤ n, the upper left

j × j principal submatrix

 a11 · · · a1j
...
aj1 · · · ajj

 is invertible.

(3) Not every invertible A ∈ Cn×n has an LU-factorization. (Example:

[
0 1
1 0

]
doesn’t.)

Typically, one must permute the rows of A to move nonzero entries to the appropriate
spot for the elimination to proceed. Recall that a permutation matrix P ∈ Cn×n is the
identity I with its rows (or columns) permuted. Any such P ∈ Rn×n is orthogonal,
so P−1 = P T . Permuting the rows of A amounts to left multiplication by a permu-
tation matrix P T ; then P TA has an LU factorization, so A = PLU (called the PLU
factorization of A).

(4) Fact: Every invertible A ∈ Cn×n has a (not necessarily unique) PLU factorization.

(5) It turns out that L = L1 · · ·Ln−1 =


1 0
m21

...
. . .

mn−1 · · · 1

 has the multipliers mij below

the diagonal.
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(6) The LU factorization can be used to solve linear systems Ax = b (where A = LU ∈
Cn×n is invertible). The system Ly = b can be solved by forward substitution (first
equation gives x1, etc.), and Ux = y can be solved by back-substitution (nth equation
gives xn, etc.), giving the solution of Ax = LUx = b. See section 3.5 of H-J.

QR Factorization

Recall first the Gram-Schmidt orthogonalization process. Let V be an inner product space,
and suppose a1, . . . , an ∈ V are linearly independent. Define q1, . . . , qn inductively, as follows:
let p1 = a1 and q1 = p1/‖p1‖; then for 2 ≤ j ≤ n, let

pj = aj −
j−1∑
i=1

〈qi, aj〉qi and qj = pj/‖pj‖.

Since clearly for 1 ≤ k ≤ n we have qk ∈ span{a1, . . . , ak}, each pj is nonzero by the linear
independence of {a1, . . . , an}, so each qj is well-defined. It is easily seen that {q1, . . . , qn}
is an orthonormal basis for span{a1, . . . , an}. The relations above can be solved for aj to
express aj in terms of the qi with i ≤ j. Defining rjj = ‖pj‖ (so pj = rjjqj) and rij = 〈qi, aj〉
for 1 ≤ i < j ≤ n, we have: a1 = r11q1, a2 = r12q1 + r22q2, and in general aj =

∑j
i=1 rijqi.

Remarks:

(1) If a1, a2, · · · is a linearly independent sequence in V , we can apply the Gram-Schmidt
process to obtain an orthonormal sequence q1, q2, . . . with the property that for k ≥ 1,
{q1, . . . , qk} is an orthonormal basis for span{a1, . . . , ak}.

(2) If the aj’s are linearly dependent, then for some value(s) of k, ak ∈ span{a1, . . . , ak−1},
and then pk = 0. The process can be modified by setting qk = 0 and proceeding. We
end up with orthogonal qj’s, some of which have ‖qj‖ = 1 and some have ‖qj‖ = 0.
Then for k ≥ 1, the nonzero vectors in the set {q1, . . . , qk} form an orthonormal basis
for span{a1, . . . , ak}.

(3) The classical Gram-Schmidt algorithm described above applied to n linearly indepen-
dent vectors a1, . . . , an ∈ Cm (where of course m ≥ n) does not behave well compu-
tationally. Due to the accumulation of round-off error, the computed qj’s are not as
orthogonal as one would want (or need in applications): 〈qj, qk〉 is small for j 6= k
with j near k, but not so small for j � k or j � k. An alternate version, “Modified
Gram-Schmidt,” is equivalent in exact arithmetic, but behaves better numerically. In
the following “pseudo-codes,” p denotes a temporary storage vector used to accumulate
the sums defining the pj’s.
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Classic Gram-Schmidt Modified Gram-Schmidt
For j = 1, · · · , n do For j = 1, . . . , n do∣∣∣ p := aj

∣∣∣ p := aj∣∣∣ For i = 1, . . . , j − 1 do
∣∣∣ For i = 1, . . . , j − 1 do∣∣∣ ∣∣∣ rij = 〈qi, aj〉
∣∣∣ ∣∣∣ rij = 〈qi, p〉∣∣∣ ⌊

p := p− rijqi
∣∣∣ ⌊

p := p− rijqi∣∣∣ rjj := ‖p‖
∣∣∣ rjj = ‖p‖⌊

qj := p/rjj

⌊
qj := p/rjj

The only difference is in the computation of rij: in Modified Gram-Schmidt, we or-
thogonalize the accumulated partial sum for pj against each qi successively.

Proposition. Suppose A ∈ Cm×n with m ≥ n. Then ∃Q ∈ Cm×m which is unitary and
an upper triangular R ∈ Cm×n (i.e. rij = 0 for i > j) for which A = QR. If Q̃ ∈ Cm×n

denotes the first n columns of Q and R̃ ∈ Cn×n denotes the first n rows of R, then clearly

also A = QR = [Q̃ ∗]
[
R̃
0

]
= Q̃R̃. Moreover

(a) We may choose an R with nonnegative diagonal entries.

(b) If A is of full rank (i.e. rank (A) = n, or equivalently the columns of A are linearly
independent), then we may choose an R with positive diagonal entries, in which case

the condensed factorization A = Q̃R̃ is unique (and thus in this case if m = n, the

factorization A = QR is unique since then Q = Q̃ and R = R̃).

(c) If A is of full rank, the condensed factorization A = Q̃R̃ is essentially unique: if

A = Q̃1R̃1 = Q̃2R̃2, then ∃ a unitary diagonal matrix D ∈ Cn×n for which Q̃2 = Q̃1D
∗

(rescaling the columns of Q̃1) and R̃2 = DR̃1 (rescaling the rows of R̃1).

Proof. If the columns of A are linearly independent, we can apply the Gram-Schmidt
process described above. Let Q̃ = [q1, . . . , qn] ∈ Cm×n, and define R̃ ∈ Cn×n by setting
rij = 0 for i > j, and rij to be the value computed in Gram-Schmidt for i ≤ j. Then

A = Q̃R̃. Extending {q1, . . . , qn} to an orthonormal basis {q1, . . . , qm} of Cm, and setting

Q = [q1, . . . , qm] and R =

[
R̃
0

]
∈ Cm×n, we have A = QR. Since rjj > 0 in G-S, we

have the existence part of (b). Uniqueness follows by induction passing through the G-S
process again, noting that at each step we have no choice. (c) follows easily from (b) since

if rank (A) = n, then rank (R̃) = n in any Q̃R̃ factorization of A.
If the columns of A are linearly dependent, we alter the Gram-Schmidt algorithm as in

Remark (2) above. Notice that qk = 0 iff rkj = 0∀ j, so if {qk1 , . . . , qkr} are the nonzero
vectors in {q1, . . . , qn} (where of course r = rank (A)), then the nonzero rows in R are

precisely rows k1, . . . , kr. So if we define Q̂ = [qk1 · · · qkr ] ∈ Cm×r and R̂ ∈ Cr×n to be these
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nonzero rows, then Q̂R̂ = A where Q̂ has orthonormal columns and R̂ is upper triangular.

Let Q be a unitary matrix whose first r columns are Q̂, and let R =

[
R̂
0

]
∈ Cm×n. Then

A = QR. (Notice that in addition to (a), we actually have constructed an R for which, in
each nonzero row, the first nonzero element is positive.) �

Remarks (continued):

(4) If A ∈ Rm×n, everything can be done in real arithmetic, so, e.g., Q ∈ Rm×m is orthog-
onal and R ∈ Rm×n is real, upper triangular.

(5) In practice, there are more efficient and better computationally behaved ways of calcu-
lating the Q and R factors. The idea is to create zeros below the diagonal (successively
in columns 1, 2, . . .) as in Gaussian Elimination, except we now use Householder trans-
formations (which are unitary) instead of the unit lower triangular matrices Lj. Details
will be described in an upcoming problem set.

Using QR Factorization to Solve Least Squares Problems

Suppose A ∈ Cm×n, b ∈ Cm, and m ≥ n. Assume A has full rank (rank (A) = n). The QR
factorization can be used to solve the least squares problem of minimizing ‖b−Ax‖2 (which
has a unique solution in this case). Let A = QR be a QR factorization of A, with condensed

form Q̃R̃, and write Q = [Q̃ Q′] where Q′ ∈ Cm×(m−n). Then

‖b− Ax‖2 =‖b−QRx‖2 = ‖Q∗b−Rx‖2 =

∥∥∥∥[ Q̃∗

Q′∗

]
b−

[
R̃
0

]
x

∥∥∥∥2

=

∥∥∥∥[ Q̃∗b− R̃xQ′∗b

]∥∥∥∥2

= ‖Q̃∗b− R̃x‖2 + ‖Q′∗b‖2.

Here R̃ ∈ Cn×n is an invertible upper triangle matrix, so that x minimizes ‖b − Ax‖2 iff

R̃x = Q̃∗b. This invertible upper triangular n × n system for x can be solved by back-
substitution. Note that we only need Q̃ and R̃ to solve for x.

The QR Algorithm

The QR algorithm is used to compute a specific Schur unitary triangularization of a matrix
A ∈ Cn×n. The algorithm is iterative: We generate a sequence A = A0, A1, A2, . . . of matrices
which are unitarily similar to A; the goal is to get the subdiagonal elements to converge to
zero, as then the eigenvalues will appear on the diagonal. If A is Hermitian, then so also
are A1, A2, . . ., so if the subdiagonal elements converge to 0, also the superdiagonal elements
converge to 0, and (in the limit) we have diagonalized A. The QR algorithm is the most
commonly used method for computing all the eigenvalues (and eigenvectors if wanted) of a
matrix. It behaves well numerically since all the similarity transformations are unitary.

When used in practice, a matrix is first reduced to upper-Hessenberg form (hij = 0
for i > j + 1) using unitary similarity transformations built from Householder reflections



74 Linear Algebra and Matrix Analysis

(or Givens rotations), quite analogous to computing a QR factorization. Here, however,
similarity transformations are being performed, so they require left and right multiplication
by the Householder transformations — leading to an inability to zero out the first subdiagonal
(i = j + 1) in the process. If A is Hermitian and upper-Hessenberg, A is tridiagonal. This
initial reduction is to decrease the computational cost of the iterations in the QR algorithm.
It is successful because upper-Hessenberg form is preserved by the iterations: if Ak is upper
Hessenberg, so is Ak+1.

There are many sophisticated variants of the QR algorithm (shifts to speed up conver-
gence, implicit shifts to allow computing a real quasi-upper triangular matrix similar to a
real matrix using only real arithmetic, etc.). We consider the basic algorithm over C.

The (Basic) QR Algorithm

Given A ∈ Cn×n, let A0 = A. For k = 0, 1, 2, . . ., starting with Ak, do a QR factorization of
Ak: Ak = QkRk, and then define Ak+1 = RkQk.

Remark. Rk = Q∗kAk, so Ak+1 = Q∗kAkQk is unitarily similar to Ak. The algorithm uses the
Q of the QR factorization of Ak to perform the next unitary similarity transformation.

Convergence of the QR Algorithm

We will show under mild hypotheses that all of the subdiagonal elements of Ak converge to
0 as k →∞. See section 2.6 in H-J for examples where the QR algorithm does not converge.
See also sections 7.5, 7.6, 8.2 in Golub and Van Loan for more discussion.

Lemma. Let Qj (j = 1, 2, . . .) be a sequence of unitary matrices in Cn×n and Rj (j =
1, 2, . . .) be a sequence of upper triangular matrices in Cn×n with positive diagonal entries.
Suppose QjRj → I as j →∞. Then Qj → I and Rj → I.

Proof Sketch. Let Qjk be any subsequence of Qj. Since the set of unitary matrices in
Cn×n is compact, ∃ a sub-subsequence Qjkl

and a unitary Q 3 Qjkl
→ Q. So Rjkl

=
Q∗jkl

Qjkl
Rjkl

→ Q∗ · I = Q∗. So Q∗ is unitary, upper triangular, with nonnegative diagonal

elements, which implies easily that Q∗ = I. Thus every subsequence of Qj has in turn
a sub-subsequence converging to I. By standard metric space theory, Qj → I, and thus
Rj = Q∗jQjRj → I · I = I. �

Theorem. Suppose A ∈ Cn×n has eigenvalues λ1, . . . , λn with |λ1| > |λ2| > · · · > |λn| >
0. Choose X ∈ Cn×n 3 X−1AX = Λ ≡ diag (λ1, . . . , λn), and suppose X−1 has an LU
decomposition. Generate the sequence A0 = A,A1, A2, . . . using the QR algorithm. Then the
subdiagonal entries of Ak → 0 as k →∞, and for 1 ≤ j ≤ n, the jth diagonal entry → λj.

Proof. Define Q̃k = Q0Q1 · · ·Qk and R̃k = Rk · · ·R0. Then Ak+1 = Q̃∗kAQ̃k.

Claim: Q̃kR̃k = Ak+1.

Proof: Clear for k = 0. Suppose Q̃k−1R̃k−1 = Ak. Then

Rk = Ak+1Q
∗
k = Q̃∗kAQ̃kQ

∗
k = Q̃∗kAQ̃k−1,
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so
R̃k = RkR̃k−1 = Q̃∗kAQ̃k−1R̃k−1 = Q̃∗kA

k+1,

so Q̃kR̃k = Ak+1.
Now, choose a QR factorization of X and an LU factorization of X−1: X = QR, X−1 =

LU (where Q is unitary, L is unit lower triangular, R and U are upper triangular with
nonzero diagonal entries). Then

Ak+1 = XΛk+1X−1 = QRΛk+1LU = QR(Λk+1LΛ−(k+1))Λk+1U.

Let Ek+1 = Λk+1LΛ−(k+1) − I and Fk+1 = REk+1R
−1.

Claim: Ek+1 → 0 (and thus Fk+1 → 0) as k →∞.

Proof: Let lij denote the elements of L. Ek+1 is strictly lower triangular, and for i > j its ij

element is
(
λi
λj

)k+1

lij → 0 as k →∞ since |λi| < |λj|.
Now Ak+1 = QR(I +Ek+1)Λk+1U , so Ak+1 = Q(I +Fk+1)RΛk+1U . Choose a QR factor-

ization of I+Fk+1 (which is invertible) I+Fk+1 = Q̂k+1R̂k+1 where R̂k+1 has positive diagonal

entries. By the Lemma, Q̂k+1 → I and R̂k+1 → I. Since Ak+1 = (QQ̂k+1)(R̂k+1RΛk+1U) and

Ak+1 = Q̃kR̃k, the essential uniqueness of QR factorizations of invertible matrices implies
∃ a unitary diagonal matrix Dk for which QQ̂k+1D

∗
k = Q̃k and DkR̂k+1Λk+1U = R̃k. So

Q̃kDk = QQ̂k+1 → Q, and thus

D∗kAk+1Dk = D∗kQ̃
∗
kAQ̃kDk → Q∗AQ as k →∞.

But
Q∗AQ = Q∗(QRΛX−1)QRR−1 = RΛR−1

is upper triangular with diagonal entries λ1, . . . , λn in that order. Since Dk is unitary and
diagonal, the lower triangular part of RΛR−1 and of DkRΛR−1D∗k are the same, namely λ1

. . .

0 λn

 .
Thus

‖Ak+1 −DkRΛR−1D∗k‖ = ‖D∗kAk+1Dk −RΛR−1‖ → 0,

and the Theorem follows. �

Note that the proof shows that ∃ a sequence {Dk} of unitary diagonal matrices for which
D∗kAk+1Dk → RΛR−1. So although the superdiagonal (i < j) elements of Ak+1 may not
converge, the magnitude of each superdiagonal element converges.

As a partial explanation for why the QR algorithm works, we show how the convergence

of the first column of Ak to


λ1

0
...
0

 follows from the power method. (See Problem 6 on
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Homework # 5.) Suppose A ∈ Cn×n is diagonalizable and has a unique eigenvalue λ1 of
maximum modulus, and suppose for simplicity that λ1 > 0. Then if x ∈ Cn has nonzero
component in the direction of the eigenvector corresponding to λ1 when expanded in terms of
the eigenvectors of A, it follows that the sequence Akx/‖Akx‖ converges to a unit eigenvector
corresponding to λ1. The condition in the Theorem above that X−1 has an LU factorization
implies that the (1, 1) entry of X−1 is nonzero, so when e1 is expanded in terms of the
eigenvectors x1, . . . , xn (the columns of X), the x1-coefficient is nonzero. So Ak+1e1/‖Ak+1e1‖
converges to αx1 for some α ∈ C with |α| = 1. Let (q̃k)1 denote the first column of Q̃k and

(r̃k)11 denote the (1, 1)-entry of R̃k; then

Ak+1e1 = Q̃kR̃ke1 = (r̃k)11Q̃ke1 = (r̃k)11(q̃k)1,

so (q̃k)1 → αx1. Since Ak+1 = Q̃∗kAQ̃k, the first column of Ak+1 converges to


λ1

0
...
0

 .
Further insight into the relationship between the QR algorithm and the power method,

inverse power method, and subspace iteration, can be found in this delightful paper: “Under-
standing the QR Algorithm” by D. S. Watkins (SIAM Review, vol. 24, 1982, pp. 427–440).
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Resolvent

Let V be a finite-dimensional vector space and L ∈ L(V ). If ζ 6∈ σ(L), then the operator
L− ζI is invertible, so we can form

R(ζ) = (L− ζI)−1

(which we sometimes denote by R(ζ, L)). The function R : C\σ(L) → L(V ) is called the
resolvent of L. It provides an analytic approach to questions about the spectral theory of L.
The set C\σ(L) is called the resolvent set of L. Since the inverses of commuting invertible
linear transformations also commute, R(ζ1) and R(ζ2) commute for ζ1, ζ2 ∈ C\σ(L). Since
a linear transformation commutes with its inverse, it also follows that L commutes with all
R(ζ).

We first want to show that R(ζ) is a holomorphic function of ζ ∈ C\σ(L) with values in
L(V ). Recall our earlier discussion of holomorphic functions with values in a Banach space;
one of the equivalent definitions was that the function is given by a norm-convergent power
series in a neighborhood of each point in the domain. Observe that

R(ζ) = (L− ζI)−1

= (L− ζ0I − (ζ − ζ0)I)−1

= (L− ζ0I)−1[I − (ζ − ζ0)R(ζ0)]−1.

Let ‖ · ‖ be a norm on V , and ‖ · ‖ denote the operator norm on L(V ) induced by this norm.
If

|ζ − ζ0| <
1

‖R(ζ0)‖
,

then the second inverse above is given by a convergent Neumann series:

R(ζ) = R(ζ0)
∞∑
k=0

R(ζ0)k(ζ − ζ0)k

=
∞∑
k=0

R(ζ0)k+1(ζ − ζ0)k.

Thus R(ζ) is given by a convergent power series about any point ζ0 ∈ C\σ(L) (and of course
the resolvent set C\σ(L) is open), so R(ζ) defines an L(V )-valued holomorphic function on
the resolvent set C\σ(L) of L. Note that from the series one obtains that(

d

dζ

)k
R(ζ)

∣∣∣∣∣
ζ0

= k!R(ζ0)k+1.

Hence for any ζ ∈ C\σ(L), (
d

dζ

)k
R(ζ) = k!R(ζ)k+1.

This can be remembered easily by noting that it follows formally by differentiating R(ζ) =
(L− ζ)−1 with respect to ζ, treating L as a parameter.
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The argument above showing that R(ζ) is holomorphic has the advantage that it gen-
eralizes to infinite dimensions. Although the following alternate argument only applies in
finite dimensions, it gives stronger results in that case. Let n = dimV , choose a basis for
V , and represent L by a matrix in Cn×n, which for simplicity we will also call L. Then the
matrix of (L− ζI)−1 can be calculated using Cramer’s rule. First observe that

det (L− ζI) = (−1)npL(ζ).

Also each of the components of the classical adjoint matrix of L − ζI is a polynomial in ζ
of degree at most n− 1. It follows that each component of (L− ζI)−1 is a rational function
of ζ (which vanishes at ∞), so in that sense R(ζ) is a rational L(V )-valued function. Also
each eigenvalue λi of L is a pole of R(ζ) of order at most mi, the algebraic multiplicity of λi.
Of course R(ζ) cannot have a removable singularity at ζ = λi, for otherwise letting ζ → λi
in the equation (L− ζI)R(ζ) = I would show that L− λiI is invertible, which it is not.

We calculated above the Taylor expansion of R(ζ) about any point ζ0 ∈ C\σ(L). It is also
useful to calculate the Laurent expansion about the poles. Recall the spectral decomposition
of L: if λ1, . . . , λk are the distinct eigenvalues of L with algebraic multiplicities m1, . . . ,mk,
and

Ẽi = N ((L− λiI)mi)

are the generalized eigenspaces, then

V =
k⊕
i=1

Ẽi,

and each Ẽi is invariant under L. Let P1, . . . , Pk be the associated projections, so that

I =
k∑
i=1

Pi.

Let N1, . . . , Nk be the associated nilpotent transformations. We may regard each Ni as an
element of L(V ) (in which case

Ni = PiNPi

where
N = N1 + · · ·+Nk,

so
Ni[Ẽi] ⊂ Ẽi and Ni[Ẽj] = 0 for j 6= i),

or we may regard Ni as its restriction to Ẽi with

Ni : Ẽi → Ẽi.

Now

L =
k∑
i=1

(λiPi +Ni),
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so

L− ζI =
k∑
i=1

[(λi − ζ)Pi +Ni].

Clearly to invert L− ζI, it suffices to invert each (λi − ζ)Pi +Ni on Ẽi. But on Ẽi,

(λi − ζ)Pi +Ni = (λi − ζ)[I − (ζ − λi)−1Ni].

For a nilpotent operator N with Nm = 0,

(I −N)−1 = I +N +N2 + · · ·+Nm−1.

This is a special case of a Neumann series which converges since it terminates. Thus(
[(λi − ζ)Pi +Ni]

∣∣∣∣∣
Ẽi

)−1

= (λi − ζ)−1

mi−1∑
`=0

(ζ − λi)−`N `
i = −

mi−1∑
`=0

(ζ − λi)−`−1N `
i .

The direct sum of these operators gives (L− ζI)−1, so we obtain

R(ζ) = −
k∑
i=1

[
(ζ − λi)−1Pi +

mi−1∑
`=1

(ζ − λi)−`−1N `
i

]
.

This result is called the partial fractions decomposition of the resolvent. Recall that any
rational function q(ζ)/p(ζ) with deg q < deg p has a unique partial fractions decomposition
of the form

k∑
i=1

[
mi∑
j=1

aij
(ζ − ri)j

]
where aij ∈ C and

p(ζ) =
k∏
i=1

(ζ − ri)mi

is the factorization of p (normalized to be monic, ri distinct). The above is such a decom-
position for R(ζ).

Observe that the partial fractions decomposition gives the Laurent expansion of R(ζ)
about all of its poles all at once: about ζ = λi the holomorphic part of R(ζ) is the sum over
all other eigenvalues. For the coefficients of (ζ − λi)−1 and (ζ − λi)−2 we have

Res
ζ=λi

[R(ζ)] = −Pi and Res
ζ=λi

[(ζ − λi)R(ζ)] = −Ni.

So the full spectral decomposition of L is encoded in R(ζ). It is in fact possible to give a
complete treatment of the spectral problem — including a proof of the spectral decomposition
— based purely on a study of the resolvent and its properties. Beginning with the fact that
R(ζ) has poles at the λi’s, one can show that for each i, −Res

ζ=λi
[R(ζ)] is a projection and

−Res
ζ=λi

[(ζ − λi)R(ζ)] is nilpotent, that the sum of the projections is the identity, etc. See

Kato for such a treatment.
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The special case of the partial fractions decomposition in which L is diagonalizable is
particularly easy to derive and remember. If L is diagonalizable then each Ẽi = Eλi is the
eigenspace and each Ni = 0. If v ∈ V , we may uniquely decompose

v =
k∑
i=1

vi where vi = Piv ∈ Eλi .

Then Lv =
∑k

i=1 λivi, so

(L− ζI)v =
k∑
i=1

(λi − ζ)vi,

so clearly

R(ζ)v =
k∑
i=1

(λi − ζ)−1Piv,

and thus

R(ζ) =
k∑
i=1

(λi − ζ)−1Pi.

The powers (λi − ζ)−1 arise from inverting (λi − ζ)I on each Eλi .
We discuss briefly two applications of the resolvent — each of these has many ramifi-

cations which we do not have time to investigate fully. Both applications involve contour
integration of operator-valued functions. If M(ζ) is a continuous function of ζ with values
in L(V ) and γ is a C1 contour in C, we may form

∫
γ
M(ζ)dζ ∈ L(V ). This can be defined

by choosing a fixed basis for V , representing M(ζ) as matrices, and integrating componen-
twise, or as a norm-convergent limit of Riemann sums of the parameterized integrals. By
considering the componentwise definition it is clear that the usual results in complex anal-
ysis automatically extend to the operator-valued case, for example if M(ζ) is holomorphic
in a neighborhood of the closure of a region bounded by a closed curve γ except for poles
ζ1, . . . , ζk, then 1

2πi

∫
γ
M(ζ)dζ =

∑k
i=1Res(M, ζi).

Perturbation of Eigenvalues and Eigenvectors

One major application of resolvents is the study of perturbation theory of eigenvalues and
eigenvectors. We sketch how resolvents can be used to study continuity properties of eigen-
vectors. Suppose At ∈ Cn×n is a family of matrices depending continuously on a parameter
t. (In our examples, the domain of t will be a subset of R, but in general the domain of t
could be any metric space.) It is a fact that the eigenvalues of At depend continuously on t,
but this statement must be properly formulated since the eigenvalues are only determined
up to order. Since the eigenvalues are the roots of the characteristic polynomial of At, and
the coefficients of the characteristic polynomial depend continuously on t, (since, by norm
equivalence, the entries of At depend continuously on t), it suffices to see that the roots of
a monic polynomial (of fixed degree) depend continuously on its coefficients. Consider first
the case of a simple root: suppose z0 ∈ C is a simple root of a polynomial p0. We may choose
a closed disk about z0 containing no other zero of p0; on the boundary γ of this disk p0 does
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not vanish, so all polynomials with coefficients sufficiently close to those of p0 also do not
vanish on γ. So for such p, p′(z)/p(z) is continuous on γ, and by the argument principle,

1

2πi

∫
γ

p′(z)

p(z)
dz

is the number of zeroes of p (including multiplicities) in the disk. For p0, we get 1. Since
p 6= 0 on γ, p′

p
varies continuously with the coefficients of p, so

1

2πi

∫
γ

p′(z)

p(z)
dz

also varies continuously with the coefficients of P . As it is integer-valued we conclude that
it must be the constant 1, so all nearby polynomials have exactly one zero in the disk. Now
the residue theorem gives that

1

2πi

∫
γ

p′(z)

p(z)
z dz = zp

is the unique root of p in the disk. As the left hand side varies continuously with p, it follows
that its simple root zp does too.

One can also obtain information near multiple zeroes using such arguments. If z0 is a
root of p0 of multiplicity m > 1, then it follows as above that in any sufficiently small disk
about z0, any polynomial p sufficiently close to p0 (where “sufficiently close” depends on the
radius of the disk) will have exactly m zeroes in that disk (counting multiplicities). This is
one sense in which it can be said that the eigenvalues depend continuously on the coefficients.
There are stronger senses as well.

However, eigenvectors do not generally depend continuously on parameters. Consider for
example the family given by

At =

[
t 0
0 −t

]
for t ≥ 0 and At =

[
0 t
t 0

]
for t ≤ 0.

For each t, the eigenvalues of At are t, −t. Clearly At is diagonalizable for all t. But it is
impossible to find a continuous function v : R → R2 such that v(t) is an eigenvector of At
for each t. For t > 0, the eigenvectors of At are multiples of[

1
0

]
and

[
0
1

]
,

while for t < 0 they are multiples of[
1
1

]
and

[
−1
1

]
;

clearly it is impossible to join up such multiples continuously by a vector v(t) which doesn’t
vanish at t = 0. (Note that a similar C∞ example can be constructed: let

At =

[
ϕ(t) 0

0 −ϕ(t)

]
for t ≥ 0, and At =

[
0 ϕ(t)
ϕ(t) 0

]
for t ≤ 0,
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where

ϕ(t) = e−1/|t| for t 6= 0 and ϕ(0) = 0 .)

In the example above, A0 has an eigenvalue of multiplicity 2. We show, using the re-
solvent, that if an eigenvalue of A0 has algebraic multiplicity 1, then the corresponding
eigenvector can be chosen to depend continuously on t, at least in a neighborhood of t = 0.
Suppose λ0 is an eigenvalue of A0 of multiplicity 1. We know from the above that At has a
unique eigenvalue λt near λ0 for t near 0; moreover λt is simple and depends continuously
on t for t near 0. If γ is a circle about λ0 as above, and we set

Rt(ζ) = (At − ζI)−1,

then

− 1

2πi

∫
γ

Rt(ζ)dζ = −Resζ=λtRt(ζ) = Pt,

where Pt is the spectral projection onto the 1-dimensional eigenspace of At corresponding
to λt. Observe that for t near 0 and ζ ∈ γ, At − ζI is invertible, and it is clear that Rt(ζ)
depends continuously on t (actually, uniformly in ζ ∈ γ). So Pt depends continuously on t
for t near 0. We can obtain a continuously-varying eigenvector by projecting a fixed vector:
let v0 be a unit eigenvector for A0 corresponding to λ0, and set

vt = Ptv0 = − 1

2πi

∫
γ

Rt(ζ)v0dζ .

The right hand side varies continuously with t, so vt does too and

vt

∣∣∣
t=0

= v0.

Hence vt 6= 0 for t near 0, and since vt is in the range of Pt, vt is an eigenvector of At
corresponding to λt, as desired.

Remark. These ideas can show that if At is a Ck function of t, i.e. each aij(t) has k continuous
derivatives, then also λt and vt are Ck functions of t.

This approach using the resolvent indicates that it is possible to obtain something con-
tinuous even when there are multiple eigenvalues. As long as no eigenvalues of At hit γ,
the expression − 1

2πi

∫
γ
Rt(ζ)dζ depends continuously on t. By the Residue Theorem, for

each t this is the sum of the projections onto all generalized eigenspaces corresponding to
eigenvalues in the disk enclosed by γ, so this sum of projections is always continuous.

Spectral Radius

We now show how the resolvent can be used to give a formula for the spectral radius of an
operator which does not require knowing the spectrum explicitly; this is sometimes useful.
As before, let L ∈ L(V ) where V is finite dimensional. Then

R(ζ) = (L− ζI)−1
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is a rational L(V ) - valued function of ζ with poles at the eigenvalues of L. In fact, from
Cramers rule we saw that

R(ζ) =
Q(ζ)

pL(ζ)
,

where Q(ζ) is an L(V ) - valued polynomial in ζ of degree ≤ n−1 and pL is the characteristic
polynomial of L. Since deg pL > degQ, it follows that R(ζ) is holomorphic at∞ and vanishes
there; i.e., for large |ζ|, R(ζ) is given by a convergent power series in 1

ζ
with zero constant

term. We can identify the coefficients in this series (which are in L(V )) using Neumann
series: for |ζ| sufficiently large,

R(ζ) = −ζ−1(I − ζ−1L)−1 = −ζ−1

∞∑
k=0

ζ−kLk = −
∞∑
k=0

Lkζ−k−1 .

The coefficients in the expansion are (minus) the powers of L. For any submultiplicative
norm on L(V ), this series converges for ‖ζ−1L‖ < 1, i.e., for |ζ| > ‖L‖.

Recall from complex analysis that the radius of convergence r of a power series

∞∑
k=0

akz
k

can be characterized in two ways: first, as the radius of the largest open disk about the
origin in which the function defined by the series has a holomorphic extension, and second
directly in terms of the coefficients by the formula

1

r
= limk→∞|ak|

1
k .

These characterizations also carry over to operator-valued series

∞∑
k=0

Akz
k (where Ak ∈ L(V )).

Such a series also has a radius of convergence r, and both characterizations generalize: the
first is unchanged; the second becomes

1

r
= limk→∞‖Ak‖

1
k .

Note that the expression
limk→∞‖Ak‖

1
k

is independent of the norm on L(V ) by the Norm Equivalence Theorem since L(V ) is finite-
dimensional. These characterizations in the operator-valued case can be obtained by con-
sidering the series for each component in any matrix realization.

Apply these two characterizations to the power series

∞∑
k=0

Lkζ−k in ζ−1
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for −ζR(ζ). We know that R(ζ) is holomorphic in |ζ| > ρ(L) (including at ∞) and that
R(ζ) has poles at each eigenvalue of L, so the series converges for |ζ| > ρ(L), but in no larger
disk about ∞. The second formula gives

{ζ : |ζ| > limk→∞‖Lk‖
1
k }

as the largest disk of convergence, and thus

ρ(L) = limk→∞‖Lk‖
1
k .

Lemma. If L ∈ L(V ) has eigenvalues λ1, . . . , λn, repeated with multiplicities, then the
eigenvalues of L` are λ`1, . . . , λ

`
n.

Remark. This is a special case of the Spectral Mapping Theorem which we will study soon.

Proof. If L has spectral decomposition

L =
k∑
i=1

(µiPi +Ni)

where µ1, · · · , µk are the distinct eigenvalues of L, then

L` =
k∑
i=1

(µ`iPi +N ′i),

where

N ′i =
∑̀
j=1

(
`
j

)
µ`−ji N j

i

is nilpotent. The result follows from the uniqueness of the spectral decomposition. �

Remark. An alternate formulation of the proof goes as follows. By the Schur Triangulariza-
tion Theorem, or by Jordan form, there is a basis of V for which the matrix of L is upper
triangular. The diagonal elements of a power of a triangular matrix are that power of the
diagonal elements of the matrix. The result follows.

Proposition. If dimV <∞, L ∈ L(V ), and ‖ · ‖ is any norm on L(V ), then

ρ(L) = lim
k→∞
‖Lk‖

1
k .

Proof. We have already shown that

ρ(L) = limk→∞‖Lk‖
1
k ,
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so we just have to show the limit exists. By norm equivalence, the limit exists in one norm
iff it exists in every norm, so it suffices to show the limit exists if ‖ · ‖ is submultiplicative.
Let ‖ · ‖ be submultiplicative. Then ρ(L) ≤ ‖L‖. By the lemma,

ρ(Lk) = ρ(L)k so ρ(L)k = ρ(Lk) ≤ ‖Lk‖.

Thus
ρ(L) ≤ lim

k→∞
‖Lk‖

1
k ≤ limk→∞‖Lk‖

1
k = ρ(L),

so the limit exists and is ρ(L). �

This formula for the spectral radius ρ(L) of L allows us to extend the class of oper-
ators in L(V ) for which we can guarantee that certain series converge. Recall that if
ϕ(z) =

∑∞
k=0 akz

k is holomorphic for |z| < r and L ∈ L(V ) satisfies ‖L‖ < r for some
submultiplicative norm, then ϕ(L) can be defined as the limit of the norm-convergent series∑∞

k=0 akL
k. In fact, this series converges under the (apparently weaker) assumption that

ρ(L) < r: choose ε > 0 so that ρ(L) + ε < r; for k sufficiently large, ‖Lk‖ 1
k ≤ ρ(L) + ε, so∑

k large

‖akLk‖ ≤
∑
|ak|(ρ(L) + ε)k <∞.

For example, the Neumann series

(I − L)−1 =
∞∑
k=0

Lk

converges whenever ρ(L) < 1. It may happen that ρ(L) < 1 and yet ‖L‖ > 1 for certain
natural norms (like the operator norms induced by the `p norms on Cn, 1 ≤ p ≤ ∞). An
extreme case occurs when L is nilpotent, so ρ(L) = 0, but ‖L‖ can be large (e.g. the matrix[

0 1010

0 0

])
;

in this case, of course, any series
∑∞

k=0 akL
k converges since it terminates.

The following question has arisen a couple of times in the discussion of the spectral radius:
given a fixed L ∈ L(V ), what is the infimum of ‖L‖ as ‖ · ‖ ranges over all submultiplicative
norms on L(V )? What if we only consider operator norms on L(V ) induced by norms on
V ? How about restricting further to operator norms on L(V ) induced by inner products on
V ? We know that ρ(L) ≤ ‖L‖ in these situations. It turns out that the infimum in each of
these situations is actually ρ(L).

Proposition. Given A ∈ Cn×n and ε > 0, there exists a norm ‖ · ‖ on Cn for which, in the
operator norm induced by ‖ · ‖, we have ‖A‖ ≤ ρ(A) + ε.

Caution: The norm depends on A and ε.

Proof. Choose an invertible matrix S ∈ Cn×n for which

J = S−1AS
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is in Jordan form. Write J = Λ + Z, where

Λ = diag (λ1, . . . , λn)

is the diagonal part of J and Z is a matrix with only zero entries except possibly for some
one(s) on the first superdiagonal (i = j + 1). Let

D = diag (1, ε, ε2, . . . , εn−1).

Then
D−1JD = Λ + εZ.

Fix any p with 1 ≤ p ≤ ∞. Then in the operator norm ||| · |||p on Cn×n induced by the
`p-norm ‖ · ‖p on Cn,

|||Λ|||p = max{|λj| : 1 ≤ j ≤ n} = ρ(A)

and |||Z|||p ≤ 1, so
|||Λ + εZ|||p ≤ ρ(A) + ε.

Define ‖ · ‖ on Cn by
‖x‖ = ‖D−1S−1x‖p.

Then

‖A‖ = sup
x 6=0

‖Ax‖
‖x‖

= sup
y 6=0

‖ASDy‖
‖SDy‖

= sup
y 6=0

‖D−1S−1ASDy‖p
‖y‖p

= |||Λ + εZ|||p ≤ ρ(A) + ε .

�

Exercise: Show that we can choose an inner product on Cn which induces such a norm.

Remarks:

(1) This proposition is easily extended to L ∈ L(V ) for dimV <∞.

(2) This proposition gives another proof that if ϕ(z) =
∑∞

k=0 akz
k is holomorphic for

|z| < r and L ∈ L(V ) satisfies ρ(L) < r, then the series
∑∞

k=0 akL
k converges: choose

ε > 0 so that ρ(L) + ε < r, and then choose a submultiplicative norm on L(V ) for
which ‖L‖ ≤ ρ(L) + ε; then ‖L‖ < r and the series converges.

(3) One can use the Schur Triangularization Theorem instead of Jordan form in the proof;
see Lemma 5.6.10 in H-J.

We conclude this discussion of the spectral radius with two corollaries of the formula

ρ(L) = lim
k→∞
‖Lk‖

1
k

for L ∈ L(V ) with dimV <∞.

Corollary. ρ(L) < 1 iff Lk → 0.
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Proof. By norm equivalence, we may use a submultiplicative norm on L(V ). If ρ(L) < 1,
choose ε > 0 with ρ(L) + ε < 1. For large k, ‖Lk‖ ≤ (ρ(L) + ε)k → 0 as k →∞. Conversely,
if Lk → 0, then ∃ k ≥ 1 with ‖Lk‖ < 1, so ρ(Lk) < 1, so by the lemma, the eigenvalues
λ1, . . . , λn of L all satisfy |λkj | < 1 and thus ρ(L) < 1. �

Corollary. ρ(L) < 1 iff there is a submultiplicative norm on L(V ) and an integer k ≥ 1
such that ‖Lk‖ < 1.

Functional Calculus

Our last application of resolvents is to define functions of an operator. We do this using a
method providing good operational properties, so this is called a functional “calculus.”

Let L ∈ L(V ) and suppose that ϕ is holomorphic in a neighborhood of the closure of a
bounded open set ∆ ⊂ C with C1 boundary satisfying σ(L) ⊂ ∆. For example, ∆ could
be a large disk containing all the eigenvalues of L, or the union of small disks about each
eigenvalue, or an appropriate annulus centered at {0} if L is invertible. Give the curve ∂∆
the orientation induced by the boundary of ∆ (i.e. the winding number n(∂∆, z) = 1 for
z ∈ ∆ and = 0 for z ∈ C\∆̄.) We define ϕ(L) by requiring that the Cauchy integral formula
for ϕ should hold.

Definition.

ϕ(L) = − 1

2πi

∫
∂∆

ϕ(ζ)R(ζ)dζ =
1

2πi

∫
∂∆

ϕ(ζ)(ζI − L)−1dζ.

We first observe that the definition of ϕ(L) is independent of the choice of ∆. In fact,
since ϕ(ζ)R(ζ) is holomorphic except for poles at the eigenvalues of L, we have by the residue
theorem that

ϕ(L) = −
k∑
i=1

Resζ=λi [ϕ(ζ)R(ζ)],

which is clearly independent of the choice of ∆. In the special case where ∆1 ⊂ ∆2, it follows
from Cauchy’s theorem that∫

∂∆2

ϕ(ζ)R(ζ)dζ −
∫
∂∆1

ϕ(ζ)R(ζ)dζ =

∫
∂(∆2\∆̄1)

ϕ(ζ)R(ζ)dζ = 0

since ϕ(ζ)R(ζ) is holomorphic in ∆2\∆̄1. This argument can be generalized as well.

Next, we show that this definition of ϕ(L) agrees with previous definitions. For example,
suppose ϕ is the constant function 1. Then the residue theorem gives

ϕ(L) = −
k∑
i=1

Resζ=λiR(ζ) =
k∑
i=1

Pi = I.
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If ϕ(ζ) = ζn for an integer n > 0, then take ∆ to be a large disk containing σ(L) with
boundary γ, so

ϕ(L) =
1

2πi

∫
γ

ζn(ζI − L)−1dζ

=
1

2πi

∫
γ

[(ζI − L) + L]n(ζI − L)−1dζ

=
1

2πi

∫
γ

n∑
j=0

(
n
j

)
Lj(ζI − L)n−j−1dζ

=
1

2πi

n∑
j=0

(
n
j

)
Lj
∫
γ

(ζI − L)n−j−1dζ .

For j < n, the integrand is holomorphic in ∆, so by the Cauchy theorem∫
γ

(ζI − L)n−j−1dζ = 0.

For j = n, we obtain
1

2πi

∫
γ

(ζI − L)−1dζ = I

as above, so ϕ(L) = Ln as desired. It follows that this new definition of ϕ(L) agrees with
the usual definition of ϕ(L) when ϕ is a polynomial.

Consider next the case in which

ϕ(ζ) =
∞∑
k=0

akζ
k,

where the series converges for |ζ| < r. We have seen that if ρ(L) < r, then the series∑∞
k=0 akL

k converges in norm. We will show that this definition of ϕ(L) (via the series)
agrees with our new definition of ϕ(L) (via contour integration). Choose

∆ ⊂ {ζ : |ζ| < r} with σ(L) ⊂ ∆ and γ ≡ ∂∆ ⊂ {ζ : |ζ| < r}.

We want to show that
−1

2πi

∫
γ

ϕ(ζ)R(ζ)dζ =
∞∑
k=0

akL
k.

Set

ϕN(ζ) =
N∑
k=0

akζ
k.

Then ϕN → ϕ uniformly on compact subsets of {ζ : |ζ| < r}; in particular ϕN → ϕ uniformly
on γ. If A(t) is a continuous L(V )-valued function of t ∈ [a, b], then for any norm on L(V ),∥∥∥∥∫ b

a

A(t)dt

∥∥∥∥ ≤ ∫ b

a

‖A(t)‖dt
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(this follows from the triangle inequality applied to the Riemann sums approximating the
integrals upon taking limits). So∥∥∥∥∫

γ

(ϕ(ζ)− ϕN(ζ))R(ζ)dζ

∥∥∥∥ ≤ ∫
γ

|ϕ(ζ)− ϕN(ζ)| · ‖R(ζ)‖d|ζ|.

Since ‖R(ζ)‖ is bounded on γ, it follows that

lim
N→∞

∫
γ

ϕN(ζ)R(ζ)dζ =

∫
γ

ϕ(ζ)R(ζ)dζ

in norm. But ϕN is a polynomial, so

− 1

2πi

∫
γ

ϕN(ζ)R(ζ)dζ = ϕN(L)

as above. Thus

− 1

2πi

∫
γ

ϕ(ζ)R(ζ)dζ = lim
N→∞

(
− 1

2πi

∫
γ

ϕN(ζ)R(ζ)dζ

)
= lim

N→∞
ϕN(L) =

∞∑
k=0

akL
k,

and the two definitions of ϕ(L) agree.

Operational Properties

Lemma. (The First Resolvent Equation)

If L ∈ L(V ), ζ1, ζ2 6∈ σ(L), and ζ1 6= ζ2, then

R(ζ1) ◦R(ζ2) =
R(ζ1)−R(ζ2)

ζ1 − ζ2

.

Proof.

R(ζ1)−R(ζ2) = R(ζ1)(L− ζ2I)R(ζ2)−R(ζ1)(L− ζ1I)R(ζ2) = (ζ1 − ζ2)R(ζ1)R(ζ2).

�

Proposition. Suppose L ∈ L(V ) and ϕ1 and ϕ2 are both holomorphic in a neighborhood
of σ(L). Then

(a) (a1ϕ1 + a2ϕ2)(L) = a1ϕ1(L) + a2ϕ2(L), and

(b) (ϕ1ϕ2)(L) = ϕ1(L) ◦ ϕ2(L).
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Proof. (a) follows immediately from the linearity of contour integration. By the lemma,

ϕ1(L) ◦ ϕ2(L) =
1

(2πi)2

∫
γ1

ϕ1(ζ1)R(ζ1)dζ1 ◦
∫
γ2

ϕ2(ζ2)R(ζ2)dζ2

=
1

(2πi)2

∫
γ1

∫
γ2

ϕ1(ζ1)ϕ2(ζ2)R(ζ1) ◦R(ζ2)dζ2dζ1

=
1

(2πi)2

∫
γ1

∫
γ2

ϕ1(ζ1)ϕ2(ζ2)
R(ζ1)−R(ζ2)

ζ1 − ζ2

dζ2dζ1.

Thus far, γ1 and γ2 could be any curves encircling σ(L); the curves could cross and there is
no problem since

R(ζ1)−R(ζ2)

ζ1 − ζ2

extends to ζ1 = ζ2. However, we want to split up the R(ζ1) and R(ζ2) pieces, so we need to
make sure the curves don’t cross. For definiteness, let γ1 be the union of small circles around
each eigenvalue of L, and let γ2 be the union of slightly larger circles. Then

ϕ1(L) ◦ ϕ2(L) =
1

(2πi)2

[∫
γ1

ϕ1(ζ1)R(ζ1)

∫
γ2

ϕ2(ζ2)

ζ1 − ζ2

dζ2dζ1

−
∫
γ2

ϕ2(ζ2)R(ζ2)

∫
γ1

ϕ1(ζ1)

ζ1 − ζ2

dζ1dζ2

]
.

Since ζ1 is inside γ2 but ζ2 is outside γ1,

1

2πi

∫
γ2

ϕ2(ζ2)

ζ2 − ζ1

dζ2 = ϕ2(ζ1) and
1

2πi

∫
γ1

ϕ1(ζ1)

ζ1 − ζ2

dζ1 = 0,

so

ϕ1(L) ◦ ϕ2(L) = − 1

2πi

∫
γ1

ϕ1(ζ1)ϕ2(ζ1)R(ζ1)dζ1 = (ϕ1ϕ2)(L),

as desired. �

Remark. Since (ϕ1ϕ2)(ζ) = (ϕ2ϕ1)(ζ), (b) implies that ϕ1(L) and ϕ2(L) always commute.

Example. Suppose L ∈ L(V ) is invertible and ϕ(ζ) = 1
ζ
. Since σ(L) ⊂ C\{0} and ϕ is

holomorphic on C\{0}, ϕ(L) is defined. Since ζ · 1
ζ

= 1
ζ
· ζ = 1, Lϕ(L) = ϕ(L)L = I. Thus

ϕ(L) = L−1, as expected.
Similarly, one can show that if

ϕ(ζ) =
p(ζ)

q(ζ)

is a rational function (p, q are polynomials) and σ(L) ⊂ {ζ : q(ζ) 6= 0}, then

ϕ(L) = p(L)q(L)−1,

as expected.

To study our last operational property (composition), we need to identify σ(ϕ(L)).
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The Spectral Mapping Theorem

Suppose L ∈ L(V ) and ϕ is holomorphic in a neighborhood of σ(L) (so ϕ(L) is well-defined).
Then

σ(ϕ(L)) = ϕ(σ(L)) including multiplicities,

i.e., if µ1, . . . , µn are the eigenvalues of L counting multiplicities, then ϕ(µ1), . . . , ϕ(µn) are
the eigenvalues of ϕ(L) counting multiplicities.

Proof. Let λ1, . . . , λk be the distinct eigenvalues of L, with algebraic multiplicities

m1, . . . ,mk,

respectively. By the residue theorem,

ϕ(L) = − 1

2πi

∫
∂∆

ϕ(ζ)R(ζ)dζ

= −
k∑
i=1

Resζ=λi [ϕ(ζ)R(ζ)].

By the partial fractions decomposition of the resolvent,

−R(ζ) =
k∑
i=1

(
Pi

ζ − λi
+

mi−1∑
`=1

(ζ − λi)−`−1N `
i

)
.

It follows that

−Resζ=λiϕ(ζ)R(ζ) = ϕ(λi)Pi +

mi−1∑
`=1

Resζ=λi [ϕ(ζ)(ζ − λi)−`−1]N `
i

= ϕ(λi)Pi +

mi−1∑
`=1

1

`!
ϕ(`)(λi)N

`
i .

Thus

(∗) ϕ(L) =
k∑
i=1

[ϕ(λi)Pi +

mi−1∑
`=1

1

`!
ϕ(`)(λi)N

`
i ]

This is an explicit formula for ϕ(L) in terms of the spectral decomposition of L and the
values of ϕ and its derivatives at the eigenvalues of L. (In fact, this could have been used
to define ϕ(L), but our definition in terms of contour integration has the advantage that it
generalizes to the infinite-dimensional case.) Since

mi−1∑
`=1

1

`!
ϕ(`)(λi)N

`
i

is nilpotent for each i, it follows that (∗) is the (unique) spectral decomposition of ϕ(L).
Thus

σ(ϕ(L)) = {ϕ(λ1), . . . , ϕ(λk)} = ϕ(σ(L)).
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Moreover, if {ϕ(λ1), . . . , ϕ(λk)} are distinct, then the algebraic multiplicity of ϕ(λi) as an
eigenvalue of ϕ(L) is the same as that of λi for L, and they have the same eigenprojection
Pi. In general, one must add the algebraic multiplicities and eigenprojections over all those
i with the same ϕ(λi). �

Remarks:

(1) The special case in which L is diagonalizable is easy to remember:

if L =
k∑
i=1

λiPi, then ϕ(L) =
k∑
i=1

ϕ(λi)Pi.

(2) Other consequences of (∗) for general L are

trϕ(L) =
k∑
i=1

miϕ(λi) and detϕ(L) =
k∏
i=1

ϕ(λi)
mi .

We now study composition.

Proposition. Suppose L ∈ L(V ), ϕ1 is holomorphic in a neighborhood of σ(L), and ϕ2

is holomorphic in a neighborhood of σ(ϕ1(L)) = ϕ1(σ(L)) (so ϕ2 ◦ ϕ1 is holomorphic in a
neighborhood of σ(L)). Then

(ϕ2 ◦ ϕ1)(L) = ϕ2(ϕ1(L)).

Proof. Let ∆2 contain σ(ϕ1(L)) and let γ2 = ∂∆2. Then

ϕ2(ϕ1(L)) =
1

2πi

∫
γ2

ϕ2(ζ2)(ζ2I − ϕ1(L))−1dζ2.

Here, (ζ2I − ϕ1(L))−1 means of course the inverse of ζ2I − ϕ1(L). For fixed ζ2 ∈ γ2, we can
also apply the functional calculus to the function (ζ2−ϕ1(ζ1))−1 of ζ1 to define this function
of L: let ∆1 contain σ(L) and suppose that ϕ1(∆̄1) ⊂ ∆2; then since ζ2 ∈ γ2 is outside
ϕ1(∆̄1), the map

ζ1 7→ (ζ2 − ϕ1(ζ1))−1

is holomorphic in a neighborhood of ∆̄1, so we can evaluate this function of L; just as for

ζ 7→ 1

ζ

in the example above, we obtain the usual inverse of ζ2 − ϕ1(L). So

(ζ2 − ϕ1(L))−1 = − 1

2πi

∫
γ1

(ζ2 − ϕ1(ζ1))−1R(ζ1)dζ1.
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Hence

ϕ2(ϕ1(L)) = − 1

(2πi)2

∫
γ2

ϕ2(ζ2)

∫
γ1

(ζ2 − ϕ1(ζ1))−1R(ζ1)dζ1dζ2

= − 1

(2πi)2

∫
γ1

R(ζ1)

∫
γ2

ϕ2(ζ2)

ζ2 − ϕ1(ζ1)
dζ2dζ1

= − 1

2πi

∫
γ1

R(ζ1)ϕ2(ϕ1(ζ1))dζ1 (as n(γ2, ϕ1(ζ1)) = 1)

= (ϕ2 ◦ ϕ1)(L).

�

Logarithms of Invertible Matrices

As an application, let L ∈ L(V ) be invertible. We can choose a branch of log ζ which is
holomorphic in a neighborhood of σ(L) and we can choose an appropriate ∆ in which log ζ
is defined, so we can form

logL = − 1

2πi

∫
γ

log ζR(ζ)dζ (where γ = ∂∆).

This definition will of course depend on the particular branch chosen, but since elog ζ = ζ for
any such branch, it follows that for any such choice,

elogL = L.

In particular, every invertible matrix is in the range of the exponential. This definition of
the logarithm of an operator is much better than one can do with series: one could define

log(I + A) =
∞∑
`=1

(−1)`+1A
`

`
,

but the series only converges absolutely in norm for a restricted class of A, namely {A :
ρ(A) < 1}.
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Ordinary Differential Equations

Existence and Uniqueness Theory

Let F be R or C. Throughout this discussion, | · | will denote the Euclidean norm (i.e `2-
norm) on Fn (so ‖·‖ is free to be used for norms on function spaces). An ordinary differential
equation (ODE) is an equation of the form

g(t, x, x′, . . . , x(m)) = 0

where g maps a subset of R× (Fn)m+1 into Fn. A solution of this ODE on an interval I ⊂ R
is a function x : I → Fn for which x′, x′′, . . . , x(m) exist at each t ∈ I, and

(∀ t ∈ I) g(t, x(t), x′(t), . . . , x(m)(t)) = 0 .

We will focus on the case where x(m) can be solved for explicitly, i.e., the equation takes
the form

x(m) = f(t, x, x′, . . . , x(m−1)),

and where the function f mapping a subset of R×(Fn)m into Fn is continuous. This equation
is called an mth-order n × n system of ODE’s. Note that if x is a solution defined on an
interval I ⊂ R then the existence of x(m) on I (including one-sided limits at the endpoints
of I) implies that x ∈ Cm−1(I), and then the equation implies x(m) ∈ C(I), so x ∈ Cm(I).

Reduction to First-Order Systems

Every mth-order n × n system of ODE’s is equivalent to a first-order mn × mn system of
ODE’s. Defining

yj(t) = x(j−1)(t) ∈ Fn for 1 ≤ j ≤ m

and

y(t) =

 y1(t)
...

ym(t)

 ∈ Fmn,

the system

x(m) = f(t, x, . . . , x(m−1))

95
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is equivalent to the first-order mn×mn system

y′ =


y2

y3
...
ym
f(t, y1, . . . , ym)


(see problem 1 on Problem Set 9).

Relabeling if necessary, we will focus on first-order n×n systems of the form x′ = f(t, x),
where f maps a subset of R× Fn into Fn and f is continuous.

Example: Consider the n × n system x′(t) = f(t) where f : I → Fn is continuous on an
interval I ⊂ R. (Here f is independent of x.) Then calculus shows that for a fixed t0 ∈ I,
the general solution of the ODE (i.e., a form representing all possible solutions) is

x(t) = c+

∫ t

t0

f(s)ds,

where c ∈ Fn is an arbitrary constant vector (i.e., c1, . . . , cn are n arbitrary constants in F).

Provided f satisfies a Lipschitz condition (to be discussed soon), the general solution of
a first-order system x′ = f(t, x) involves n arbitrary constants in F [or an arbitrary vector in
Fn] (whether or not we can express the general solution explicitly), so n scalar conditions [or
one vector condition] must be given to specify a particular solution. For the example above,
clearly giving x(t0) = x0 (for a known constant vector x0) determines c, namely, c = x0. In
general, specifying x(t0) = x0 (these are called initial conditions (IC), even if t0 is not the
left endpoint of the t-interval I) determines a particular solution of the ODE.

Initial-Value Problems for First-order Systems

An initial value problem (IVP) for the first-order system is the differential equation

DE : x′ = f(t, x),

together with initial conditions

IC : x(t0) = x0 .

A solution to the IVP is a solution x(t) of the DE defined on an interval I containing t0,
which also satisfies the IC, i.e., for which x(t0) = x0.

Examples:

(1) Let n = 1. The solution of the IVP:

DE : x′ = x2

IC : x(1) = 1

is x(t) = 1
2−t , which blows up as t→ 2. So even if f is C∞ on all of R× Fn, solutions

of an IVP do not necessarily exist for all time t.
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(2) Let n = 1. Consider the IVP:

DE : x′ = 2
√
|x|

IC : x(0) = 0 .

For any c ≥ 0, define xc(t) = 0 for t ≤ c and xc(t) = (t−c)2 for t ≥ c. Then every xc(t)
for c ≥ 0 is a solution of this IVP. So in general for continuous f(t, x), the solution
of an IVP might not be unique. (The difficulty here is that f(t, x) = 2

√
|x| is not

Lipschitz continuous near x = 0.)

An Integral Equation Equivalent to an IVP

Suppose x(t) ∈ C1(I) is a solution of the IVP:

DE : x′ = f(t, x)

IC : x(t0) = x0

defined on an interval I ⊂ R with t0 ∈ I. Then for all t ∈ I,

x(t) = x(t0) +

∫ t

t0

x′(s)ds

= x0 +

∫ t

t0

f(s, x(s))ds,

so x(t) is also a solution of the integral equation

(IE) x(t) = x0 +

∫ t

t0

f(s, x(s))ds (t ∈ I).

Conversely, suppose x(t) ∈ C(I) is a solution of the integral equation (IE). Then f(t, x(t)) ∈
C(I), so

x(t) = x0 +

∫ t

t0

f(s, x(s))ds ∈ C1(I)

and x′(t) = f(t, x(t)) by the Fundamental Theorem of Calculus. So x is a C1 solution of the
DE on I, and clearly x(t0) = x0, so x is a solution of the IVP. We have shown:

Proposition. On an interval I containing t0, x is a solution of the IVP: DE : x′ = f(t, x);
IC : x(t0) = x0 (where f is continuous) with x ∈ C1(I) if and only if x is a solution of the
integral equation (IE) on I with x ∈ C(I).

The integral equation (IE) is a useful way to study the IVP. We can deal with the function
space of continuous functions on I without having to be concerned about differentiability:
continuous solutions of (IE) are automatically C1. Moreover, the initial condition is built
into the integral equation.

We will solve (IE) using a fixed-point formulation.



98 Ordinary Differential Equations

Definition. Let (X, d) be a metric space, and suppose F : X → X. We say that F is a
contraction [on X] if there exists c < 1 such that

(∀x, y ∈ X) d(F (x), F (y)) ≤ cd(x, y)

(c is sometimes called the contraction constant). A point x∗ ∈ X for which

F (x∗) = x∗

is called a fixed point of F .

Theorem (Contraction Mapping Fixed-Point Theorem).

Let (X, d) be a complete metric space and F : X → X be a contraction (with contraction
constant c < 1). Then F has a unique fixed point x∗ ∈ X. Moreover, for any x0 ∈ X, if we
generate the sequence {xk} iteratively by functional iteration

xk+1 = F (xk) for k ≥ 0

(sometimes called fixed-point iteration), then xk → x∗.

Proof. Fix x0 ∈ X, and generate {xk} by xk+1 = F (xk). Then for k ≥ 1,

d(xk+1, xk) = d(F (xk), F (xk−1)) ≤ cd(xk, xk−1).

By induction
d(xk+1, xk) ≤ ckd(x1, x0).

So for n < m,

d(xm, xn) ≤
m−1∑
j=n

d(xj+1, xj) ≤

(
m−1∑
j=n

cj

)
d(x1, x0)

≤

(
∞∑
j=n

cj

)
d(x1, x0) =

cn

1− c
d(x1, x0).

Since cn → 0 as n → ∞, {xk} is Cauchy. Since X is complete, xk → x∗ for some x∗ ∈ X.
Since F is a contraction, clearly F is continuous, so

F (x∗) = F (limxk) = limF (xk) = lim xk+1 = x∗,

so x∗ is a fixed point. If x and y are two fixed points of F in X, then

d(x, y) = d(F (x), F (y)) ≤ cd(x, y),

so (1− c)d(x, y) ≤ 0, and thus d(x, y) = 0 and x = y. So F has a unique fixed point. �

Applications.

(1) Iterative methods for linear systems (see problem 3 on Problem Set 9).
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(2) The Inverse Function Theorem (see problem 4 on Problem Set 9). If Φ : U → Rn

is a C1 mapping on a neighborhood U ⊂ Rn of x0 ∈ Rn satisfying Φ(x0) = y0 and
Φ′(x0) ∈ Rn×n is invertible, then there exist neighborhoods U0 ⊂ U of x0 and V0 of y0

and a C1 mapping Ψ : V0 → U0 for which Φ[U0] = V0 and Φ ◦ Ψ and Ψ ◦ Φ are the
identity mappings on V0 and U0, respectively.

(In problem 4 of Problem Set 9, you will show that Φ has a continuous right inverse
defined on some neighborhood of y0. Other arguments are required to show that Ψ ∈ C1

and that Ψ is a two-sided inverse; these are not discussed here.)

Remark. Applying the Contraction Mapping Fixed-Point Theorem (C.M.F.-P.T.) to a map-
ping F usually requires two steps:

(1) Construct a complete metric space X and a closed subset S ⊂ X for which F (S) ⊂ S.

(2) Show that F is a contraction on S.

To apply the C.M.F.-P.T. to the integral equation (IE), we need a further condition on
the function f(t, x).

Definition. Let I ⊂ R be an interval and Ω ⊂ Fn. We say that f(t, x) mapping I × Ω into
Fn is uniformly Lipschitz continuous with respect to x if there is a constant L (called the
Lipschitz constant) for which

(∀ t ∈ I)(∀x, y ∈ Ω) |f(t, x)− f(t, y)| ≤ L|x− y| .

We say that f is in (C,Lip) on I×Ω if f is continuous on I×Ω and f is uniformly Lipschitz
continuous with respect to x on I × Ω.

For simplicity, we will consider intervals I ⊂ R for which t0 is the left endpoint. Virtually
identical arguments hold if t0 is the right endpoint of I, or if t0 is in the interior of I (see
Coddington & Levinson).

Theorem (Local Existence and Uniqueness for (IE) for Lipschitz f)
Let I = [t0, t0 + β] and Ω = Br(x0) = {x ∈ Fn : |x − x0| ≤ r}, and suppose f(t, x) is in
(C,Lip) on I × Ω. Then there exisits α ∈ (0, β] for which there is a unique solution of the
integral equation

(IE) x(t) = x0 +

∫ t

t0

f(s, x(s))ds

in C(Iα), where Iα = [t0, t0 + α]. Moreover, we can choose α to be any positive number
satisfying

α ≤ β, α ≤ r

M
, and α <

1

L
, where M = max

(t,x)∈I×Ω
|f(t, x)|

and L is the Lipschitz constant for f in I × Ω.

Proof. For any α ∈ (0, β], let ‖ · ‖∞ denote the max-norm on C(Iα):

for x ∈ C(Iα), ‖x‖∞ = max
t0≤t≤t0+α

|x(t)| .
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Although this norm clearly depends on α, we do not include α in the notation. Let x0 ∈ C(Iα)
denote the constant function x0(t) ≡ x0. For ρ > 0 let

Xα,ρ = {x ∈ C(Iα) : ‖x− x0‖∞ ≤ ρ}.

Then Xα,ρ is a complete metric space since it is a closed subset of the Banach space
(C(Iα), ‖ · ‖∞). For any α ∈ (0, β], define F : Xα,r → C(Iα) by

(F (x))(t) = x0 +

∫ t

t0

f(s, x(s))ds.

Note that F is well-defined on Xα,r and F (x) ∈ C(Iα) for x ∈ Xα,r since f is continuous on

I ×Br(x0). Fixed points of F are solutions of the integral equation (IE).

Claim. Suppose α ∈ (0, β], α ≤ r
M

, and α < 1
L

. Then F maps Xα,r into itself and F is a
contraction on Xα,r.

Proof of Claim: If x ∈ Xα,r, then for t ∈ Iα,

|(F (x))(t)− x0| ≤
∫ t

t0

|f(s, x(s))|ds ≤Mα ≤ r,

so F : Xα,r → Xα,r. If x, y ∈ Xα,r, then for t ∈ Iα,

|(F (x))(t)− (F (y))(t)| ≤
∫ t

t0

|f(s, x(s))− f(s, y(s))|ds

≤
∫ t

t0

L|x(s)− y(s)|ds

≤ Lα‖x− y‖∞,

so

‖F (x)− F (y)‖∞ ≤ Lα‖x− y‖∞, and Lα < 1.

So by the C.M.F.-P.T., for α satisfying 0 < α ≤ β, α ≤ r
M

, and α < 1
L

, F has a
unique fixed point in Xα,r, and thus the integral equation (IE) has a unique solution x∗(t)
in Xα,r = {x ∈ C(Iα) : ‖x − x0‖∞ ≤ r}. This is almost the conclusion of the Theorem,
except we haven’t shown x∗ is the only solution in all of C(Iα). This uniqueness is better
handled by techniques we will study soon, but we can still eke out a proof here. (Since f
is only defined on I × Br(x0), technically f(t, x(t)) does not make sense if x ∈ C(Iα) but
x /∈ Xα,r. To make sense of the uniqueness statement for general x ∈ C(Iα), we choose some
continuous extension of f to I × Fn.) Fix α as above. Then clearly for 0 < γ ≤ α, x∗|Iγ is
the unique fixed point of F on Xγ,r. Suppose y ∈ C(Iα) is a solution of (IE) on Iα (using
perhaps an extension of f) with y 6≡ x∗ on Iα. Let

γ1 = inf{γ ∈ (0, α] : y(t0 + γ) 6= x∗(t0 + γ)}.
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By continuity, γ1 < α. Since y(t0) = x0, continuity implies

∃ γ0 ∈ (0, α] 3 y|Iγ0 ∈ Xγ0,r,

and thus y(t) ≡ x∗(t) on Iγ0 . So 0 < γ1 < α. Since y(t) ≡ x∗(t) on Iγ1 , y|Iγ1 ∈ Xγ1,r. Let
ρ = Mγ1; then ρ < Mα ≤ r. For t ∈ Iγ1 ,

|y(t)− x0| = |(F (y))(t)− x0| ≤
∫ t

t0

|f(s, y(s))|ds ≤Mγ1 = ρ,

so y|Iγ1 ∈ Xγ1,ρ. By continuity, there exists γ2 ∈ (γ1, α] 3 y|Iγ2 ∈ Xγ1,r. But then y(t) ≡ x∗(t)
on Iγ2 , contradicting the definition of γ1. �

The Picard Iteration

Although hidden in a few too many details, the main idea of the proof above is to study the
convergence of functional iterates of F . If we choose the initial iterate to be x0(t) ≡ x0, we
obtain the classical Picard Iteration:{

x0(t) ≡ x0

xk+1(t) = x0 +
∫ t
t0
f(s, xk(s))ds for k ≥ 0

The argument in the proof of the C.M.F.-P.T. gives only uniform estimates of, e.g., xk+1−xk:
‖xk+1 − xk‖∞ ≤ Lα‖xk − xk+1‖∞, leading to the condition α < 1

L
. For the Picard iteration

(and other iterations of similar nature, e.g., for Volterra integral equations of the second
kind), we can get better results using pointwise estimates of xk+1−xk. The condition α < 1

L

turns out to be unnecessary (we will see another way to eliminate this assumption when we
study continuation of solutions). For the moment, we will set aside the uniqueness question
and focus on existence.

Theorem (Picard Global Existence for (IE) for Lipschitz f). Let I = [t0, t0 + β],
and suppose f(t, x) is in (C,Lip) on I×Fn. Then there exists a solution x∗(t) of the integral
equation (IE) in C(I).

Theorem (Picard Local Existence for (IE) for Lipschitz f). Let I = [t0, t0 + β] and
Ω = Br(x0) = {x ∈ Fn : |x − x0| ≤ r}, and suppose f(t, x) is in (C,Lip) on I × Ω. Then
there exists a solution x∗(t) of the integral equation (IE) in C(Iα), where Iα = [t0, t0 + α],
α = min

(
β, r

M

)
, and M = max(t,x)∈I×Ω |f(t, x)|.

Proofs. We prove the two theorems together. For the global theorem, let X = C(I) (i.e.,
C(I,Fn)), and for the local theorem, let

X = Xα,r ≡ {x ∈ C(Iα) : ‖x− x0‖∞ ≤ r}

as before (where x0(t) ≡ x0). Then the map

(F (x))(t) = x0 +

∫ t

t0

f(s, x(s))ds
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maps X into X in both cases, and X is complete. Let

x0(t) ≡ x0, and xk+1 = F (xk) for k ≥ 0.

Let

M0 = max
t∈I
|f(t, x0)| (global theorem),

M0 = max
t∈Iα
|f(t, x0)| (local theorem).

Then for t ∈ I (global) or t ∈ Iα (local),

|x1(t)− x0| ≤
∫ t

t0

|f(s, x0)|ds ≤M0(t− t0)

|x2(t)− x1(t)| ≤
∫ t

t0

|f(s, x1(s))− f(s, x0(s))|ds

≤ L

∫ t

t0

|x1(s)− x0(s)|ds

≤ M0L

∫ t

t0

(s− t0)ds =
M0L(t− t0)2

2!

By induction, suppose |xk(t)− xk−1(t)| ≤M0L
k−1 (t−t0)k

k!
. Then

|xk+1(t)− xk(t)| ≤
∫ t

t0

|f(s, xk(s))− f(s, xk−1(s))|ds

≤ L

∫ t

t0

|xk(s)− xk−1(s)|ds

≤ M0L
k

∫ t

t0

(s− t0)k

k!
ds = M0L

k (t− t0)k+1

(k + 1)!
.

So supt |xk+1(t)− xk(t)| ≤M0L
k γk+1

(k+1)!
, where γ = β (global) or γ = α (local). Hence

∞∑
k=0

sup
t
|xk+1(t)− xk(t)| ≤

M0

L

∞∑
k=0

(Lγ)k+1

(k + 1)!

=
M0

L
(eLγ − 1).

It follows that the series x0 +
∑∞

k=0(xk+1(t)− xk(t)), which has xN+1 as its N th partial sum,
converges absolutely and uniformly on I (global) or Iα (local) by the Weierstrass M -test.
Let x∗(t) ∈ C(I) (global) or ∈ C(Iα) (local) be the limit function. Since

|f(t, xk(t))− f(t, x∗(t))| ≤ L|xk(t)− x∗(t)|,
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f(t, xk(t)) converges uniformly to f(t, x∗(t)) on I (global) or Iα (local), and thus

F (x∗)(t) = x0 +

∫ t

t0

f(s, x∗(s))ds

= lim
k→∞

(x0 +

∫ t

t0

f(s, xk(x))ds)

= lim
k→∞

xk+1(t) = x∗(t),

for all t ∈ I (global) or Iα (local). Hence x∗(t) is a fixed point of F in X, and thus also a
solution of the integral equation (IE) in C(I) (global) or C(Iα) (local). �

Corollary. The solution x∗(t) of (IE) satisfies

|x∗(t)− x0| ≤
M0

L
(eL(t−t0) − 1)

for t ∈ I (global) or t ∈ Iα (local), where M0 = maxt∈I |f(t, x0)| (global), or M0 =
maxt∈Iα |f(t, x0)| (local).

Proof. This is established in the proof above. �

Remark. In each of the statements of the last three Theorems, we could replace “solution of
the integral equation (IE)” with “solution of the IVP: DE : x′ = f(t, x); IC : x(t0) = x0”
because of the equivalence of these two problems.

Examples.

(1) Consider a linear system x′ = A(t)x + b(t), where A(t) ∈ Cn×n and b(t) ∈ Cn are in
C(I) (where I = [t0, t0 + β]). Then f is in (C,Lip) on I × Fn:

|f(t, x)− f(t, y)| ≤ |A(t)x− A(t)y| ≤
(

max
t∈I
‖A(t)‖

)
|x− y|.

Hence there is a solution of the IVP: x′ = A(t)x+ b(t), x(t0) = x0 in C1(I).

(2) (n = 1) Consider the IVP: x′ = x2, x(0) = x0 > 0. Then f(t, x) = x2 is not in (C,Lip)
on I × R. It is, however, in (C,Lip) on I × Ω where Ω = Br(x0) = [x0 − r, x0 + r]
for each fixed r. For a given r > 0, M = (x0 + r)2, and α = r

M
= r

(x0+r)2
in the

local theorem is maximized for r = x0, for which α = (4x0)−1. So the local theorem
guarantees a solution in [0, (4x0)−1]. The actual solution x∗(t) = (x−1

0 − t)−1 exists in
[0, (x0)−1).

Local Existence for Continuous f

Some condition similar to the Lipschitz condition is needed to guarantee that the Picard
iterates converge; it is also needed for uniqueness, which we will return to shortly. It is,
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however, still possible to prove a local existence theorem assuming only that f is continu-
ous, without assuming the Lipschitz condition. We will need the following form of Ascoli’s
Theorem:

Theorem (Ascoli). Let X and Y be metric spaces with X compact. Let {fk} be an
equicontinuous sequence of functions fk : X → Y , i.e.,

(∀ ε > 0)(∃ δ > 0) such that (∀ k ≥ 1)(∀x1, x2 ∈ X)

dX(x1, x2) < δ ⇒ dY (fk(x1), fk(x2)) < ε

(in particular, each fk is continuous), and suppose for each x ∈ X, {fk(x) : k ≥ 1} is a
compact subset of Y . Then there is a subsequence {fkj}∞j=1 and a continuous f : X → Y
such that

fkj → f uniformly on X.

Remark. If Y = Fn, the condition (∀x ∈ X) {fk(x) : k ≥ 1} is compact is equivalent to the
sequence {fk} being pointwise bounded, i.e.,

(∀x ∈ X)(∃Mx) such that (∀ k ≥ 1) |fk(x)| ≤Mx.

Example. Suppose fk : [a, b] → R is a sequence of C1 functions, and suppose there exists
M > 0 such that

(∀ k ≥ 1) ‖fk‖∞ + ‖f ′k‖∞ ≤M

(where ‖f‖∞ = maxa≤x≤b |f(x)|). Then for a ≤ x1 < x2 ≤ b,

|fk(x2)− fk(x1)| ≤
∫ x2

x1

|f ′k(x)|dx ≤M |x2 − x1|,

so {fk} is equicontinuous (take δ = ε
M

), and ‖fk‖∞ ≤M certainly implies {fk} is pointwise
bounded. So by Ascoli’s Theorem, some subsequence of {fk} converges uniformly to a
continuous function f : [a, b]→ R.

Theorem (Cauchy-Peano Existence Theorem).
Let I = [t0, t0 + β] and Ω = Br(x0) = {x ∈ Fn : |x − x0| ≤ r}, and suppose f(t, x) is
continuous on I × Ω. Then there exists a solution x∗(t) of the integral equation

(IE) x(t) = x0 +

∫ t

t0

f(s, x(s))ds

in C(Iα) where Iα = [t0, t0 + α], α = min
(
β, r

M

)
, and M = max(t,x)∈I×Ω |f(t, x)| (and thus

x∗(t) is a C1 solution on Iα of the IVP: x′ = f(t, x); x(t0) = x0).

Proof. The idea of the proof is to construct continuous approximate solutions explicitly (we
will use the piecewise linear interpolants of grid functions generated by Euler’s method), and
use Ascoli’s Theorem to take the uniform limit of some subsequence. For each integer k ≥ 1,
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define xk(t) ∈ C(Iα) as follows: partition [t0, t0 +α] into k equal subintervals (for 0 ≤ ` ≤ k,
let t` = t0 + `α

k
(note: t` depends on k too)), set xk(t0) = x0, and for ` = 1, 2, . . . , k define

xk(t) in (t`−1, t`] inductively by xk(t) = xk(t`−1) + f(t`−1, xk(t`−1))(t − t`−1). For this to be
well-defined we must check that |xk(t`−1) − x0| ≤ r for 2 ≤ ` ≤ k (it is obvious for ` = 1);
inductively, we have

|xk(t`−1)− x0| ≤
`−1∑
i=1

|xk(ti)− xk(ti−1)|

=
`−1∑
i=1

|f(ti−1, xk(ti−1))| · |ti − ti−1|

≤ M
`−1∑
i=1

(ti − ti−1)

= M(t`−1 − t0) ≤Mα ≤ r

by the choice of α. So xk(t) ∈ C(Iα) is well defined. A similar estimate shows that for
t, τ ∈ [t0, t0 + α],

|xk(t)− xk(τ)| ≤M |t− τ |.

This implies that {xk} is equicontinuous; it also implies that

(∀ k ≥ 1)(∀ t ∈ Iα) |xk(t)− x0| ≤Mα ≤ r,

so {xk} is pointwise bounded (in fact, uniformly bounded). So by Ascoli’s Theorem, there
exists x∗(t) ∈ C(Iα) and a subsequence {xkj}∞j=1 converging uniformly to x∗(t). It remains
to show that x∗(t) is a solution of (IE) on Iα. Since each xk(t) is continuous and piecewise
linear on Iα,

xk(t) = x0 +

∫ t

t0

x′k(s)ds

(where x′k(t) is piecewise constant on Iα and is defined for all t except t` (1 ≤ ` ≤ k − 1),
where we define it to be x′k(t

+
` )). Define

∆k(t) = x′k(t)− f(t, xk(t)) on Iα

(note that ∆k(t`) = 0 for 0 ≤ ` ≤ k − 1 by definition). We claim that ∆k(t)→ 0 uniformly
on Iα as k → ∞. Indeed, given k, we have for 1 ≤ ` ≤ k and t ∈ (t`−1, t`) (including tk if
` = k), that

|x′k(t)− f(t, xk(t))| = |f(t`−1, xk(t`−1))− f(t, xk(t))|.

Noting that |t− t`−1| ≤ α
k

and

|xk(t)− xk(t`−1)| ≤M |t− t`−1| ≤M
α

k
,

the uniform continuity of f (being continuous on the compact set I × Ω) implies that

max
t∈Iα
|∆k(t)| → 0 as k →∞.
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Thus, in particular, ∆kj(t)→ 0 uniformly on Iα. Now

xkj(t) = x0 +

∫ t

t0

x′kj(s)ds

= x0 +

∫ t

t0

f(s, xkj(s))ds+

∫ t

t0

∆kj(s)ds.

Since xkj → x∗ uniformly on Iα, the uniform continuity of f on I × Ω now implies that
f(t, xkj(t))→ f(t, x∗(t)) uniformly on Iα, so taking the limit as j →∞ on both sides of this
equation for each t ∈ Iα, we obtain that x∗ satisfies (IE) on Iα. �

Remark. In general, the choice of a subsequence of {xk} is necessary: there are examples
where the sequence {xk} does not converge. (See Problem 12, Chapter 1 of Coddington &
Levinson.)

Uniqueness

Uniqueness theorems are typically proved by comparison theorems for solutions of scalar
differential equations, or by inequalities. The most fundamental of these inequalities is
Gronwall’s inequality, which applies to real first-order linear scalar equations.

Recall that a first-order linear scalar initial value problem

u′ = a(t)u+ b(t), u(t0) = u0

can be solved by multiplying by the integrating factor e
−

∫ t
t0
a

(i.e., e
−

∫ t
t0
a(s)ds

), and then
integrating from t0 to t. That is,

d

dt

(
e
−

∫ t
t0
a
u(t)

)
= e

−
∫ t
t0
a
b(t),

which implies that

e
−

∫ t
t0
a
u(t)− u0 =

∫ t

t0

d

ds

(
e
−

∫ s
t0
a
u(s)

)
ds

=

∫ t

t0

e
−

∫ s
t0
a
b(s)ds

which in turn implies that

u(t) = u0e
∫ t
t0
a

+

∫ t

t0

e
∫ t
s ab(s)ds.

Since f(t) ≤ g(t) on [c, d] implies
∫ d
c
f(t)dt ≤

∫ d
c
g(t)dt, the identical argument with “=”

replaced by “≤” gives

Theorem (Gronwall’s Inequality - differential form). Let I = [t0, t1]. Suppose a : I →
R and b : I → R are continuous, and suppose u : I → R is in C1(I) and satisfies

u′(t) ≤ a(t)u(t) + b(t) for t ∈ I, and u(t0) = u0.
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Then

u(t) ≤ u0e
∫ t
t0
a

+

∫ t

t0

e
∫ t
s ab(s)ds.

Remarks:

(1) Thus a solution of the differential inequality is bounded above by the solution of the
equality (i.e., the differential equation u′ = au+ b).

(2) The result clearly still holds if u is only continuous and piecewise C1, and a(t) and b(t)
are only piecewise continuous.

(3) There is also an integral form of Gronwall’s inequality (i.e., the hypothesis is an integral
inequality): if ϕ, ψ, α ∈ C(I) are real-valued with α ≥ 0 on I, and

ϕ(t) ≤ ψ(t) +

∫ t

t0

α(s)ϕ(s)ds for t ∈ I,

then

ϕ(t) ≤ ψ(t) +

∫ t

t0

e
∫ t
s αα(s)ψ(s)ds.

In particular, if ψ(t) ≡ c (a constant), then ϕ(t) ≤ ce
∫ t
t0
α
. (The differential form is

applied to the C1 function u(t) =
∫ t
t0
α(s)ϕ(s)ds in the proof.)

(4) For a(t) ≥ 0, the differential form is also a consequence of the integral form: integrating

u′ ≤ a(t)u+ b(t)

from t0 to t gives

u(t) ≤ ψ(t) +

∫ t

t0

a(s)u(s)ds,

where

ψ(t) = u0 +

∫ t

t0

b(s)ds,

so the integral form and then integration by parts give

u(t) ≤ ψ(t) +

∫ t

t0

e
∫ t
s aa(s)ψ(s)ds

= · · · = u0e
∫ t
t0
a

+

∫ t

t0

e
∫ t
s ab(s)ds.

(5) Caution: a differential inequality implies an integral inequality, but not vice versa:
f ≤ g 6⇒ f ′ ≤ g′.

(6) The integral form doesn’t require ϕ ∈ C1 (just ϕ ∈ C(I)), but is restricted to α ≥ 0.
The differential form has no sign restriction on a(t), but it requires a stronger hypothesis
(in view of (5) and the requirement that u be continuous and piecewise C1).
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Uniqueness for Locally Lipschitz f

We start with a one-sided local uniqueness theorem for the initial value problem

IV P : x′ = f(t, x); x(t0) = x0.

Theorem. Suppose for some α > 0 and some r > 0, f(t, x) is in (C,Lip) on Iα × Br(x0),
and suppose x(t) and y(t) both map Iα into Br(x0) and both are C1 solutions of (IVP) on
Iα, where Iα = [t0, t0 + α]. Then x(t) = y(t) for t ∈ Iα.

Proof. Set
u(t) = |x(t)− y(t)|2 = 〈x(t)− y(t), x(t)− y(t)〉

(in the Euclidean inner product on Fn). Then u : Iα → [0,∞) and u ∈ C1(Iα) and for t ∈ Iα,

u′ = 〈x− y, x′ − y′〉+ 〈x′ − y′, x− y〉
= 2Re〈x− y, x′ − y′〉 ≤ 2|〈x− y, x′ − y′〉|
= 2|〈x− y, (f(t, x)− f(t, y))〉|
≤ 2|x− y| · |f(t, x)− f(t, y)|
≤ 2L|x− y|2 = 2Lu .

Thus u′ ≤ 2Lu on Iα and u(t0) = x(t0) − y(t0) = x0 − x0 = 0. By Gronwall’s inequality,
u(t) ≤ u0e

2Lt = 0 on Iα, so since u(t) ≥ 0, u(t) ≡ 0 on Iα. �

Corollary.

(i) The same result holds if Iα = [t0 − α, t0].

(ii) The same result holds if Iα = [t0 − α, t0 + α].

Proof. For (i), let x̃(t) = x(2t0 − t), ỹ(t) = y(2t0 − t), and f̃(t, x) = −f(2t0 − t, x). Then f̃
is in (C,Lip) on [t0, t0 + α]×Br(x0), and x̃ and ỹ both satisfy the IVP

x′ = f̃(t, x); x′(t0) = x0 on [t0, t0 + α].

So by the Theorem, x̃(t) = ỹ(t) for t ∈ [t0, t0 +α], i.e., x(t) = y(t) for t ∈ [t0−α, t0]. Now (ii)
follows immediately by applying the Theorem in [t0, t0 + α] and applying (i) in [t0 − α, t0].
�

Remark. The idea used in the proof of (i) is often called “time-reversal.” The important
part is that x̃(t) = x(c − t), etc., for some constant c, so that x̃′(t) = −x′(c − t), etc. The
choice of c = 2t0 is convenient but not essential.

The main uniqueness theorem is easiest to formulate in the case when the initial point
(t0, x0) is in the interior of the domain of definition of f . There are analogous results with
essentially the same proof when (t0, x0) is on the boundary of the domain of definition of f .
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(Exercise: State precisely a theorem corresponding to the upcoming theorem which applies
in such a situation.)

Definition. Let D be an open set in R × Fn. We say that f(t, x) mapping D into Fn is
locally Lipschitz continuous with respect to x if for each (t1, x1) ∈ D there exists

α > 0, r > 0, and L > 0

for which [t1 − α, t1 + α]×Br(x1) ⊂ D and

(∀ t ∈ [t1 − α, t1 + α])(∀x, y ∈ Br(x1)) |f(t, x)− f(t, y)| ≤ L|x− y|

(i.e., f is uniformly Lipschitz continuous with respect to x in [t1 − α, t1 + α]×Br(x1)). We
will say f ∈ (C,Liploc) (not a standard notation) on D if f is continuous on D and locally
Lipschitz continuous with respect to x on D.

Example. Let D be an open set of R× Fn. Suppose f(t, x) maps D into Fn, f is continuous
on D, and for 1 ≤ i, j ≤ n, ∂fi

∂xj
exists and is continuous in D. (Briefly, we say f is continuous

on D and C1 with respect to x on D.) Then f ∈ (C,Liploc) on D. (Exercise.)

Main Uniqueness Theorem. Let D be an open set in R×Fn, and suppose f ∈ (C,Liploc)
on D. Suppose (t0, x0) ∈ D, I ⊂ R is some interval containing t0 (which may be open or
closed at either end), and suppose x(t) and y(t) are both solutions of the initial value problem

IV P : x′ = f(t, x); x(t0) = x0

in C1(I). (Included in this hypothesis is the assumption that (t, x(t)) ∈ D and (t, y(t)) ∈ D
for t ∈ I.) Then x(t) ≡ y(t) on I.

Proof. Let A = {t ∈ I : x(t) = y(t)}. A is clearly a nonempty relatively closed subset of I.
We show that A is open in I, from which it follows that A = I as desired.

Suppose t1 ∈ A. Set x1 = x(t1) = y(t1). By continuity and the openness of D (as
(t1, x1) ∈ D), there exist α > 0 and r > 0 such that [t1 − α, t1 + α] × Br(x1) ⊂ D, f is
uniformly Lipschitz continuous with respect to x in [t1−α, t1+α]×Br(x1), and x(t) ∈ Br(x1)
and y(t) ∈ Br(x1) for all t in I ∩ [t1 − α, t1 + α]. By the previous theorem, x(t) ≡ y(t) in
I ∩ [t1 − α, t1 + α]. Hence A is open in I. �

Remark. t0 is allowed to be the left or right endpoint of I.

Comparison Theorem for Nonlinear Real Scalar Equations

We conclude this section with a version of Gronwall’s inequality for nonlinear equations.

Theorem. Let n = 1, F = R. Suppose f(t, u) is continuous in t and u and Lipschitz
continuous in u. Suppose u(t), v(t) are C1 for t ≥ t0 (or some interval [t0, b) or [t0, b]) and
satisfy

u′(t) ≤ f(t, u(t)), v′(t) = f(t, v(t))

and u(t0) ≤ v(t0). Then u(t) ≤ v(t) for t ≥ t0.
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Proof. By contradiction. If u(T ) > v(T ) for some T > t0, then set

t1 = sup{t : t0 ≤ t < T and u(t) ≤ v(t)}.

Then t0 ≤ t1 < T , u(t1) = v(t1), and u(t) > v(t) for t > t1 (using continuity of u − v). For
t1 ≤ t ≤ T , |u(t)− v(t)| = u(t)− v(t), so we have

(u− v)′ ≤ f(t, u)− f(t, v) ≤ L|u− v| = L(u− v).

By Gronwall’s inequality (applied to u−v on [t1, T ], with (u−v)(t1) = 0, a(t) ≡ L, b(t) ≡ 0),
(u− v)(t) ≤ 0 on [t1, T ], a contradiction. �

Remarks.

1. As with the differential form of Gronwall’s inequality, a solution of the differential
inequality u′ ≤ f(t, u) is bounded above by the solution of the equality (i.e., the DE
v′ = f(t, v)).

2. It can be shown under the same hypotheses that if u(t0) < v(t0), then u(t) < v(t) for
t ≥ t0 (problem 4 on Problem Set 1).

3. Caution: It may happen that u′(t) > v′(t) for some t ≥ t0. It is not true that
u(t) ≤ v(t)⇒ u′(t) ≤ v′(t), as illustrated in the picture below.
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Corollary. Let n = 1, F = R. Suppose f(t, u) ≤ g(t, u) are continuous in t and u, and
one of them is Lipschitz continuous in u. Suppose also that u(t), v(t) are C1 for t ≥ t0 (or
some interval [t0, b) or [t0, b]) and satisfy u′ = f(t, u), v′ = g(t, v), and u(t0) ≤ v(t0). Then
u(t) ≤ v(t) for t ≥ t0.

Proof. Suppose first that g satisfies the Lipschitz condition. Then u′ = f(t, u) ≤ g(t, u).
Now apply the theorem. If f satisfies the Lipschitz condition, apply the first part of this
proof to ũ(t) ≡ −v(t), ṽ(t) ≡ −u(t), f̃(t, u) = −g(t,−u), g̃(t, u) = −f(t,−u). �

Remark. Again, if u(t0) < v(t0), then u(t) < v(t) for t ≥ t0.


