
6. GAMES AND DUALITY

In trying to understand how Lagrange multiplier vectors ȳ might be generated or
utilized in computational schemes, the case of linear programming is instructive. Inspection
of the Kuhn-Tucker conditions in that case reveals that these vectors solve a mysterious
problem of optimization inextricably tied to the given one. Pursuing the mystery further,
we are led to an interesting branch of modern mathematics: game theory. We’ll look briefly
at this theory and use it to develop the fact that for convex programming problems quite
generally the Lagrange multiplier vectors associated with optimality can be obtained in
principle by solving an auxiliary problem said to be “dual” to the given “primal” problem.

Kuhn-Tucker conditions in linear programming: Consider (P) in the special case
of a linear programming problem in so-called primal canonical format :

(
Plin

) minimize
∑n

j=1
cjxj subject to∑n

j=1
aijxj ≥ bi for i = 1, . . . ,m,

xj ≥ 0 for j = 1, . . . , n,

which corresponds in the conventional format to taking f0(x) :=
∑n

j=1 cjxj with
fi(x) = bi −

∑n
j=1 aijxj for i = 1, . . . ,m and X = IRn

+. Because all the constraint
functions correspond to inequalities, we have Y = IRm

+ . The Lagrangian is

L(x, y) =
∑n

j=1
cjxj +

∑m

i=1
yi

(
bi −

∑n

j=1
aijxj

)
=

∑m

i=1
biyi +

∑n

j=1
xj

(
cj −

∑m

i=1
yiaij

)
on IRn

+ × IRm
+ .

In recalling the nature of normal cones to the orthants IRn
+ and IRm

+ , we see that the
Kuhn-Tucker conditions in this case come out as x̄j ≥ 0,

(
cj −

∑m

i=1
ȳiaij

)
≥ 0, x̄j

(
cj −

∑m

i=1
ȳiaij

)
= 0 for j = 1, . . . , n,

ȳi ≥ 0,
(∑n

j=1
aij x̄j − bi

)
≥ 0, ȳi

(∑n

j=1
aij x̄j − bi

)
= 0 for i = 1, . . . ,m.

Complementary slackness: These relationships between x̄ and ȳ are known as the
complementary slackness conditions in linear programming. They list for each
index j or i a pair of inequalities (one on x̄ and one on ȳ), requiring that at most
one of the two can be “slack,” i.e., satisfied with strict inequality. By Theorems
11 and 12, x̄ is optimal in (Plin) if and only if this holds for some ȳ.

87

Dual linear programming problem: The symmetry in these conditions is tantalizing.
There turns out to be a connection with the following problem, said to be dual to
(Plin), which is a linear programming problem in so-called dual canonical format :

(
Dlin

) maximize
∑m

i=1
biyi subject to∑m

i=1
yiaij ≤ cj for j = 1, . . . , n,

yi ≥ 0 for i = 1, . . . ,m.

To see the formal relationship between (Dlin) and (Plin), begin by converting (Dlin)
from dual canonical format to primal canonical format:

minimize
∑m

i=1
[−bi]yi subject to∑m

i=1
yi[−aij] ≥ [−cj] for j = 1, . . . , n,

yi ≥ 0 for i = 1, . . . ,m.

As an act of faith, permit the symbols x̄j to be used for the Lagrange multipliers
associated with optimality in this problem, without presupposing for now any tie
with the use of the notation x̄ above. The Kuhn-Tucker conditions for this problem
in their complementary slackness formulation emerge then as

ȳi ≥ 0,
(
[−bi]−

∑n

j=1
[−aij]x̄j

)
≥ 0, ȳi

(
[−bi]−

∑n

j=1
[−aij]x̄j

)
= 0

for i = 1, . . . ,m,

x̄j ≥ 0,
(∑m

i=1
ȳi[−aij]− [−cj]

)
≥ 0, x̄j

(∑m

i=1
ȳi[−aij]− [−cj]

)
= 0

for j = 1, . . . , n.

But these are identical to the complementary slackness conditions we had before.
Problems (Plin) and (Dlin) thus turn out to share the very same optimality conditions!
Neither can be solved without somehow, explicitly or implicitly, solving the other as
well. This has important consequences.

Symmetry: The reason for treating (Dlin) as a problem of maximization instead of
minimization is to bring out not only the symmetry in this switch of signs, but
to promote a relationship of optimal values which is given in the theorem below.
It’s interesting to note that after (Dlin) has been converted to a problem in primal
canonical form—denoted say by (P ′lin)—it will in turn have an associated dual
problem—say (D′lin). But this can be seen to be none other than the problem
obtained by converting (Plin) from primal canonical form to dual canonical form.
Thus, the relationship between the two problems is completely balanced: each
can be viewed as dual to the other.

88

THEOREM 14 (duality in linear programming). For a linear programming problem

(Plin) in primal canonical form and the associated linear programming problem (Dlin) in

dual canonical form, the following properties of a pair of vectors x̄ and ȳ are equivalent:

(a) x̄ is an optimal solution to (Plin), and ȳ is an associated Lagrange multiplier vector

in the Kuhn-Tucker conditions for (Plin) at x̄;

(b) ȳ is an optimal solution to (Dlin), and x̄ is an associated Lagrange multiplier vector

in the Kuhn-Tucker conditions for (Dlin) at ȳ;

(c) x̄ and ȳ are optimal solutions to (Plin) and (Dlin), respectively;

(d) x̄ is a feasible solution to (Plin), ȳ is a feasible solution to (Dlin), and the objective

function values at these points are equal:
∑n

j=1 cj x̄j =
∑m

i=1 biȳi;

(e) x̄ and ȳ satisfy the complementary slackness conditions x̄j ≥ 0,
(
cj −

∑m

i=1
ȳiaij

)
≥ 0, x̄j

(
cj −

∑m

i=1
ȳiaij

)
= 0 for j = 1, . . . , n,

ȳi ≥ 0,
(∑n

j=1
aij x̄j − bi

)
≥ 0, ȳi

(∑n

j=1
aij x̄j − bi

)
= 0 for i = 1, . . . ,m.

Furthermore, if either (Plin) or (Dlin) has an optimal solution, then both have optimal

solutions, and [
optimal value in

(
Plin

)]
=

[
optimal value in

(
Dlin

)]
.

Proof. The equivalence of (a) and (b) with (e) has been ascertained in the preceding
discussion. We also know through Theorems 11 and 12 that the optimality of x̄ in (Plin)
is equivalent to the existence of a vector ȳ satisfying these conditions, and likewise that
the optimality of ȳ in (Dlin) is equivalent to the existence of a vector x̄ satisfying these
conditions. Hence if either problem has an optimal solution, the other must have one as
well. Observe next that the complementary slackness conditions in (e) entail

n∑
j=1

cj x̄j −
m∑

i=1

ȳibi =
n∑

j=1

[
cj −

m∑
i=1

ȳiaij

]
x̄j +

m∑
i=1

ȳi

[n∑
j=1

aij x̄j − bi

]
= 0.

It follows that when optimal solutions exist the optimal values in the two problems coincide.
This leads to the further equivalence of (a)-(b)-(e) with (c) and with (d).

Existence of optimal solutions in linear programming: Incidentally, a special fact
in linear—and also quadratic—programming, which however we won’t work at estab-
lishing here, is that if the optimal value in such a problem is finite then an optimal
solution must exist. This in contrast to the situation for more general instances
of problem (P), where the optimal value might be finite but only approachable

89

asymptotically through a sequence of feasible solutions xν with |xν | → ∞. For such
problems, Theorem 1 governs the existence of optimal solutions, but in linear and
quadratic programming the power of Theorem 1 isn’t needed.

Existence through feasibility: It follows from the fact about linear programming just
mentioned that, for a primal-dual pair of problems (Plin) and (Dlin), if feasible
solutions exist to both problems then both also have optimal solutions.

Argument: In a slight extension of the proof of Theorem 14, we observe that for
any feasible solutions to the two problems we have

n∑
j=1

cjxj −
m∑

i=1

yibi =
n∑

j=1

[
cj −

m∑
i=1

yiaij

]
xj +

m∑
i=1

yi

[n∑
j=1

aijxj − bi

]
≥ 0.

Then the value
∑m

i=1 yibi is a lower bound to the optimal value in (Plin)
(implying it must be finite), while at the same time

∑n
j=1 cjxj is an upper

bound to the optimal value in (Dlin) (implying that it too must be finite).

Dantzig’s simplex method in linear programming: The complementary slackness
conditions are the algebraic foundation for an important numerical technique for solv-
ing linear programming problems, the very first, which actually was the breakthrough
that got optimization rolling around 1950 as a modern subject with impressive prac-
tical applications. In theory, the task of finding an optimal solution x̄ to (Plin) is
equivalent to that of finding a pair of vectors x̄ and ȳ for which these conditions
hold. Trying directly to come up with solutions to systems of linear inequalities is
a daunting challenge, but solving linear equations is more attractive, and this can
be made the focus through the fact that the complementary slackness conditions
require at least one of the inequalities for each index j or i to hold as an equation.
Let’s approach this in terms of selecting of two index sets I ⊂ {i = 1, . . . ,m} and
J ⊂ {j = 1, . . . , n}, and associating with them following system of n + m equations
in the n + m unknowns x̄j and ȳi:

(I, J)

∑m

j=1
aij x̄j − bi = 0 for i ∈ I, ȳi = 0 for i /∈ I,

cj −
∑m

i=1
ȳiaij = 0 for j ∈ J, x̄j = 0 for j /∈ J.

To say that x̄ and ȳ satisfy the complementary slackness conditions is to say that
for some choice of I and J , this (I, J)-system of linear equations will have a solution
(x̄, ȳ) for which the inequalities∑m

j=1
aij x̄j − bi ≥ 0 for i /∈ I, ȳi ≥ 0 for i ∈ I,

cj −
∑m

i=1
ȳiaij ≥ 0 for j /∈ J, x̄j ≥ 0 for j ∈ J

90

happen to be satisfied as well. The main fact is that there is only a finite collection
of (I, J)-systems, because there are only finitely many ways of choosing I and J .
Moreover, it can be shown that one can limit attention to (I, J)-systems that are
nondegenerate, i.e., have nonsingular matrix so that there’s a unique corresponding
pair (x̄, ȳ). The prospect is thereby raised of searching by computer through a finite
list of possible candidate pairs (x̄, ȳ), each obtained by solving a certain system of
linear equations, checking each time whether the desired inequalities are satisfied too,
until a pair is found that meets the test of the complementary slackness conditions
and thereby provides an optimal solution to the linear programming problem (Plin).

Of course, even with this idea one is far from a practical method of computation,
because the number of (I, J)-systems that would have to be inspected is likely to
be awesomely astronomical, far beyond the capability of thousands of the fastest
computers laboring for thousands of years! But fortunately it’s not necessary to look
at all such systems. There are ways of starting with one such (I, J)-system and then
modifying the choice of I and J in tiny steps in such a manner that “improvements”
are continually made. We won’t go into the scheme further here, but this is the
contribution of Dantzig that so changed the world of optimization at the beginning
of the computer age. Nowadays there are other ways of solving linear programming
problems, but Dantzig’s so-called “simplex method” is still competitive and used.

Duality more generally: The facts about the tight relationship between the linear
programming problems (Plin) and (Dlin) raise more questions than they answer.
What is the “explanation” for this phenomenon, and what significance, not just
technical, can be ascribed to the Lagrange multiplier values that appear? How, for
instance, might they be interpreted in a particular application? These issues go far
beyond linear programming. To lay the groundwork for their analysis, we need to
spend some time with elementary game theory.

Lagrangian framework as the key: Duality in linear programming, in its manifesta-
tion so far, has grown out of complementary slackness form of the Kuhn-Tucker
conditions that characterize optimality. As we move to from linear programming
to greater generality, we’ll be focusing more on the Lagrangian form of the Kuhn-
Tucker conditions and on the Lagrangian L itself as a special function on a certain
product set X × Y . Cases where a pair (x̄, ȳ) constitutes a “Lagrangian saddle
point” will be especially important. For the time being, though, we’ll profit from
allowing the L, X, Y , notation to be used in a broader context, where they need
not signify anything about a Lagrangian.

91

Two-person, zero-sum games: Consider any function L : X × Y → IR for any
nonempty sets X and Y , not necessarily even in IRn and IRn. There’s an associ-
ated game, played by two agents, called Player 1 and Player 2. Player 1 selects some
x ∈ X, while Player 2 selects some y ∈ Y . The choices are revealed simultaneously.
Then Player 1 must pay $L(x, y) to Player 2—that’s all there is to it.

Direction of payment: Because no restriction has been placed on the sign of L(x, y),
the game is not necessarily loaded against Player 1 in favor of Player 2. The
payment of a negative amount $L(x, y) from Player 1 to Player 2 is code for
money actually flowing in the opposite direction.)

Terminology: In general, X and Y are called the “strategy sets” for Players 1 and 2,
while L is the “payoff function.”

Generality of the game concept: This abstract model of a game may appear too
special to be worthy of the name. Yet appearances can be deceiving: games such as
chess and even poker can in principle be covered. We won’t be concerned with those
games here, but it’s worth sketching them into the picture anyway.

Chess as a two-person, zero-sum game. In chess, each element x of the set X at the
disposal of Player 1, with the white pieces, is a particular policy which specifies
encyclopedically what Player 1 should do within all possible circumstances that
might arise. For instance, just one tiny part of such a policy x would be a
prescription like “if after 17 moves the arrangement of the pieces on the board
is such-and-such, and the history of play that brought it about is such-and-such,
then such-and-such move should be made.” The elements y ∈ Y have similar
meaning as policies for Player 2, with the black pieces. Clearly, in choosing such
policies independently the two players are merely deciding in advance how they
will respond to whatever may unfold as the chess game is played. From (x, y)
the outcome is unambiguously determined: checkmate for Player 1, checkmate
for Player 2, or a draw. Define L(x, y) to be −1, 1 or 0 according to these three
cases. The chess game is represented then by X, Y , and L. It’s not claimed that
this is a practical representation, because the sets X and Y are impossibly large,
but conceptually it’s correct.

Poker as a two-person, zero-sum game. The game of poker can be handled in similar
fashion. It’s payoffs are probabilistic “expectations,” since they depend to a cer-
tain extent on random events beyond the players’ control. Nonetheless, features
of poker like bluffing can be captured in the model and evaluated for their effects.
Poker for more than two players can be treated as an N -person game.

92

Saddle points: The term “saddle point” has various usages in mathematics, but in
game theory and optimization it always refers to the following concept, which in the
particular context of a two-person zero-sum game expresses a kind of solution to the
conflict between the two players. A saddle point of a function L over a product set
X × Y is a pair (x̄, ȳ) ∈ X × Y such that

L(x, ȳ) ≥ L(x̄, ȳ) ≥ L(x̄, y) for all x ∈ X and y ∈ Y.

This means that the minimum of L(x, ȳ) with respect to x ∈ X is attained at x̄,
whereas the maximum of L(x̄, y) with respect to y ∈ Y is attained at ȳ.

Equilibrium interpretation: In the setting of a game with strategy sets X and Y and
payoff function L, a saddle point (x̄, ȳ) of L over X × Y captures a situation
in which neither player, acting unilaterally, has any incentive for deviating from
the strategies x̄ and ȳ. In selecting x̄, Player 1 can guarantee that the amount
paid to Player 2 won’t exceed $L(x̄, ȳ), even if Player 2 were aware in advance
that x̄ would be chosen. This results from the fact that L(x̄, ȳ) ≥ L(x̄, y) for all
y ∈ Y (as half of the defining property of a “saddle point”). At the same time, in
selecting ȳ, Player 2 can guarantee that the amount received from Player 1 won’t
fall short of $L(x̄, ȳ), regardless of whether Player 1 acts with knowledge of this
choice or not. This is because L(x̄, ȳ) ≤ L(x, ȳ) for all x ∈ X.

Fairness: The game is fair if the equilibrium payoff amount $L(x̄, ȳ) at a saddle
point (x̄, ȳ) is 0. Then neither player has an advantage over the other. Of
course the issue of whether a saddle point exists at all for a particular case of
X, Y and L is separate. Without crucial assumptions being satisfied by L, X

and Y , there might not be one. The existence of saddle points is studied in
minimax theory , but we’ll be looking at some special cases.

Chess and poker: No one knows whether a saddle point exists for chess in the
game formulation we’ve given. What’s known is that if “randomized” policies
involving probabilistic play are introduced in a certain way, then a saddle
point does exist. (“Randomized” policies allow for prescribing in a each cir-
cumstance not necessarily a fixed move, but a probability distribution among
several moves, for example two possible moves with a 50/50 distribution, the
ultimate choice to be resolved at the last moment by flipping a coin. Corre-
spondingly, the payoffs are modified to reflect chances of winning.) Whether
the equilibrium value L(x̄, ȳ) in such a model is 0, testifying that chess is a
fair game when randomized policies are admitted, is unknown. The theory of
poker is in a similar state.

93

Gradient condition associated with a saddle point: In the important case of a game in
which X and Y happen to be closed subsets of IRn and IRm while L is a function
of class C1, our work on constrained optimization gives some insights into a saddle
point. In that case a first-order necessary condition for (x̄, ȳ) to be a saddle point
of L over X × Y is that

−∇xL(x̄, ȳ) ∈ NX(x̄), ∇yL(x̄, ȳ) ∈ NY (x̄).

This follows from applying Theorem 9(a) first to the minimization of L(x, ȳ) in
x ∈ X and then to the maximization of L(x̄, y) in y ∈ Y . By Theorem 9(b)
we see that, conversely, this gradient condition is sufficient for a saddle point in
situations where L(x, y) is convex in x for each y ∈ Y , and on the other hand
concave in y for each x ∈ X.

Preview about Lagrangians: This gradient condition turns into the Lagrangian
form of the Kuhn-Tucker conditions when L is the Lagrangian associated with
an optimization problem (P) in conventional format. This is the pipeline down
which we are eventually headed.

Broader game models: In an N -person game Player k for k = 1, . . . , N selects an ele-
ment xk ∈ Xk, and the choices are revealed simultaneously. Then Player k must pay
the (positive, zero, or negative) amount Lk(x1, . . . , xN)—to the “great accountant
in the sky,” or whatever. The game is zero-sum if∑N

k=1
Lk(x1, . . . , xN) = 0.

The interpretation can then be made that all the payments for positive Lk values
go into a single pot and get redistributed in accordance with the negative Lk values
that are present. In the two-person, zero-sum case one simply has L1(x1, x2) =
−L2(x1, x2), and the notation for this quantity can be shifted to L(x, y).

For games that aren’t zero-sum, no actual exchange of anything needs to be
envisioned, and there is no reason to focus on a medium of exchange, such as money.
The units in which the values of Lk are measured can be personal to Player k and
different from those for the other players. (A popular choice is for Lk, or rather
its negative through a switch to maximization, to be a so-called utility function for
Player k, for the construction of which a large body of theory is available.) This makes
it possible to use game theory in the modeling of social and economic situations that
don’t necessarily reduce to competition alone. For instance, cooperative games can

94

be studied, where everyone can win if the actions are properly coordinated. Theory
must then address the mechanisms of achieving coordination among players.

The central feature of any N -person game is that the consequences for Player k

of choosing xk depend not only on xk itself, over which Player k has control, but also
on the decisions made by the other players.

Nash equilibrium: A basic concept of “solution” in the theory of N -person games is
that of Nash equilibrium. This refers to having (x̄1, . . . , x̄N) ∈ X1 × · · · × XN

such that Player 1 faces

L1(x1, x̄2, . . . , x̄N) ≥ L1(x̄1, x̄2, . . . , x̄N) for all x1 ∈ X1,

while Player 2 faces

L2(x̄1, x2, . . . , x̄N) ≥ L2(x̄1, x̄2, . . . , x̄N) for all x2 ∈ X2,

and similarly for Player 3 to Player N (when present). As with a saddle point,
the interpretation is that no single player would have incentive for unilaterally
making a different decision. For a two-person zero-sum game, Nash equilibrium
reduces to a saddle point. Other concepts of equilibrium have also been explored
theoretically, like ones involving the formation of “coalitions” among the players,
reinforced perhaps by side payments to keep members in line, these side payments
coming out of the proceeds obtained by the coalition.

Game theory nowadays: The greatest interest in game theory has come from mathe-
matical economists, who have developed and used it in many ways. In fact the
subject was invented by John von Neumann, one of the most remarkable math-
ematicians of the 20th century, especially for that purpose. Hopes that game
theory might lead to major advances in the study of human behavior haven’t
been borne out, however. But at this moment interest on the level of business
applications is resurgent.

Optimization problems derived from a game: Associated with any two-person,
zero-sum game specified by a general choice of X, Y and L, there are two comple-
mentary problems of optimization. The study of these problems provides further
insight into the role of saddle points and, eventually, the ways that Lagrange multi-
plier vectors can be determined, interpreted and utilized. The problems in question
result from adopting a very conservative approach to playing the game, amounting
to little more than a worst-case analysis. Whether or not one would really be con-
tent with playing the game in this manner in practice, the approach does lead to
impressive mathematical results.

95

Minimax strategy problem for Player 1: To determine x̄, Player 1 should solve

(P1) minimize f(x) over all x ∈ X, where f(x) := sup
y∈Y

L(x, y).

In other words, for each x ∈ X, Player 1 should look at the value f(x), which
indicates the worst that could possibly happen if x were the element selected
(the measure being in terms of how high a payment might have to be made to
Player 2, in the absence of any way to predict what Player 2 will actually do).
The choice of x̄ should be made to ameliorate this as far as possible.

Minimax strategy problem for Player 2: To determine ȳ, Player 2 should solve

(P2) maximize g(y) over all y ∈ Y, where g(y) := inf
x∈X

L(x, y).

In other words, for each y ∈ Y , Player 2 should look at the value g(y), which
indicates the worst that could possibly happen if y were the element selected
(the measure being in terms of how low a payment might be forthcoming from
Player 1, in the absence of any way to predict what Player 1 will actually do).
The choice of ȳ should be made to ameliorate this as far as possible.

Fundamental relation in optimal values: Let ᾱ denote the optimal value in Player 1’s
problem and β̄ the optimal value in Player 2’s problem. Then

ᾱ ≥ β̄.

This is evident on intuitive grounds, even without assurance that optimal solu-
tions exist to the two problems. For any α > ᾱ, Player 1 can choose x ∈ X with
f(x) ≤ α and thereby be certain of not having to pay more than the amount α.
On the other hand, for any β < β̄, Player 2 can choose y ∈ Y with g(y) ≥ β and
be certain of getting at least the amount β from Player 1. Seen more fully, the
definition of f gives f(x) ≥ L(x, y) for any y ∈ Y , while the definition of g gives
g(y) ≤ L(x, y) for any x ∈ X, so that

f(x) ≥ L(x, y) ≥ g(y) for all x ∈ X, y ∈ Y.

Each value g(y) for y ∈ Y thus provides a lower bound to the values of the
function f on X, so β̄ likewise provides a lower bound, the best that can be
deduced from the various values g(y). This can’t be more than the greatest lower
bound for f on X, which by definition is ᾱ.

96

THEOREM 15 (basic characterization of saddle points). In any two-person, zero-

sum game, the following conditions on a pair (x̄, ȳ) are equivalent to each other and ensure

that L(x̄, ȳ) is the optimal value in both player’s problems.

(a) (x̄, ȳ) is a saddle point of L(x, y) on X × Y .

(b) x̄ is an optimal solution to problem (P1), ȳ is an optimal solution to problem (P2),
and the optimal values in these two problems agree.

(c) x̄ ∈ X, ȳ ∈ Y , and f(x̄) = g(ȳ).

Proof. The equivalence is obvious from the general inequality f(x) ≥ L(x, y) ≥ g(y) just
noted and the fact that the saddle point condition can, by its definition and that of f and
g, be written as f(x̄) = L(x̄, ȳ) = g(ȳ).

Comment. This reveals that the components x̄ and ȳ of a saddle point (x̄, ȳ) have an
independent character. They can be obtained by solving one optimization to get
x̄ and another to get ȳ. The set of saddle points is a product set within X × Y .

Application of game theory to Lagrangians: Returning now to the case of an op-
timization problem (P) in conventional format and its associated Lagrangian L on
X×Y , we ask what at first impression could be just a frivolous question. If we think
of these elements L, X, and Y as specifying a certain two-person, zero-sum game,
what would we get? As a matter of fact, in this game the strategy problem (P1)
for Player 1 turns out to be (P)! Indeed, the formula for the function that is to be
minimized in (P1),

f(x) := sup
y∈Y

L(x, y) = sup
y∈Y

{
f0(x) +

∑m

i=1
yifi(x)

}
,

gives none other than the essential objective function in (P),

f(x) =
{

f0(x) if x is feasible,
∞ if x is not feasible.

Thus, in tackling problem (P) as our own, we are tacitly taking on the role of Player 1
in a certain game. Little did we suspect that our innocent project would necessarily
involve us with an opponent, a certain Player 2!

This will take some time to digest, but one place to begin is with our knowledge,
on the basis of game theory, that the strategy problem (P2) this Player 2 is supposed
to want to solve is the one in which the function g(y) := infx∈X L(x, y) is maximized
over y ∈ Y . We adopt this as the problem “dual” to (P) in the Lagrangian framework.

97

Lagrangian dual problem: The dual problem of optimization associated with (P)
(called the primal problem for contrast) is

(D)
maximize g(y) over all y ∈ Y, where

g(y) := inf
x∈X

L(x, y) = inf
x∈X

{
f0(x) +

∑m

i=1
yifi(x)

}
.

Here g has the general status that f did in (P) as the essential objective function
in (D), because g(y) might be −∞ for some choices of y ∈ Y . The feasible set in
problem (D) therefore isn’t actually the set Y , but the set

D :=
{
y ∈ Y

∣∣ g(y) > −∞
}
.

In other words, a vector y ∈ Y isn’t regarded as a feasible solution to (D) unless the
objective value g(y) is finite. Of course, closer description of D and g can’t emerge
until more information about X and the functions fi has been supplied in a given
case, so that the calculation of g(y) can be carried out in supplementary detail.

Example: Lagrangian derivation of linear programming duality: For a linear program-
ming problem (Plin) as considered earlier, the Lagrangian is

L(x, y) =
∑n

j=1
cjxj +

∑m

i=1
yi

(
bi −

∑n

j=1
aijxj

)
=

∑m

i=1
biyi +

∑n

j=1
xj

(
cj −

∑m

i=1
yiaij

)
on X × Y = IRn

+ × IRm
+ .

Using the second version of the formula to calculate the essential objective in (D),
we get for arbitrary y ∈ IRm

+ that

g(y) = inf
x∈IRn

+

L(x, y) = inf
xj≥0

j=1,...,n

{∑m

i=1
biyi +

∑n

j=1
xj

(
cj −

∑m

i=1
yiaij

)}

=
{ ∑m

i=1 biyi when cj −
∑m

i=1 yiaij ≥ 0 for j = 1, . . . , n,
−∞ otherwise.

The Lagrangian dual problem (D), where g(y) is maximized over y ∈ Y , comes
out therefore as the previously identified dual problem (Dlin).

Convexity properties of the dual problem: Regardless of whether any more detailed
expression is available for the feasible set D and objective function g in problem (D),
it’s always true that D is a convex set with respect to which g is concave. This
problem, therefore, falls within the realm of optimization problems of convex type.

98

Argument: Consider any points y0 and y1 in D along with any τ ∈ (0, 1). Let yτ =
(1 − τ)y0 + τy1. From the definition of D and g we have for each x ∈ X that
−∞ < g(y0) ≤ L(x, y0) and −∞ < g(y1) ≤ L(x, y1), hence

−∞ < (1− τ)g(y0) + τg(y1) ≤ (1− τ)L(x, y0) + τL(x, y1) = L(x, yτ),

where the equation is valid because L(x, y) is affine with respect to y. Since this
holds for arbitrary x ∈ X, while g(yτ) = infx∈X L(x, yτ), we obtain the concavity
inequality (1− τ)g(y0) + τg(y1) ≤ g(yτ) along with the guarantee that yτ ∈ D.

Basic relationship between the primal and dual problems: A number of facts
about (P) and (D) follow at once from game theory, without any need for additional
assumptions. It’s always true that

[
optimal value in (P)

]
≥

[
optimal value in (D)

]
.

When these optimal values coincide, as they must by Theorem 15 if a saddle point
exists for the Lagrangian L on X × Y , the saddle points are the pairs (x̄, ȳ) such
that x̄ solves (P) while ȳ solves (D). The sticking point, however is whether a saddle
point does exist. For that we need to draw once more on convexity.

THEOREM 16 (duality in convex programming). Consider an optimization prob-

lem (P) in conventional format along with its Lagrangian dual (D) in the case where the

set X is closed and convex, the functions fi are C1 and convex for i = 0, 1, . . . , s, and affine

for i = s + 1, . . . ,m. Then the Lagrangian L(x, y) is convex in x for each y ∈ Y as well as

affine in y for each x ∈ X, and the following properties are equivalent:

(a) x̄ is an optimal solution to (P), and ȳ is an associated Lagrange multiplier vector

in the Kuhn-Tucker conditions for (P) at x̄;

(b) (x̄, ȳ) is a saddle point of the Lagrangian L(x, y) over X × Y ;

(c) x̄ and ȳ are optimal solutions to (P) and (D), respectively, and

[
optimal value in

(
Plin

)]
=

[
optimal value in

(
Dlin

)]
.

In particular, therefore, this equation must hold if (P) has an optimal solution for which

the Kuhn-Tucker conditions are fulfilled (as is true in particular when (P) has an optimal

solution satisfying the basic constraint qualification or the refined constraint qualification

that takes linear constraints into account).

99

Proof. Since L(x, y) = f0(x) + y1f1(x) + · · ·+ ymfm(x), we always have L(x, y) affine in
y for fixed x. Because Y = IRs

+ × IRm−s, the vectors y ∈ Y have components yi that are
nonnegative for i ∈ [1, s], and the convex programming assumptions on (P) therefore ensure
that L(x, y) is convex in x when y ∈ Y . Saddle points (x̄, ȳ) of L over the convex product
set X × Y are characterized therefore by the gradient relations −∇xL(x̄, ȳ) ∈ NX(x̄) and
∇yL(x̄, ȳ) ∈ NY (ȳ) as noted in our discussion of saddle points. But these relations give the
Lagrangian form of the Kuhn-Tucker conditions for (P). We conclude from this that (a)
and (b) are equivalent. The equivalence of (b) and (c) is based on the general principles of
Theorem 15, which is applicable because (P) and (D) have been identified as the strategy
problems for the two players in the game specified by the Lagrangian triplet L, X, Y . The
final assertion of the theorem merely recalls the necessity of the Kuhn-Tucker conditions
in the presence of the constraint qualifications in Theorems 11 or 12.

Comparison with duality in linear programming: Convex programming covers linear pro-
gramming as a special case, but the results in Theorem 16 are generally not as sharp
or symmetric as those in Theorem 14. Nonetheless they do offer something new
even for (Plin) and (Dlin). We now know that the pairs (x̄, ȳ) constituting optimal
solutions to these problems are precisely the saddle points over X × Y = IRn

+ × IRm
+

of the function

L(x, y) =
∑n

j=1
cjxj +

∑m

i=1
biyi −

∑m,n

i,j=1
yiaijxj .

Game-theoretic interpretation of duality: A puzzle remains. If the consideration
of a problem (P) leads inevitably to involvement in a game in which an opponent
is trying to solve another problem (D), just what is the game, and what does it
signify? In principle, the game is of course as follows. Player 1, whom we identify
with ourselves, chooses a vector x ∈ X (ignoring all other constraints!) while the
sinister Player 2 chooses a multiplier vector y = (y1, . . . , ym) ∈ Y . Then Player 1
must pay the amount L(x, y) = f0(x)+y1f1(x)+. . .+ymfm(x) to Player 2. What can
this mean? An important clue can usually be found in analyzing the units in which
this payment is made and trying through that to interpret the quantity L(x, y).

An economic example: Let’s interpret f0(x) as the cost in dollars of selecting an action
x from X. For i = 1, . . . ,m, let’s take fi(x) to be the amount of resource i needed
to implement x, this being measured in appropriate units (tons, hours, . . .) but
with the scale oriented so that fi(x) is the excess that would be required, relative
to the amount of resource i directly available. The constraint fi(x) ≤ 0 refers

100

then to staying within the available amounts. Take (P) to be the problem of
minimizing f0(x) subject to x ∈ X and fi(x) ≤ 0 for i = 1, . . . ,m.

For units of measurement in the Lagrangian expression L(x, y) = f0(x) +
y1f1(x)+ . . .+ ymfm(x) to come out consistently, the values of L(x, y), like those
of f0(x) must be in dollars. We deduce then that the units for the coefficient yi

must be dollars per unit of resource i. In other words, the multipliers yi assign
monetary value to the resources and act like prices!

In the game framework, Player 1 doesn’t worry directly about whether
the constraints fi(x) ≤ 0 are satisfied or not; any x ∈ X can be selected as a
“strategy.” The interpretation is that resource i can be bought and sold freely on
the market at a certain price yi. If the decision x is such that fi(x) > 0, so that
more of resource i is needed that is already on hand, the shortfall is made up by
purchasing the extra amount on the market and adding the corresponding cost
yifi(x) to the direct cost f0(x) associated with x. On the other hand, if fi(x) < 0,
this means that an unused quantity |fi(x)| of resource i remains, which can be
sold off to counterbalance the costs of the decision x. The proceeds yi|fi(x)| are
then subtracted from f0(x), which because of signs amounts once again to adding
yifi(x) to f0(x). In all cases, therefore, the payment L(x, y) made by Player 1
comes out as the net cost resulting from decision x after market transactions in

the resources have been taken into account, as long as the price vector is y.

The market as the opponent: Player 2 is revealed now as the market itself, acting
to keep Player 1 from making undue profit out of prices that don’t reflect the
true values of the resources. The market acts to set the prices so to get the
highest net amount out of Player 1 that is consistent with the situation. The
objective value g(y) in the dual problem represents a floor to the amount the
market is sure to receive.

Equilibrium prices: Our theory tells us that under mild assumptions including
convexity there will exist a special price vector ȳ with the property that in
minimizing L(x, ȳ) over x ∈ X, as a “free market” version of the given problem
(P), there will be a solution x̄ that actually turns out to be an optimal solution
to (P) itself. In other words, the prices ȳi will have the magical property of
inducing us to respect the constraints fi(x) ≤ 0 even though we are not obliged
to! A vector ȳ is imbued with this power if and only if it solves problem (D).

101

Lagrangian relaxation: The saddle point characterization of optimal solutions to a
convex programming problem (P) in Theorem 16 has useful consequences quite gen-
erally. The “market” example just explored is only a beginning. Consider for each
multiplier vector y ∈ Y the problem

minimize L(x, y) = f0(x) + y1f1(x) + · · ·+ ymfm(x) with respect to x ∈ X.

This is called a Lagrangian relaxation of (P), because it “relaxes” the constraints
of type fi(x) ≤ 0 or fi(x) = 0, incorporating them instead, to some degree, in a
modified objective function; the minimization is carried out without regard to these
constraints, but only to the requirement that x ∈ X. (Note that the optimal value
in this relaxed problem is by definition g(y).) In the situation described in Theorem
16, there is a vector ȳ with the remarkable property that every optimal solution x̄

to (P) satisfies L(x, ȳ) ≥ L(x̄, ȳ) for all x ∈ X, or in other words, the optimal set
for (P) lies within the optimal set for the relaxed problem corresponding to ȳ. In
particular, if L(x, ȳ) attains its minimum over X at just a single point x̄ (as must
be true for instance if this function is strictly convex on X, which would be the case
in convex programming when f0 is strictly convex on X), this point x̄ has to be the
unique optimal solution to (P)!

If only there were some way of determining such a multiplier vector ȳ, we could in
principle avoid the pain of minimizing f0(x) over the feasible set C in (P) and merely
minimize L(x, ȳ) over the presumably much simpler set X. In fact the determination
of ȳ is not so far-fetched. Theorem 16 tells us that in looking for ȳ we are looking
for an optimal solution to the dual problem (D).

Practical realization: Lagrangian relaxation is typically built into procedures involving
a whole sequence of multiplier vectors yν ∈ Y . In each iteration, L(x, yν) is
minimized over x ∈ X to get a point xν in the hope that the sequence in X

so generated, or perhaps an auxiliary sequence constructed out of it, will be
asymptotically optimal in (P). The vectors yν aren’t specified in advance, but
produced from information revealed as the computations go on. The scheme is
designed with the aim of getting the yν ’s to form an optimizing sequence for (D).

Troubles in the absence of convexity: It mustn’t be overlooked that the success of such
an approach depends on (P) being a convex programming problem. When that
isn’t true, there’s no reason to believe that an optimal solution ȳ to problem (D),
or for that matter any other vector ȳ, never mind how cleverly chosen, will have
the property required. Without that, any confidence in a method of Lagrangian
relaxation being able to “solve” problem (P) is definitely misplaced.

102

Lower bounds on the primal optimal value: For any dual feasible solution y ∈ D, the
finite value g(y), obtained by solving the relaxed problem of minimizing L(x, y)
over x ∈ X, is a lower bound to the optimal value in (P). This follows from
general relationship between the optimal values in (P) and (D) that was noted
just before Theorem 16. In many situations, regardless of convexity, the ability
to generate such a lower bound is helpful in gaining information about how near
x might be to solving (P). Such information might enter into a stopping criterion
in a numerical method for solving (P).

Decomposition of large-scale problems: When problems of optimization are very
large in dimension—with thousands of variables and possibly a great many con-
straints to go with them—there’s strong interest in setting up methods of com-
putation might take advantage of special structure that might be present. An
attractive idea is that of breaking a problem (P) down into much smaller sub-
problems, to be solved independently, maybe by processing them in parallel.

Of course, there’s no way of achieving such a decomposition once and for all,
because that would presuppose knowing unrealistically much about the problem
before it’s even been tackled. Rather, one has to envision schemes in which
an initial decomposition of (P) into subproblems yields information leading to
a better decomposition into modified subproblems, and so forth iteratively in a
manner that can be justified as eventually generating an asymptotically optimal
sequence {xν}ν∈IN . As long as (P) is well posed, such a sequence can be deemed
to solve it in the sense of Theorem 2.

Example: Decentralization of decision making. Consider now a situation where a
number of separate agents or decision makers, indexed by k = 1, . . . , r, would solve
problems of optimization independent of each other if it weren’t for the necessity of
sharing certain resources. Agent k would prefer just to minimize f0k(xk) over all xk

in a set Xk ⊂ IRnk , but there are mutual constraints

fi1(x1) + · · ·+ fir(xr) ≤ ci for i = 1, . . . ,m

requiring some coordination. Furthermore, there’s community interest in having the
coordination take place in such a way that the overall sum f01(x1) + · · ·+ f0r(xr) is
kept low. In other words, the problem as seen from the community is to

(P∗)

minimize f0(x) := f01(x1) + · · ·+ f0r(xr) subject to

fi(x) := fi1(x1) + · · ·+ fir(xr)− ci ≤ 0 for i = 1, . . . ,m,

x := (x1, . . . , xr) ∈ X := X1 × · · · ×Xr.

103

To concentrate attention on the nicest case (much could still be said under weaker
assumptions), suppose that the sets Xk are convex, closed and bounded, and the
functions fik are convex and of class C1, with f0k strictly convex. Then (P∗) is
a well posed, convex programming problem in which the objective function f0 is
strictly convex. Provided that (P∗) has a feasible solution, which we henceforth
assume as well, (P∗) has a unique optimal solution x̄; this follows from Theorems 1
and 8(b). Assuming further that this optimal solution x̄ satisfies the basic constraint
qualification in Theorem 11 or the refined one in Theorem 12, we know from Theorem
16 that an optimal solution ȳ exists for the associated dual problem (D∗). In terms
of ȳ, as discussed under the heading of Lagrangian relaxation, x̄ is displayed as the
unique optimal solution to the problem of minimizing L(x, ȳ) over x ∈ X.

What is the form of this relaxed problem? For any y ∈ Y we have

L(x, y) : =
∑r

k=1
f0k(xk) +

∑m

i=1
yi

(∑r

k=1
fik(xk)− ci

)
=

∑r

k=1
Lk(xk, y)− y·c

with Lk(xk, y) := f0k(xk) +
∑m

i=1
yifik(xk), c = (c1, . . . , cm).

Thus, to minimize L(x, ȳ) over x ∈ X is the same as to

minimize L1(x1, ȳ) + ·+ Lr(xr, ȳ) over all (x1, . . . , xr) ∈ X1 × · · · ×Xr.

But in this subproblem there is no interaction between the different components xk:
the minimum is achieved by solving the separate problems

(Pk(ȳ)) minimize Lk(xk, ȳ) over all xk ∈ Xk (k = 1, . . . , r).

Implication: The vector ȳ has the amazing property of allowing the decomposition of
the community problem (P∗) into a number of subproblems, which can be dealt
with in parallel by the separate agents. For k = 1, . . . , r, Agent k solves (Pk(ȳ))
and thereby determines an element x̄k. These elements need only then be put
together as (x̄1, . . . , x̄r) to get the unique optimal solution x̄ to (P). Thus, the
optimal set of decisions x̄k for the community as a whole can be achieved without
either a meeting to coordinate the conflicting aims of the agents or a “budget
tsar” to parcel out the resource amounts ci. Instead, the agents can come up
with these decisions by solving individual problems of optimization from their
individual points of view. All that is needed is a certain way of incorporating the
resource circumstances into the individual objectives through terms ȳifik(xk).

104

Economic interpretation: This fits perfectly with the market interpretation of La-
grange multipliers that was given earlier. The coefficient ȳi is the market price in
dollars per unit of resource i. In contemplating the selection of xk ∈ Xk, Agent
k faces the direct cost f0k(xk). But Agent k knows also that if xk requires an
amount fik(xk) > 0 of resource i, such amount can be obtained at cost ȳifik(xk),
whereas if xk produces an amount of resource i, i.e., if fik(xk) < 0, such amount
can be sold for a return of ȳi[−fik(xk)] against the costs. From this “free market”
perspective, Agent k is occupied simply with minimizing f0k(xk)+

∑m
i=1 ȳifik(xk)

over xk ∈ Xk, which is problem (Pk(ȳ)). The idea that the individual agents, in
pursuing merely their own interests in this way, will end up making the decisions
optimal for the community as a whole, is of course classical economics in the
vein of Adam Smith. It’s no wonder, then, that mathematical economists have
intensely studied this kind of result in optimization theory.

Remark: This example was worth exploring at length because it illustrates not only
an important tactic, which can be used to counter the high dimensionality of
large-scale problems when solving them, but the importance of optimization the-
ory in mathematical modeling itself. Optimization is more than just numerical
optimization. It serves in analyzing and understanding various situations as well
as in calculating answers to problems with specific data.

Abuses of the notion of price decomposition: Free-market zealots have captured the
world’s attention with the idea that economic behavior that’s optimal from society’s
interest can be induced simply by letting markets set the proper prices. For instance,
if every form of pollution has its price, and the price is right, companies will keep
pollution within society’s desired bounds just by acting out of their own self interest.
But the underpinnings of this assertion rest on the structure of the economy being
“convex.” Roughly speaking, that’s only true in the classical setting of an economy
consisting only of a huge mass of infinitesimal agents, not the modern setting of
several major agents in each industry. Abuses of this notion of decomposition can
arise also, politics aside, when people who simply want a convenient way of solving
a problem (P) don’t appreciate the crucial assumptions.

105

Some other approaches to problem decomposition:

Frank-Wolfe decomposition: For problems of minimizing a nonlinear, differentiable
convex function f0 over a set C specified by linear constraints, a possible way
to generate a sequence of feasible solutions xν from an initial point x0 ∈ C as
follows. Having arrived at xν , form the linearized function

lν(x) := f0(xν) +
〈
∇f0(xν), x− xν

〉
and minimize lν over C to get a point x̂ν . The information provided by this
subproblem can be used in various ways. For instance, dν = x̂ν −xν turns out to
be a descent vector for f0, moreover one giving a feasible direction into C at xν

(unless xν itself already minimizes lν over C, in which case xν already has to be
optimal). We won’t go into the details of the possibilities here. The main thing
is that the subproblem of minimizing lν over C is one of linear programming, in
contrast to that of minimizing f0 over C. In special situations, such as when C

is a box or a even just a product of polyhedral sets of low dimension, it breaks
down into still smaller subproblems solvable in closed form or in parallel.

Benders decomposition: This term was originally attached to a scheme in linear pro-
gramming, but the concept can be explained much more generally. Imagine in (P)
that the vector x is split into two vector components, x = (x′, x′′) with x′ ∈ IRn′

and x′′ ∈ IRn′′
, representing the “hard” and “easy” parts of (P) in the following

sense. For any fixed choice of x′, the residual problem of minimizing f0(x′, x′′)
over all x′′ such that (x′, x′′) ∈ C is “easy” because of its special structure. Let
ϕ(x′) denote the optimal value in this subproblem, with x′ as parameter, and let
B denote the set of all x′ for which at least one x′′ exists with (x′, x′′) ∈ C. In
principle then, (P) can be solved by minimizing ϕ(x′) over all x′ ∈ B to get x̄′,
and then solving the “easy” subproblem associated with this x̄′ to get x̄′′; the
pair x̄ = (x̄′, x̄′′) will be optimal in (P). Once more, this is just the skeleton
of an approach which has to be elaborated into an iterative procedure to make
it practical. Typically, duality enters in representing ϕ approximately in such a
manner that it can minimized effectively.

106

Decomposition through block coordinate minimization: Sometimes (P) has many
“easy” parts if they could be treated separately. Suppose x = (x1, . . . , xr) with
vector components xk ∈ IRnk ; each xk designates a block of coordinates of x in
general. For any x̂ ∈ C, denote by (Pk(x̂)) for k = 1, . . . , r the subproblem

minimize f0(x̂1, . . . , x̂k−1, xk, x̂k+1, . . . , xr) over all xk such that

(x̂1, . . . , x̂k−1, xk, x̂k+1, . . . , xr) ∈ C.

The basic idea is to generate a sequence {xν}∞ν=0 in C from an initial x0 as
follows. Having reached xν , choose an index kν in {1, . . . , r} and solve subproblem
(Pkν (xν)), obtaining a vector x̄kν . Replace the kν-component of xν by this vector,
leaving all the other components as they were, to obtain the next point xν+1.
Obviously, if this is to work well, care must be exercised that the same index in
{1, . . . , r} isn’t always chosen; some scheme in which every index repeatedly gets
its turn is essential. But what’s not realized by many people is that, although the
method may lead to lower values of f0, but never higher, it can get hung up and
fail to produce an optimal sequence xν unless strong assumptions are fulfilled.
Not only must f0 be differentiable, it must be strictly convex, and the feasible
set C be convex and have the product form C1 × · · · × Cr.

107

