
4. CONSTRAINED MINIMIZATION

The minimization of a function f0 over a set C ⊂ IRn can be much harder than
the minimization of f0 over all of IRn, and it raises a host of issues. Some of these
concern the ways a numerical method might be able to maneuver around in C or
near to it, while others come up in characterizing optimality itself.

Feasible directions: A vector w 6= 0 is said to give a feasible direction into C at a point
x ∈ C if there’s an ε > 0 such that the line segment

{
x + τw

∣∣ 0 ≤ τ ≤ ε
}

lies in C.

Descent methods with constraints: The general class of descent methods described for
unconstrained optimization could be adapted to the minimization of f0 over C if
the nature of C is such that feasible directions can readily be found. The rough
idea is this. Starting from a point x0 ∈ C, a sequence of points is generated by
the scheme that, when at xν ∈ C, a descent vector wν is chosen for f0 which
at the same time gives a feasible direction into C at xν . (If no such wν exists,
the method terminates.) Next, some sort of line search is executed to produce
a value τν > 0 such that both xν + τνwν ∈ C and f0(xν + τνwν) < f0(xν).
The next point is taken then to be xν+1 := xν + τνwν . In particular, one can
imagine choosing τν to be a value that minimizes ϕ(τ) = f0(xν + τwν) over the
set

{
τ ≥ 0

∣∣ xν + τwν ∈ C
}
; this would be the analogue of exact line search.

Pitfalls: Many troubles can plague this scheme, unless the situation is safeguarded
by rather special features. Finding a descent vector wν that gives a feasible
direction may be no easy matter, and even if one is found, there may be
difficulties in using it effectively because of the need to keep within the confines
of C. A phenomenon called jamming is possible, where progress is stymied
by frequent collisions with the boundary of C and the method “gets stuck in
a corner” of C or makes too many little zigzagging steps.

Lack of feasible directions at all: Of course, this kind of approach doesn’t make
much sense unless one is content to regard, as a “quasi-solution” to the prob-
lem, any point x ∈ C at which there is no descent vector for f0 giving a feasible
direction into C. That may be acceptable for some sets C such as boxes, but
not for sets C in which curvature dominates. For example, if C is a curved
surface there may be no point x ∈ C at which there’s a feasible direction
into C, because feasible directions refer only to movement along straight line
segments embedded in C. Then there would be no point of C from which
progress could be made by a modified descent method in minimizing f0.
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Variational geometry: Whether or not some form of descent method might be made
to work, it’s essential to have a solid grip on the geometry of the feasible set C.
Classical geometry doesn’t meet the needs, so new concepts have to be brought in.
To get rolling, we need a notion of tangency which includes the tangent spaces long
associated with “linearization” of curved structures, but at the same time covers
vectors giving feasible directions.

Tangent vectors: For a closed set C ⊂ IRn and a point x̄ ∈ C, a vector w is said to be
tangent to C at x̄ if there is a sequence of vectors xν → x̄ in C along with scalars
τν ↘0 such that the vectors wν = (xν − x̄)/τν converge to w.

Interpretation: The tangent vectors w to C at x̄, apart from w = 0 (which corresponds
in the definition to xν ≡ x̄, wν ≡ 0), are the vectors pointing in a possibly
asymptotic direction from which a sequence of points xν ∈ C can converge to x̄.
The direction of xν as seen from x̄, which is the direction of wν , is not necessarily
that of w, but gets closer and closer to it as ν →∞.

Relation to feasible directions: Every vector w 6= 0 giving a feasible direction into C

at x̄ is a tangent vector to C at x̄. Indeed, for such a vector w one can take
xν = x̄ + τνw for any sequence of values τν ↘0 sufficiently small and have for
wν = (xν − x̄)/τν that wν ≡ w, hence trivially wν → w. Note from this that
tangent vectors, in the sense defined here, can well point right into the interior
of C, if that is nonempty; they don’t have to lie along the boundary of C.

Relation to classical tangent spaces: When C is a “nice two-dimensional surface”
in IR3, the tangent vectors w to C at a point x̄ form a two-dimensional linear
subspace of IR3, which gives the usual tangent space to C at x̄. When C is a “nice
one-dimensional curve,” a one-dimensional linear subspace is obtained instead.
Generalization can be made to tangent spaces to “nice curvilinear manifolds” of
various dimensions d in IRn, with 0 < d < n. These comments are offered here
on a heuristic, motivational level, but they will latter be supplied with rigor once
such manifolds are identified with sets defined by equality constraints satisfying
a constraint qualification that ensures a robust representation.

Tangent cone at a point: In general, the set of all vectors w that are tangent to C at
a point x̄ ∈ C is called the tangent cone to C at x̄ and is denoted by TC(x̄).

Basic properties: Always, the set TC(x̄) contains the vector 0. Further, for every
vector w ∈ TC(x̄) and every scalar λ > 0, the vector λw is again in TC(x̄)
(because of the arbitrary size of the scaling factors in the definition). But in
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many situations one can have w ∈ TC(x̄), yet −w /∈ TC(x̄). In particular, TC(x̄)
can well be something other than a linear subspace of IRn.

Cones: A subset of IRn is called a cone if it contains the zero vector and contains with
each of its vectors all positive multiples of that vector. Geometrically, this means
that a cone, unless it consists of 0 alone, is a “bundle of rays.”

Limits of tangent vectors: The limit of any sequence of vectors wν ∈ TC(x̄) is another
vector w ∈ TC(x̄). In other words, TC(x̄) is always a closed set. (This can readily
be gleaned from the definition of TC(x̄) and the general properties of convergent
sequences.) In particular, if the vectors wν give feasible directions to C at x̄ and
wν → w, then w ∈ TC(x̄).

Tangents in some extreme cases: If C = IRn, then TC(x̄) = IRn. Indeed, any time
x̄ lies in the interior of C, one has TC(x̄) = IRn. If C is a one-element set {a} and
x̄ = a, then TC(x̄) = {0}. More generally, the latter holds whenever x̄ is an isolated
point of C in the sense that there is no sequence of points xν → x̄ in C apart from
the constant sequence xν ≡ x̄.

Tangents to boxes: If X = I1 × · · · × In in IRn with Ij a closed interval in IR, then at
any point x̄ = (x̄1, . . . , x̄n) ∈ X (the component x̄j lying in Ij) one has

TX(x̄) = TI1(x̄1)× · · · × TIn(x̄n), where

TIj (x̄j) =


[0,∞) if x̄j is the left endpoint (only) of Ij ,
(−∞, 0] if x̄j is the right endpoint (only) of Ij ,
(−∞,∞) if x̄j lies in the interior of Ij ,
[0, 0] if Ij is a one-point interval, consisting just of x̄j .

In other words, the condition w ∈ TX(x̄) for w = (w1, . . . , wn) amounts to restricting
wj to lie in a one of the intervals (−∞, 0], [0,∞), (−∞,∞), or [0, 0] (the one-point
interval consisting just of 0). The particular interval for an index j depends on the
location of x̄j relative to the endpoints of Ij .

Tangents to the nonnegative orthant: The set X = IRn
+ is a box, the product of the

intervals Ij = [0,∞). In this case one has w ∈ TX(x̄) if and only if wj ≥ 0 for all
indices j with x̄j = 0. (For indices j with x̄j > 0, wj can be any real number.)

Feasible directions in a box: When X is a box, not only does every vector w 6= 0
giving a feasible direction in X at x̄ belong to TX(x̄), but conversely, every vector
w 6= 0 in TX(x̄) gives a feasible direction in X at x̄. This important property
generalizes as follows to any set specified by finitely many linear constraints.
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Tangents to polyhedral sets: For a polyhedral set C, like a box, simple formulas
describe all the tangent cones. As a specific case ripe for many applications, suppose

x ∈ C ⇐⇒

 ai·x ≤ bi for i ∈ [1, s],
ai·x = bi for i ∈ [s + 1,m],
x ∈ X, with X a box.

Let x̄ ∈ C and denote by I(x̄) the set of i ∈ [1, s] for which actually ai·x = bi. Then

w ∈ TC(x̄) ⇐⇒

 ai·w ≤ 0 for i ∈ I(x̄),
ai·w = 0 for i ∈ [s + 1,m],
w ∈ TX(x̄).

Argument: Let K denote the set of vectors w described by the final conditions (on
the right). The question is whether K = TC(x̄). For a vector w and scalar τ > 0,
one has x̄ + τw ∈ C if and only if x̄ + τw ∈ X and ai·w ≤ [bi − ai·x̄]/τ for
i ∈ [1, s], whereas ai·w = 0 for i ∈ [s + 1,m]. Here for the indices i ∈ [1, s] we
have [bi − ai·x̄] = 0 if i ∈ I(x̄), but [bi − ai·x̄] > 0 if i /∈ I(x̄); for the latter,
[bi− ai·x̄]/τν ↗∞ whenever τν ↘0. In light of the previously derived formula for
the tangent cone TX(x̄) to the box X, it’s clear then that the vectors of form
those expressible as w = limν wν with x̄ + τνwν ∈ C, τν ↘0 (i.e., the vectors
w ∈ TC(x̄)) are none other than the vectors w ∈ K, as claimed.

Special tangent cone properties in the polyhedral case: When C is polyhedral, the
tangent cone TC(x̄) at any point x̄ ∈ C is polyhedral too. Moreover the vectors
w 6= 0 in TC(x̄) all give feasible directions into C at x̄, and they fully describe
the geometry of C around x̄ in the sense that there is a ρ > 0 for which

{
x− x̄

∣∣ x ∈ C, |x− x̄| ≤ ρ
}

=
{
w ∈ TC(x̄)

∣∣ |w| ≤ ρ
}
.

Reason: In accordance with the definition of C being polyhedral, there’s no loss
of generality in taking C to have a representation of the sort just examined.
The corresponding representation for TC(x̄) then immediately supports these
conclusions. Since ai·w ≤ |ai||w|, the claimed equation holds for any ρ > 0
small enough that ρ ≤ [bi − aix̄]/|di| for every i /∈ I(x̄).
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Characterizations of optimality: To what extent can the necessary and sufficient
conditions for local optimality in unconstrained minimization in Theorem 3 be ex-
tended to minimization over a set C? This is a complex matter, because not only the
“curvature” of f0 as embodied in its Hessian matrices, but also that of the boundary
of C can be crucial, yet we don’t have any handle so far on analyzing the latter.
Nonetheless, a substantial extension can already be stated for the case where C is
essentially without curvature because of being polyhedral.

THEOREM 6 (local optimality conditions on a polyhedral set). Consider the

problem of minimizing f0 over a polyhedral set C, with f0 of class C2. Let x̄ ∈ C.

(a) (necessary). If x̄ is a locally optimal solution, then

∇f0(x̄)·w ≥ 0 for all w ∈ TC(x̄),

w·∇2f0(x̄)w ≥ 0 for all w ∈ TC(x̄) with ∇f0(x̄)·w = 0.

(b) (sufficient). If x̄ has the property that

∇f0(x̄)·w ≥ 0 for all w ∈ TC(x̄),

w·∇2f0(x̄)w > 0 for all w ∈ TC(x̄) with ∇f0(x̄)·w = 0, w 6= 0,

then x̄ is a locally optimal solution. In fact there is a δ > 0 such that

f0(x) > f0(x̄) for all points x ∈ C with 0 < |x− x0| < δ.

Proof. The argument is an adaptation of the one for Theorem 3. To set the stage, we
invoke the polyhedral nature of C to get the existence of ρ > 0 such that the points x ∈ C

with 0 < |x − x̄| ≤ ρ are the points expressible as x̄ + τw for some vector w ∈ TC(x̄)
with |w| = 1 and scalar τ ∈ (0, ρ]. Then too, for any δ ∈ (0, ρ), the points x ∈ C with
0 < |x− x̄| ≤ δ are the points expressible as x̄ + τw for some w ∈ TC(x̄) with |w| = 1 and
some τ ∈ (0, δ]. Next we use the twice differentiability of f0 to get second-order estimates
around x̄ in this notation: for any ε > 0 there is a δ > 0 such that∣∣∣f0(x̄ + τw)− f0(x̄)− τ∇f0(x̄)·w − τ2

2
w·∇2f0(x̄)w

∣∣∣ ≤ ετ2

for all τ ∈ [0, δ] when |w| = 1.

In (a), the local optimality of x̄ gives in this setting the existence of δ̄ > 0 such that
f0(x̄ + τw)− f0(x̄) ≥ 0 for τ ∈ [0, δ̄] when w ∈ TC(x̄), |w| = 1. For such w and any ε > 0
we then have through second-order expansion the existence of δ > 0 such that

τ∇f0(x̄)·w +
τ2

2

[
w·∇2f0(x̄)w + 2ε

]
≥ 0 for all τ ∈ [0, δ].
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This condition implies that ∇f0(x̄)·w ≥ 0, and if actually ∇f0(x̄)·w = 0 then also that
w·∇2f0(x̄)w + 2ε ≥ 0. Since ε can be chosen arbitrarily, it must be true in the latter case
that w·∇2f0(x̄)w ≥ 0. Thus, the claim in (a) is valid for all w ∈ TC(x̄) with |w| = 1. It is
also valid then for positive multiples of such vectors w, and hence for all w ∈ TC(x̄).

In (b), the desired conclusion corresponds to the existence of δ > 0 such that f0(x̄ +
τw) − f0(x̄) > 0 for τ ∈ (0, δ] when w ∈ TC(x̄), |w| = 1. Through the second-order
expansion it suffices to demonstrate the existence of ε > 0 and δ′ > 0 such that

τ∇f0(x̄)·w +
τ2

2

[
w·∇2f0(x̄)w − 2ε

]
> 0

for all τ ∈ (0, δ′] when w ∈ TC(x̄), |w| = 1.

Pursuing an argument by contradiction, let’s suppose that such ε and δ′ don’t exist. Then,
for any sequence εν ↘0 there must be sequences τν ↘0 and wν ∈ TC(x̄) with |wν | = 1 and

τν∇f0(x̄)·wν +
τν2

2

[
wν·∇2f0(x̄)wν − 2εν

]
≤ 0.

Because the sequence of vectors wν is bounded, it has a cluster point w; there is a subse-
quence wνκ → w as κ → ∞. Then |w| = 1 (because the norm is a continuous function),
and w ∈ TC(x̄) (because the tangent cone is a closed set). Rewriting our inequality as

wνκ·∇2f0(x̄)wνκ − 2ενκ ≤ −2∇f0(x̄)·wνκ/τνκ ,

where ∇f0(x̄)·wνκ ≥ 0 under the assumption of (b), we see when κ →∞ with

∇f0(x̄)·wνκ → ∇f0(x̄)·w, wνκ·∇2f0(x̄)wνκ + 2ενκ → w·∇2f0(x̄)w,

that w·∇2f0(x̄)w ≤ 0, yet also ∇f0(x̄)·w = 0 (for if ∇f0(x̄)·w > 0 the right side of the
inequality would go to−∞). This mix of properties of w is impossible under the assumption
of (b). The contradiction finishes the proof.

Remark: In the case where C = IRn, so that TC(x̄) = IRn, the assertions in Theorem 6
turn precisely into the ones for unconstrained minimization in Theorem 3. Thus,
the version of optimality conditions just obtained subsumes the earlier one.

Minimization subject to linear constraints: When the polyhedral set C has a con-
straint represent in the pattern considered just prior to Theorem 6, the condition
w ∈ TC(x̄) has the associated constraint representation of like sort that was de-
scribed there, and this can be used to augment the statement of the optimality
conditions just derived.
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Optimality over a box: In particular Theorem 6 applies to a conventional problem
(P) without constraint functions fi, but just an abstract constraint x ∈ X with X

a box—specifying upper and/or lower bounds (or nonnegativity conditions) on the
variables xj . Then C = X.

Example: Consider a problem in which f0(x1, x2) is minimized over the quadrant
X =

{
(x1, x2)

∣∣ x1 ≥ 0, x2 ≥ 0
}
. What can be said about the possible attainment

of the minimum at x̄ = (0, 1)? The tangent cone TX(x̄) at this point consists of
all vectors w = (w1, w2) with w1 ≥ 0. In both (a) and (b) of Theorem 6, the first-
order condition on ∇f0(x̄) comes down to the requirement that (∂f0/∂x1)(x̄) ≥ 0
but (∂f0/∂x2)(x̄) = 0. In the case where (∂f0/∂x1)(x̄) > 0, the second-order
necessary condition in (a) is (∂2f0/∂x2

2)(x̄) ≥ 0, while the second-order sufficient
condition in (b) is (∂2f0/∂x2

2)(x̄) > 0. When (∂f0/∂x1)(x̄) > 0, however, the
condition in (a) is w·∇2f0(x̄)w ≥ 0 for all w = (w1, w2) with w1 ≥ 0, while the
condition in (b) is w·∇2f0(x̄)w > 0 for all such w 6= (0, 0).

Convexity in optimization: In constrained as well as in unconstrained minimization,
convexity is a watershed concept. The distinction between problems of “convex”
and “nonconvex” type is much more significant in optimization than that between
problems of “linear” and “nonlinear” type.

Convex sets: A set C ⊂ IRn is convex if for every choice of x0 ∈ C and x1 ∈ C with
x0 6= x1 and every τ ∈ (0, 1) the point (1− τ)x0 + τx1 belongs to C.

Interpretation: This means that C contains with every pair of points the line segment
joining them. Although “convex” in English ordinarily refers to a “bulging”
appearance, the mathematical meaning is that there are no dents, gaps or holes.

Elementary rules:

Intersections: If Ci is a convex set in IRn for i = 1, . . . , r, then C1 ∩ · · · ∩ Cr is a
convex set in IRn. (This is true in fact not just for a finite intersection but the
intersection of an arbitrary infinite family of convex sets.)

Products: If Ci is a convex set in IRni for i = 1, . . . , r, then C1 × · · · ×Cr is a convex
set in the space IRn1 × · · · × IRnr = IRn1+···+nr .

Images: If C is a convex set in IRn, A is a matrix in IRm×n and b ∈ IRm, then the set
D =

{
Ax + b

∣∣ x ∈ C
}

is convex in IRm.

Inverse images: If D is a convex set in IRm, A is a matrix in IRm×n and b ∈ IRm, then
the set C =

{
x

∣∣ Ax + b ∈ D
}

is convex in IRn.
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Basic examples of convex sets:

Extremes: The whole space C = IRn is convex. On the other hand, the empty set
C = ∅ is convex. (It satisfies the definition “vacuously.”) Likewise, sets C = {a}
consisting of just a single point (singleton sets) are convex sets.

Linear subspaces: Any subspace C of IRn (as in linear algebra) is closed and convex.

Intervals: The convex subsets of the real line IR are the various intervals, whether
bounded, unbounded, open, closed, or a mixture.

Boxes and orthants: As a product of closed intervals, any box is a closed, convex set.
For instance the nonnegative orthant IRn

+, being a box, is closed and convex. So
too is the nonpositive orthant IRn

−, which is defined analogously.

Hyperplanes and half-spaces: All such sets are closed and convex—as an elementary
consequence of their definition.

Polyhedral sets: As the intersection of a family of hyperplanes or closed half-spaces,
any polyhedral set is closed and convex.

Euclidean balls: For any point x̄ and radius value ρ ∈ (0,∞), the closed ball of radius
ρ around x̄ consists of the points x with |x− x̄| ≤ ρ; the corresponding open ball
or radius ρ around x̄ is defined in the same way, but with strict inequality. Both
kinds of balls are examples of convex sets.

Argument. For the case of C =
{
x

∣∣ |x − x̄| ≤ ρ
}
, consider x0 and x1 in C and

τ ∈ (0, 1). For the point x = (1 − τ)x0 + τx1, we can use the fact that
x̄ = (1− τ)x̄ + τ x̄ to write

|x− x̄| =
∣∣(1− τ)(x0 − x̄) + τ(x1 − x̄)

∣∣
≤ (1− τ)|x0 − x̄|+ τ |x1 − x̄| ≤ (1− τ)ρ + τρ = ρ,

from which we conclude that x ∈ C.

Tangents to convex sets: For a convex set C ⊂ IRn, the tangent cone TC(x̄) at any
point x̄ ∈ C consists of the zero vector and all vectors w 6= 0 expressible as limits of
sequences of vectors wν 6= 0 giving feasible directions into C at x̄.

Argument. This follows from the observation that when C is convex, the presence
of x̄ + τw in C entails that the entire line segment from x̄ to x̄ + τw lies in C.
Likewise, if x̄ + τνwν ∈ C then x̄ + τwν ∈ C for all τ ∈ [0, τν ].
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THEOREM 7 (optimality over a convex set). Consider a problem of minimizing a

function f0 of class C1 over a convex set C ⊂ IRn. Let x̄ be a point of C.

(a) (necessary). If x̄ is locally optimal, then ∇f0(x̄)·w ≥ 0 for all w ∈ TC(x̄), and this

condition is equivalent in fact to having

∇f0(x̄)·[x− x̄] ≥ 0 for all x ∈ C.

(b) (sufficient). If this holds and f0 is convex on C, then x̄ is globally optimal.

Proof. In (a), consider first any point x ∈ C different from x̄. The line segment joining
x̄ with x lies in C by convexity; the vector w = x − x̄ gives a feasible direction into C

at x̄. The function ϕ(τ) = f(x̄ + τw) then has a local minimum at τ = 0 relative to
0 ≤ τ ≤ 1. Hence 0 ≤ ϕ′(0) = ∇f0(x̄)·w = ∇f0(x̄)·[x − x̄]. From this we see further
that ∇f0(x̄)·w ≥ 0 for all vectors w giving feasible directions into C at x̄, inasmuch as
these are positive multiples of vectors of the form x − x̄ with x ∈ C. As noted above,
any vector w 6= 0 in TC(x̄) is a limit of vectors wν giving feasible directions (which are in
TC(x̄) as well). From having ∇f0(x̄)·wν ≥ 0 for all ν we get in the limit as wν → w that
∇f0(x̄)·w ≥ 0. Therefore, ∇f0(x̄)·w ≥ 0 for all w ∈ TC(x̄), and this is equivalent to having
∇f0(x̄)·[x− x̄] ≥ 0 for all x ∈ C.

In (b), we have f0(x) − f0(x̄) ≥ ∇f0(x̄)·x − x̄ for all x ∈ IRn by the convexity of f0

(Theorem 4). If also ∇f0(x̄)·(x − x̄) ≥ 0 for all x ∈ C, we get f0(x) − f0(x̄) ≥ 0 for all
x ∈ C, which means x̄ is globally optimal in the minimization of f0 over C.

Variational inequalities: The condition in Theorem 7 that ∇f0(x̄)·[x − x̄] ≥ 0 for all
x ∈ C is known as the variational inequality for the mapping ∇f0 and the convex
set C, the point x̄ being a solution to it. Variational inequalities can be studied
also with ∇f0 replaced by some other vector-valued mapping from C into IRn.
They have an interesting and significant place in optimization theory beyond
merely the characterization of points at which a minimum is attained.

Interpretation via linearization: In terms of the function l(x) = f0(x̄)+∇f0(x̄)·[x− x̄]
giving the first-order expansion of f0 at x̄, the optimality condition in Theorem
7 is equivalent to saying that l(x) ≥ l(x̄) for all x ∈ C, or in other words, that l

attains its global minimum over C at x̄.
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Convex functions on convex sets: The convexity of a function f on IRn has already
been defined in terms of the inequality f

(
(1− τ)x0 + τx1

)
≤ (1− τ)f(x0) + τf(x1)

holding for all x0 and x1 in IRn and τ ∈ (0, 1). The concept can be generalized now
to the convexity of f on a convex set C ⊂ IRn: the same inequality is used, but
x0 and x0 are restricted to C. Similarly one speaks of f being strictly convex, or
concave, or strictly concave on C. (Note that for these concepts to make sense f

only has to be defined on C itself; values of f outside of C have no effect, because
the convexity of C ensures that the relevant points (1− τ)x0 + τx1 all belong to C.)

Derivative tests: The tests in Theorem 4 apply equally well to the convexity or strict
convexity of a differentiable function f on any open convex set O ⊂ IRn.

Convexity-preserving operations: Derivative tests are by no means the only route to
verifying convexity or strict convexity. Often it’s easier to show that a given function
is convex because it is constructed by convexity-preserving operations from other
functions, already known to be convex (or, as a special case, affine). The following
operations are convexity-preserving on the basis of elementary arguments using the
definition of a convexity. Here C denotes a general convex set.

Sums: If f1 and f2 are convex functions on C, then so is f1+f2. (This can be extended
to a sum of any number of convex functions.) Moreover, if one of the functions
in the sum is strictly convex, then the resulting function is strictly convex.

Multiples: If f is convex on C and λ ≥ 0, then λf is convex on C. (In combination
with the preceding, this implies that any linear combination λ1f1 + · · ·+ λrfr of
convex functions with coefficients λi ≥ 0 is convex.) Again, if one of the functions
in the sum is strictly convex, and the associated coefficient is positive, then the
function expressed by the sum is strictly convex.

Compositions I: If f is convex on C, then any function of the form g(x) = θ
(
f(x)

)
is

convex on C, provided that the function θ on IR1 is convex and nondecreasing .

Example: If f is convex in IRn and f ≥ 0 everywhere, then the function g(x) :=
f(x)2 is convex on IRn, because g(x) = θ

(
f(x)

)
for θ defined by θ(t) = t2

when t ≥ 0, but θ(t) = 0 when t ≤ 0. This follows because θ is convex
and nondecreasing (the convexity can be verified from the fact that θ′(t) =
max{0, 2t}, which is nondecreasing). The tricky point is that unless f ≥ 0
everywhere it would not be possible to write f as composed from this θ.
Composition with θ(t) := t2 for all t wouldn’t do, because this θ, although
convex, isn’t nondecreasing as a function on all of IR1.
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Compositions II: If f is convex on C, then g(x) := f(Ax + b) is convex on D :={
x

∣∣ Ax− b ∈ C
}

for any matrix A ∈ IRn×n and vector b ∈ IRn.

Pointwise max: If fi is convex on C for i = 1, . . . , r, then so too is the function f

given by f(x) = max
{
f1(x), . . . , fr(x)

}
. If every fi is strictly convex on C, then

f is strictly convex on C.

Level sets of convex functions: If f is a convex function on IRn, then for any α ∈ IR

the sets
{
x

∣∣ f(x) ≤ α
}

and
{
x

∣∣ f(x) < α
}

are convex. (Similarly, if f is a concave
function the sets

{
x

∣∣ f(x) ≥ α
}

and
{
x

∣∣ f(x) > α
}

are convex.)

Argument: Let C be such a level set for f and α, and suppose x0 and x1 are any
two different points in C. Let λ ∈ (0, 1). From the convexity of f and the
assumption that f(x0) ≤ α and f(x1) ≤ α, we have

f
(
(1− τ)x0 + λx1

)
≤ (1− τ)f(x0) + τf(x1) ≤ (1− τ)α + τα = α

and therefore (1− τ)x0 + τx1 ∈ C. The case of strict inequality is similar.

Convex constraints: A convex constraint is a condition of the form fi(x) ≤ ci with fi

convex, or fi(x) ≥ ci with fi concave, or fi(x) = ci with fi affine. Also, a condition
of the form x ∈ X is called a convex constraint if X is convex. Thus, a system of the
form

x ∈ X and fi(x)
{
≤ 0 for i = 1, . . . , s,
= 0 for i = s + 1, . . . ,m,

is a system of convex constraints when X is convex, fi is convex for i = 1, . . . , s, and
fi is affine for i = s + 1, . . . ,m. Any set C defined by a system of convex constraints

is a convex set, because each separate constraint requires x to belong to a certain
convex set, and C is the intersection of these sets.

Convex programming: An optimization problem in conventional format is called a
convex programming problem if the constraints are convex, as just described, and
also the objective function f0 is convex.

Extension: This term is also used even if the objective and inequality constraint
functions aren’t convex all of IRn, as long as they are convex on the convex
set X. The feasible set C is still convex in that case.
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Linear programming: This has been defined already, but we can now interpret it as the
case of convex programming where the objective function and all the constraint
functions are actually affine, and the set X is a box.

Quadratic programming: This too is a special case of convex programming; it is just
like linear programming, except that the objective function can include a positive
semidefinite quadratic term.

THEOREM 8 (special characteristics of convex optimization). In a problem of

minimizing a convex function f0 over a convex set C ⊂ IRn (and thus any problem of

convex programming) the following properties hold.

(a) (local is global) Any locally optimal solution is a globally optimal solution. More-

over, the set of all optimal solutions (if any) is convex.

(b) (uniqueness criterion) Strict convexity of the objective function f0 implies there

cannot be more than one optimal solution.

Proof. (a) Suppose the point x̄ ∈ C is locally optimal, i.e., there is an ε > 0 such that
f0(x) ≥ f0(x̄) for all x ∈ C satisfying |x − x̄| < ε. Suppose also that x̃ ∈ C, x̃ 6= x̄. Our
aim is to show that f0(x̃) ≥ f0(x̄), thereby establishing the global optimality of x̄ relative
to C. For any τ ∈ (0, 1) we know that f0

(
(1 − τ)x̄ + τ x̃

)
≤ (1 − τ)f0(x̄) + τf0(x̃). By

choosing τ small enough, we can arrange that the point xτ := (1 − τ)x̄ + τ x̃ (which still
belongs to C by the convexity of C) satisfies |xτ− x̄| < ε. (It suffices to take τ < ε/|x̃− x̄|.)
Then the left side of the convexity inequality, which is f0(xτ ), cannot be less than f0(x̄) by
the local optimality of x̄. We deduce that f0(x̄) ≤ f0(xτ ) ≤ (1− τ)f0(x̄) + τf0(x̃), which
from the outer terms, after rearrangement, tells us that f0(x̄) ≤ f0(x̃), as needed.

Having determined that x̄ is globally optimal, we can apply the same argument for
arbitrary τ ∈ (0, 1), without worrying about any ε. If x̃ is another optimal solution, of
course, we have f0(x̃) = f0(x̄), so that the right side of the double inequality f0(x̄) ≤
f0(xτ ) ≤ (1− τ)f0(x̄) + τf0(x̃) reduces to f0(x̄) and we can conclude that f0(xτ ) = f0(x̄)
for all τ ∈ (0, 1). In other words, the entire line segment joining the two optimal solutions
x̄ and x̃ must consist of optimal solutions; the optimal set is convex.

(b) Looking at the displayed inequality in the first part of the proof of (a) in the case
where f0 is strictly convex, and x̃ is again just any point of C different from the optimal
solution x̄, we get strict inequality. This leads to the conclusion that f0(x̄) < f0(x̃). It’s
impossible, therefore, for x̃ to be optimal as well as x̄.
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Convexity in estimating progress toward optimality: Another distinguishing fea-
ture of optimization problems of convex type is that in numerical methods for solv-
ing such problems it’s usually possible to devise tests of how close one is getting
to optimality—global optimality—as the method progresses. By contrast, for most
other kinds of optimization problems one has hardly any handle on this important
issue, and the question of a stopping criterion for an iterative procedure can only be
answered in an ad hoc manner.

Upper and lower bounds on the optimal value: A simple example of the kind of esti-
mate that can be built into a stopping criterion can be derived from the lineariza-
tion inequality for convex functions in Theorem 4. Consider a problem of min-
imizing a differentiable convex function f0 over a nonempty, closed set C ⊂ IRn

that’s also bounded, and imagine that a numerical method has generated in iter-
ation ν a point xν ∈ C. The affine function lν(x) = f0(xν) +

〈
∇f0(xν), x− xν

〉
has the property that lν(x) ≤ f0(x) for all x, and lν(xν) = f0(xν). It follows that

min
x∈C

lν(x) ≤ min
x∈C

f0(x) ≤ f0(xν),

where the middle expression is the optimal value ᾱ in the given problem, but the
left expression, let’s denote it by βν , is the optimal value in the possibly very
easy problem of minimizing lν instead of f0 over C. If C were a box, for instance,
βν could instantly be calculated. While βν furnishes a current lower bound to ᾱ,
the objective value αν = f0(xν) furnishes a current upper bound. The difference
αν − βν provides a measure of how far the point xν is from being optimal.

Duality: Optimization in a context of convexity is distinguished further by a pervasive
phenomenon of “duality,” in which a given problem of minimization ends up being
paired with some problem of maximization in entirely different “dual” variables.
Many important schemes of computation are based on this curious fact, or other
aspects of convexity. In particular, almost all the known methods for breaking a
large-scale problem down iteratively into small-scale problems, which perhaps could
be solved in parallel, require convexity in their justification. This topic will be taken
up later, after Lagrange multipliers for constraints have been introduced.
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Minimization of nonsmooth convex functions: Not every convex function of interest
in optimization is continuously differentiable.

Piecewise linear costs: Cost functions of a single variable often take the form of piece-
wise linear functions with increasing slope values. Such functions are convex.
Specifically, suppose that a closed interval C ⊂ IR1 is partitioned into a finite
sequence of closed subintervals C1, C2, . . . , Cr, and that the function f : C → IR

is given on these subintervals by expressions

f(x) = aix + bi when x ∈ Ci,

where the formulas agree at the joins of the consecutive intervals (so that f is
continuous), and a1 ≤ a2 ≤ · · · ≤ ar. Then f is convex on C by the criterion for
“pointwise max.” In fact it can be seen in the given circumstances that

f(x) = max
{
a1x + b1, . . . , arx + br

}
for all x ∈ C.

Piecewise linear approximations: A smooth convex function f on IRn can be ap-
proximated from below by a nonsmooth convex function in a special way. We’ve
already noted in connection with obtaining lower bounds on the optimal value in a
problem of minimizing a convex function that the linearization (first-order Taylor
expansion) of f at any point provides an affine lower approximation which is exact
at the point in question. That degree of approximation is crude in itself, but imagine
now what might be gained by linearizing f at more than one point. Specifically,
consider a collection of finitely many points xk, k = 1, . . . , r, and at each such point
the corresponding affine function obtained by linearization, namely

lk(x) = f(xk) +
〈
∇f(xk), x− xk

〉
.

The function g(x) = max{l1(x), . . . , lr(x)}, which is convex on IRn (because the
pointwise max of finitely many convex functions is always convex), and it satisfies

g(x) ≤ f(x) for all x, with g(xk) = f(xk) for k = 1, . . . , r.

The convex function g is termed “piecewise linear” because its epigraph, as the
intersection of the epigraphs of the lk’s, each of which is an upper closed half-space
in IRn+1, is a polyhedral subset of IRn+1.
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Cutting plane methods: An interesting class of numerical methods in convex pro-
gramming relies on replacing the objective function and the inequality constraint
functions, to the extent that they aren’t merely affine, by such piecewise linear
approximations. The finite collection of points in IRn on which the approxima-
tions are based is generated as the iterations proceed. These methods are called
cutting plane methods because each new affine function entering one of the ap-
proximations cuts away part of the epigraph from the proceeding approximation.

Remark: Cutting plane methods tend to be quite slow in comparison with typical
descent methods, but they are useful nonetheless in a number of situations
where for some reason it’s tedious or expensive to generate function values
and derivatives, and approaches requiring line search are thereby precluded.

Minimizing a max of convex functions: In problems where a function of the form
f0(x) = max{g1(x), . . . , gr(x)} is to be minimized over a set C specified by con-
vex constraints, the case where each function gk is convex and smooth is especially
amenable to treatment. Then f0 is convex, and although it isn’t smooth itself the
usual device of passing to an epigraphical formulation retains convexity while bring-
ing the smoothness of the gk’s to the surface. When an extra variable u is added,
and the problem is viewed as one of minimizing the value of u over all choices of
(x1, . . . , xn, u) ∈ C × IR such that gk(x1, . . . , xn) − u ≤ 0 for k = 1, . . . , r, it is seen
that all constraints are convex.

Minimizing a max of affine functions over a polyhedral set: As a special case, if C

is polyhedral and the functions gk affine in the foregoing, the set C × IR will be
polyhedral and the constraints gk(x1, . . . , xn)−u ≤ 0 are linear. In expressing C

itself by a system of linear constraints, one sees that reformulated problem isn’t
just one of convex programming, but of linear programming.

Application to cutting plane methods: The subproblems generated in the cutting
plane scheme of piecewise linear approximation, as described above, can, after
epigraphical reformulation, be solved as linear programming problems if the
set over which f0 is to be minimized is specified by linear constraints. More
generally such a reduction to a solving a sequence of linear programming
problems is possible even if C is specified just by convex constraints over a box
X, as long as the convex functions giving inequality constraints are smooth.
The extension to this case involves generating piecewise linear approximations
to those functions fi along with the one to f0 as computations proceed.
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Norms: As another reminder that derivative tests aren’t the only route to verifying
convexity, consider any norm on IRn, that is, a real-valued expression ‖x‖ with the
following properties, which generalize those of the Euclidean norm |x|.

(a) ‖x‖ > 0 for all x 6= 0,

(b) ‖λx‖ = |λ|‖x‖ for all x and all λ,

(c) ‖x + y‖ ≤ ‖x‖+ ‖y‖ for all x and y.

The function f(x) = ‖x‖ is convex, because for 0 < τ < 1 we have

f
(
(1− τ)x0 + τx1

)
=

∥∥(1− τ)x0 + τx1

∥∥
≤ (1− τ)‖x0‖+ τ‖x1‖ = (1− τ)f(x0) + τf(x1).

Commonly seen in problems of approximation are the lp-norms for p ∈ [1,∞]: for a
point x = (x1, . . . , xn) ∈ IRn, one defines

‖x‖1 := |x1|+ · · ·+ |xn|,

‖x‖p :=
(
|x1|p + · · ·+ |xn|p

)1/p

with 1 < p < ∞ (where ‖x‖2 = |x|),

‖x‖∞ := max
{
|x1|, . . . , |xn|

}
.

We won’t try here to verify that these expressions do indeed give norms, i.e., that they
satisfy the three axioms above, although this is elementary for p = 1 and p = ∞.

Example: Consider a parameter identification problem in which we wish to minimize
an error expression of the form

E
(
r(a, b)

)
=

∥∥∥(
r1(a, b), . . . , rN (a, b)

)∥∥∥
p

with rk(a, b) := yk − (axk + b) for k = 1, . . . , N . (The unknowns here are the two
parameter values a and b.) This expression is convex as a function of a and b,
because it is obtained by composing an lp-norm with an affine mapping.

Piecewise linear norms: The functions f(x) = ‖x‖1 and f(x) = ‖x‖∞ are piecewise
linear, in that each can be expressed as the pointwise max of a finite collection of
affine (in fact linear) functions. Specifically, in terms of the vectors ej ∈ IRn

having coordinate 1 in jth position but 0 in all other positions, ‖x‖1 is the
maximum of the n2 linear functions

〈
± e1 ± e2 · · · ± en, x

〉
, whereas ‖x‖∞ is

the maximum of the 2n linear functions
〈
±ej , x

〉
. In contrast, the norm function

f(x) = ‖x‖2 = |x| can usually be treated in terms of its square, which is a simple
quadratic convex function.
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