
3. UNCONSTRAINED MINIMIZATION

Many of the complications encountered in problems of optimization are due
to the presence of constraints, but even when there are no constraints a number of
important issues arise as to the nature of optimal solutions and the possible ways
they might be determined. In treating these issues in the case of a smooth objective
function, we will want to take full advantage of the properties incorporated into the
standard definition of differentiability for a function of n-variables.

Vector notation: The inner product (or dot product) of two vectors is the value

z · w = z1w1 + · · ·+ znwn for z = (z1, . . . , zn) and w = (w1, . . . , wn),

as we’ve already been using. In books with extensive linear algebra this is often
expressed instead by zT w under the convention that vectors are interpreted spe-
cial matrices—“column vectors”—unless the transpose operation (indicated by a
superscript T ) turns them into “row vectors.” Here we follow the typographi-
cally preferable pattern of always writing vectors horizontally but viewing them
as “column vectors” in formulas where they get multiplied by matrices.

Angles between vectors: When z 6= 0 and w 6= 0, one has z·w = |z||w| cos θ, where θ is
the angle between z and w (and |z| and |w| their lengths). Thus, z·w is positive,
zero, or negative according to whether the angle is acute, right, or obtuse.

Review of differentiability: The differentiability of a function f on IRn means more
than the existence of its first partial derivatives, which after all would just refer to
behavior along various lines parallel to the n coordinate axes. Rather, it’s a property
expressing the possibility of a kind of approximation of f (namely, “linearization”)
that is present regardless of any change of coordinates that might be introduced. For
our purposes here, we’ll avoid subtle distinctions by keeping to the mainstream case
where differentiability can be combined with continuity.

Continuous differentiability classes: A function f on IRn is continuously differen-
tiable, or of class C1, if its first partial derivatives exist everywhere and are contin-
uous everywhere. It’s twice continuously differentiable, or of class C2, if this holds
for second partial derivatives, and in general of class Ck its kth partial derivatives
exist and are continuous everywhere. Then actually f and all its partial derivatives
of orders less than k must be continuous as well.

Localization: Similarly one can speak of f as being a Ck function relative to some
open set, for instance an open neighborhood of some point x̄.
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Expansions: If f is of class C1 on a neighborhood of a point x̄ it has the first-order
expansion

f(x) = f(x̄) +∇f(x̄)·[x− x̄] + o
(
|x− x̄|

)
,

where the vector ∇f(x̄) has the partial derivatives (∂f/∂xj)(x̄) as its components
and is called the gradient of f at x̄. The classical “o(t)” notation refers to an error
term with the property that o(t)/t → 0 as t → 0. This notation is often confusing
to students, but really it is just a sort of code for writing down, in a manner deemed
more convenient, the assertion that

lim
x→x̄
x6=x̄

f(x)− f(x̄)−∇f(x̄)·[x− x̄]
|x− x̄|

= 0,

which says that the affine function l(x) = f(x̄)+∇f(x̄)·[x− x̄] furnishes a first-order
approximation f ≈ l at x̄. Likewise, if f is of class C2 on a neighborhood of x̄ it has
the second-order expansion

f(x) = f(x̄) +∇f(x̄)·[x− x̄] + 1
2 [x− x̄]·∇2f(x̄)[x− x̄] + o(|x− x̄|2),

where ∇2f(x̄) is the symmetric matrix with the partial derivatives (∂2f/∂xi∂xj)(x̄)
as its components and is called the Hessian of f at x̄. This time the “o” notation is
code for the assertion that

lim
x→x̄
x6=x̄

f(x)− f(x̄)−∇f(x̄)·[x− x̄]− 1
2 [x− x̄]·∇2f(x̄)[x− x̄]

|x− x̄|2
= 0.

The quadratic function q(x) = f(x̄) +∇f(x̄)·[x − x̄] + 1
2 [x − x̄]·∇2f(x̄)[x − x̄] then

furnishes a second-order approximation f ≈ q at x̄.

Vector-valued functions: A mapping, or vector-valued function, F : IRn → IRm with
F (x) =

(
f1(x), . . . , fm(x)

)
is of class Ck when its component functions fi are. As

long as F is of class C1 around x̄ it has the first-order expansion

F (x) = F (x̄) +∇F (x̄)[x− x̄] + o
(
|x− x̄|

)
,

where ∇F (x̄) is the m×n matrix with the partial derivatives (∂fi/∂xj)(x̄) as its
components and is called the Jacobian of F at x̄.

A connection: In the case of a function f of class C2 on a neighborhood of x̄, the
gradient mapping ∇f : x → ∇f(x) has Jacobian ∇(∇f)(x̄) = ∇2f(x̄) at x̄.
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Local information: For a C2 function f0 on IRn, the gradient ∇f0(x̄) and Hessian
∇2f0(x̄) provide information about f0 at x̄ = (x̄1, . . . , x̄n) which can well be put
to use in numerical methods for minimizing f0. The main idea is to consider what
happens to f0 along various lines through x̄. Any such line can represented para-
metrically as the set of points of the form x̄ + τw for −∞ < τ < ∞ for some vector
w 6= 0, The direction of w = (w1, . . . , wn) gives the direction of the line.

The values of f0 along such a line can be investigated parametrically through
the expression ϕ(τ) := f0(x̄ + τw), where ϕ(0) = f0(x̄). In particular, one can try
to minimize ϕ(τ) in τ , at least part way, in order to come up with a point x̄ + τw

yielding a lower value of f0 than does x̄. A crucial fact in this respect is that

ϕ′(0) =
d

dτ
f0(x̄ + τw)

∣∣∣
τ=0

= ∇f0(x̄)·w,

this being known as the directional derivative at f0 relative to w. By looking at the
sign of this quantity we can tell whether the values of f0 will go up or down as we
start to move away from x̄ in the direction of w. On the other hand, one has

ϕ′′(0) =
d2

dτ2
f0(x̄ + τw)

∣∣∣
τ=0

= w·∇2f0(x̄)w,

and this quantity can be crucial in determining second-order effects.

Descent vectors: A vector w is called a descent vector for f0 at x̄ if ∇f0(x̄)·w < 0.
This implies that the function ϕ(τ) = f0(x̄+τw) is a decreasing function on some
interval (−ε, ε), so that f0(x̄ + τw) < f0(x̄) for 0 < τ < ε. When the object is
to minimize f0, we therefore get an improvement in replacing x̄ by x̄ + τw for a
value τ > 0 that isn’t too large.

Stationary points: A point x̄ is stationary for f0 if ∇f0(x̄) = 0. This is equivalent to
the condition that ∇f0(x̄)·w = 0 for every vector w, and it thus means that no
descent vector exists at x̄.

A trap not to fall into: If x̄ minimizes f0, even just locally, there can’t exist a
descent vector at x̄, and thus ∇f0(x̄) = 0. But the converse is false: a station-
ary point doesn’t always provide a local minimum. This is obvious as soon
as attention is focused on it, since the one-dimensional case already provides
numerous examples, but many authors of articles applying mathematics to
physical sciences, economics and elsewhere, nonetheless slip up on it unthink-
ingly and draw wrong conclusions. Conditions that are sufficient for a local
or global minimum will be laid out in theorems below.

35



Optimality considerations: The conditions characterizing a local minimum of an un-
constrained function of a single variable in terms of first and second derivatives are
known to every student of calculus, but the analogs in higher dimensions are less
widely familiar. Since it is not possible beyond the one-dimensional case to speak
of a positive second derivative, because the second derivative has been replaced by
the Hessian matrix, the following standard notions of linear algebra come into play.
Recall that a matrix A ∈ IRn×n is

positive definite if w·Aw > 0 for all w 6= 0,

positive semidefinite if w·Aw ≥ 0 for all w.

THEOREM 3 (local optimality conditions without constraints). For a function

f0 : IRn → IR of class C2, consider the problem of minimizing f0 over all x ∈ IRn.

(a) (necessary condition). If x̄ is a locally optimal solution, then ∇f0(x̄) = 0 and

∇2f0(x̄) is positive semidefinite.

(b) (sufficient condition). If x̄ is such that ∇f0(x̄) = 0 and ∇2f0(x̄) is positive definite,

then x̄ is a locally optimal solution. In fact there is a δ > 0 such that

f0(x) > f0(x̄) for all points x with 0 < |x− x0| < δ.

Proof. (a) If x̄ is locally optimal for f0 on IRn, then in particular it will be true for
each choice of w ∈ IRn that the function ϕ(τ) := f0(x̄ + τw) has a local minimum at
τ = 0. Since ϕ′(0) = ∇f0(x̄)·w and ϕ′′(0) = w·∇2f0(x̄)w, as noted earlier, we conclude
that ∇f0(x̄)·w = 0 for every w ∈ IRn and w·∇2f0(x̄)w ≥ 0 for every w ∈ IRn. This means
that ∇f0(x̄) = 0 and ∇2f0(x̄) is positive semidefinite.

(b) The reverse argument is more subtle and can’t just be reduced to one dimension,
but requires utilizing fully the second-order expansion of f0 at x̄. Our assumptions give
for A := ∇2f0(x̄) that f0(x) = f0(x̄) + 1

2 [x − x̄]·A[x − x̄] + o
(
|x − x̄|2

)
. According to the

meaning of this, we can find for any ε > 0 a δ > 0 such that∣∣f0(x)− f0(x̄)− 1
2 [x− x̄]·A[x− x̄]

∣∣
|x− x̄|2

< ε when 0 < |x− x̄| < δ,

and in particular,

f0(x)− f0(x̄) > 1
2 [x− x̄]·A[x− x̄]− ε|x− x̄|2 when 0 < |x− x̄| < δ.

Because A is positive definite, the expression 1
2w·Aw is positive when w 6= 0; it depends

continuously on w and therefore achieves its minimum over the closed, bounded set con-
sisting of the vectors w with |w| = 1 (the unit sphere in IRn). Denoting this minimum by

36



λ, we have λ > 0 and 1
2 [τw]·A[τw] ≥ λτ2 for all τ ∈ IR when |w| = 1. Since any difference

vector x − x̄ 6= 0 can be written as τw for τ = |x − x̄| and w = [x − x̄]/|x − x̄|, we have
1
2 [x− x̄]·A[x− x̄] ≥ λ|x− x̄|2 for all x. The estimate from twice differentiability then yields

f0(x)− f0(x̄) > (λ− ε)|x− x̄|2 when 0 < |x− x̄| < δ.

Recalling that ε could have been chosen arbitrarily small, in particular in the interval
(0, λ), we conclude that there’s a δ > 0 such that f0(x) > f0(x̄) when 0 < |x − x̄| < δ.
Thus, f has a local minimum at x̄.

Local versus global optimality: Because the results in Theorem 3 relate only to the
properties of f0 in some neighborhood of x̄, and give no estimate for the size of
that neighborhood (it might be tiny, for all we know), an important question is left
unanswered. How can we tell whether a given point x̄ furnishes a global minimum
to f0? The best approach to answering this question, and to some extent the only
one, is through the concept of convexity.

Convex functions: A function f on IRn is convex if for every choice of points x0 and
x1 with x0 6= x1, and every choice of τ ∈ (0, 1), one has

f
(
(1− τ)x0 + τx1

)
≤ (1− τ)f

(
x0

)
+ τf

(
x1

)
for all τ ∈ (0, 1).

Interpretation: The expression x(τ) := (1−τ)x0+τx1 = x0+τ(x1−x0) parameterizes
the line through x0 in the direction of w = x1−x0, with x(0) = x0 and x(1) = x1.
When 0 < τ < 1, x(τ) is an intermediate point on the line segment joining x0

with x1, specifically the point reached in moving the fraction τ of the distance
from x0 to x1 along this segment. The inequality says that the value of f at this
intermediate point doesn’t exceed the interpolated value obtained by going the
fraction τ of the way from the value f(x0) to the value f(x1) (whichever direction
that might involve, depending on which of the two values might be larger).

Relativization to lines: Since the condition involves only three collinear points at
a time, we have the principle that f is convex on IRn if and only if for every

line L in IRn, f is convex relative to the L; in fact, instead of lines it would
be enough to speak of line segments. Here a line is a set of points in IRn that
can be expressed as

{
x + τw

∣∣ −∞ < τ < ∞
}

for some x and w with w 6= 0,
whereas a line segment is the same thing but with 0 ≤ τ ≤ 1.
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Related properties: A function f is

strictly convex: if the inequality always holds with <,

concave: if the inequality always holds with ≥,

strictly concave: if the inequality always holds with >.

Affine functions as an example: It can be shown that f is affine on IRn, as already
defined, if and only if f is simultaneously convex and concave.

Jensen’s inequality: The definition of convexity implies more generally that for any
points xk and weights λk ≥ 0 for k = 0, 1, . . . , p with

∑p
k=0 λk = 1, one has

f
(
λ0x0 + λ1x1 + · · ·+ λpxp

)
≤ λ0f

(
x0

)
+ λ1f

(
x1

)
+ · · ·+ λpf

(
xp

)
.

Tests for convexity using derivatives: The following facts help in identifying ex-
amples of convex functions that are differentiable. Later there will be other tactics
available, which can be used to assertain the convexity of functions that have been
put together in certain ways from basic functions whose convexity is already known.

Monotonicity of first derivatives in one dimension: For f differentiable on IR,

f is convex ⇐⇒ f ′ is nondecreasing,

f is strictly convex ⇐⇒ f ′ is increasing,

f is concave ⇐⇒ f ′ is nonincreasing,

f is strictly concave ⇐⇒ f ′ is decreasing,

f is affine ⇐⇒ f ′ is constant.

Incidentally, these generalize also to functions of a single variable that merely have
a right derivative and a left derivative at every point. For instance, a piecewise
linear cost function is convex if and only if the slope values for consecutive pieces
form an increasing sequence. Also as first derivative conditions,

f is convex ⇐⇒ f(y) ≥ f(x) + f ′(x)(y − x) for all x and y,

f is strictly convex ⇐⇒ f(y) > f(x) + f ′(x)(y − x) for all x and y, x 6= y.

Signs of second derivatives in one dimension: For f twice differentiable on IR,

f is convex ⇐⇒ f ′′(x) ≥ 0 for all x,

f is strictly convex ⇐= f ′′(x) > 0 for all x.
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Notice that the final condition is not an equivalence but only an implication in
one direction! An example is f(x) = x4, with f ′′(x) = 12x2. This function is
strictly convex on IR because f ′(x) = 4x3 is an increasing function. But f ′′(x)
fails to be positive everywhere: f ′′(0) = 0.

THEOREM 4 (derivative tests for convexity in higher dimensions). For a twice

differentiable function f on IRn,

f is convex ⇐⇒ f(y) ≥ f(x) +∇f(x)·[y − x] for all x and y,

f is strictly convex ⇐⇒ f(y) > f(x) +∇f(x)·[y − x] for all x and y, x 6= y,

f is convex ⇐⇒ ∇2f(x) is positive semidefinite for all x,

f is strictly convex ⇐= ∇2f(x) is positive definite for all x.

Proof. The trick in every case is to reduce to the corresponding one-dimensional criterion
through the principle that f has the property in question if and only if it has it relative
to every line segment. The first of the conditions will suffice in illustrating this technique.
To say that f is convex is to say that for every choice of points x0 and x1 with x0 6= x1

the function ϕ(τ) := f
(
(1 − τ)x0 + τx1

)
= f

(
x0 + τ(x1 − x0)

)
is convex on the interval

(0, 1). From the chain rule one calculates that

ϕ′′(τ) = w·∇2f(x)w for x = (1− τ)x0 + τx1, w = x1 − x0.

The convexity of f is thus equivalent to having w·∇2f(x)w ≥ 0 for every possible choice
of x and w 6= 0 such that x is an intermediate point of some line segment in the direction
of w. This holds if and only if ∇2f(x) is positive semidefinite for every x. The arguments
for the other three conditions are very similar in character.

Local strict convexity: A function f is strictly convex locally around x̄ if the strict
convexity inequality holds over the line segment joining x0 and x1 whenever these
points lie within a certain neighborhood of x̄. The proof of Theorem 3 show that
for this to be true in the case of a function f of class C2 it suffices to have the
Hessian ∇2f(x) be positive definite at all points x in some neighborhood of x̄.
In fact it suffices to have ∇2f(x̄) itself be positive definite, because any matrix
having entries close enough to those of a positive definite matrix must likewise be
positive definite, and here the entries of ∇2f(x) depend continuously on x. (The
stability of positive definiteness under perturbations follows from identifying the
positive definiteness of a matrix A with the positivity of the function q(w) = w·Aw

on the compact set consisting of the vectors w with |w| = 1.)
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Tests of positive definiteness: For a symmetric matrix A ∈ IRn×n there are many
tests of whether A is positive definite or positive semidefinite, as may be found
in texts on linear algebra, but they aren’t always easy to apply. Computer tests
are available as well. Perhaps the main thing to remember is that any symmetric
matrix A is similar to a diagonal matrix having as its diagonal entries the n

eigenvalues of A (with multiplicities). Positive definiteness holds if and only if all
the eigenvalues are positive, whereas positive semidefiniteness holds if and only
of all the eigenvalues are nonnegative.

Two-dimensional criterion: Positive definiteness implies that both the determinant
of A and the trace of A (the sum of the diagonal entries of A) are positive.
When n = 2 the converse holds as well, although not when n > 2.

Consequences of convexity in unconstrained minimization:

Global optimality of stationary points: For a C1 function f0 on IRn that’s convex, the
condition ∇f0(x̄) = 0 implies that x̄ gives the global minimum of f0 on IRn.

Argument: Convexity implies by Theorem 4 that f0(x) ≥ f0(x̄) +∇f0(x̄)·[x − x̄]
for all x. When ∇f0(x̄) = 0, this reduces to having f0(x) ≥ f0(x̄) for all x.

Uniqueness from strict convexity: If a strictly convex function f0 has its minimum at
x̄, then x̄ is the only point where f0 has its minimum. In fact, for this conclusion
it’s enough that f0 be a convex function that’s strictly convex locally around x̄.

Argument: If there were another point x̂ where f0 had its minimum value, say
α, the intermediate points xτ = (1 − τ)x̄ + τ x̂ for τ ∈ (0, 1) would have
f0(xτ ) ≤ (1 − τ)f0(x̄) + τf0(x̂) = (1 − τ)α + τα = α, hence f0(xτ ) = α,
since nothing lower than α is possible. Then f0 would be constant on the line
segment joining x̄ and x̂, so it couldn’t be strictly convex any portion of it.

Convexity of quadratic functions: If f(x) = 1
2x·Ax + b·x + c for a symmetric matrix

A ∈ IRn×n, a vector b ∈ IRn, and a constant c ∈ IR, we have ∇f(x) = Ax + b and
∇2f(x) = Ax for all x. Therefore, such a function is convex if and only if A is
positive semidefinite. It is strictly convex if and only if A is positive definite. This
second assertion doesn’t fully follow from the second-order condition in Theorem 4,
which only gives the implication in one direction, but it can be deduced from the
first-order condition for strict convexity.

Minimizing a quadratic function: A quadratic function can’t attain its minimum any-
where if it isn’t a convex function. It attains its minimum at a unique point if
and only if it’s strictly convex—with positive definite Hessian.
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Argument: If a quadratic function q attains its minimum at a point x̄, its Hessian
at x̄ must be positive semidefinite by Theorem 3. But, because it’s quadratic,
q has this same Hessian at every point. Then by Theorem 4, q is convex. If
the Hessian matrix is A, the fact that the gradient of q at x̄ is 0 means we
have the expansion q(x) = q(x̄) + 1

2 [x − x̄]·A[x − x̄]. Under the assumption
that the minimum is attained uniquely at x̄ there can’t be a vector x− x̄ 6= 0
such that A[x − x̄] = 0. Then A is nonsingular. But from linear algebra, a
positive semidefinite matrix is nonsingular if and only if it’s positive definite.
Then q is strictly convex by Theorem 4.

Conversely, if q has Hessian A, it has the expression q(x) = 1
2x·Ax+b·x+c

for b = ∇q(0) and c = q(0). If A is positive definite there is a λ > 0 such
that 1

2x·Ax ≥ λ|x|2 for all x, by reasoning given in the proof of part of
Theorem 3(b). Then |q(x)| ≥ λ|x|2 − |b||x| − |c|, so that for any ρ > 0 the
norms |x| of the vectors in the level set

{
x

∣∣ q(x) ≤ ρ
}

all lie in the interval{
t
∣∣ λt2 − |b|t − [c + ρ] ≤ 0

}
, which is bounded because of λ being positive.

These level sets are therefore all bounded, so the problem of minimizing q is
well posed and by Theorem 1 has a solution.

Applications to numerical optimization: Most numerical methods for the uncon-
strained minimization of a twice continuously differentiable function rely at least
to some degree on the facts we’ve been developing. Here, for purposes of illustra-
tion, we’ll look at some of the most popular approaches based on utilization of local
information.

Descent methods: A large class of methods for minimizing a smooth function f0 on IRn

fits the following description. A sequence of points xν such that f0(x0) > f0(x1) >

· · · > f0(xν) > f0(xν+1) > · · · is generated from a chosen starting point x0 by
selecting, through some special scheme in each iteration, a descent vector wν and a
corresponding value τν > 0, called a step size, such that f0(xν + τνwν) < f0(xν).
The improved point xν + τνwν is taken to be xν+1.

Of course, if in a given iteration no descent vector exists at all, this means
that ∇f0(xν) = 0. In that case the method terminates with x̄ = xν as a stationary
point. Usually, however, an infinite sequence {xν}∞ν=1 is generated, and the question
for analysis is whether this is an optimal sequence, or more soberly in the nonconvex
case, at least a sequence for which every cluster point x̄ is a stationary point.
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Line search: One way to choose a step size τν yielding f0(xν + τνwν) < f(xν)
is to execute some kind of line search in the direction of wν , which refers to
an exploration of the values of f0 along the half-line emanating from xν in the
direction of wν . In the notation ϕν(τ) := f(xν + τwν) we have (ϕν)′(0) < 0, and
the task is to select a value τν > 0 such that ϕν(τν) < ϕν(0), yet not one so
small that progress might stagnate.

Exact line search: An approach with natural appeal is to choose τν to be a value
of τ that minimizes ϕν on the interval [0,∞). Techniques are available for
carrying out the one-dimensional minimization of ϕν to whatever accuracy
is desired, at least when f0 is convex. Of course, in numerical work hardly
anything is really “exact.”

Backtracking line search: Professional opinion now favors a different approach,
which depends on a choice of parameters β and γ with 0 < β < γ < 1.
Calculating the first integral power κ ≥ 0 such that

[
ϕν(γκ) − ϕν(0)

]
/γκ <

−β(ϕν)′(0), one sets τν = γκ ∈ (0, 1]. (Such a κ exists, because γκ → 0 as
κ →∞, while

[
ϕν(τ)− ϕν(0)

]
/τ tends to (ϕν)′(0) < 0 as τ decreases to 0.)

Example: Cauchy’s method (“steepest descent”)

A descent method can be obtained by choosing wν = −∇f0(xν) in every iteration
(as long as this vector is nonzero), since ∇f0(xν)·wν = −

∣∣∇f0(xν)|2 < 0 unless
∇f0(xν) = 0. One speaks then of following the direction of steepest descent , because
of all the vectors w with |w| = 1, the one giving the lowest (i.e., most negative) value
to the directional derivative∇f0(xν)·w is w = −∇f0(xν)/|∇f0(xν)|. (In backtracking
line search, one takes the latter vector as wν instead of −∇f0(xν).)

Example: Newton’s method in optimization

From the definition of twice differentiability we know that the quadratic function

qν(x) := f0(xν) +∇f0(xν)·[x− xν ] + 1
2 [x− xν ]·∇2f0(xν)[x− xν ]

(whose Hessian everywhere is A = ∇2f0(xν)) furnishes a second-order local approx-
imation of f0 around xν . This suggests that by investigating the minimum of qν(x)
we can learn something about where to look in trying to minimize f0. Specifically,
assume that qν(x) attains its minimum at a unique point different from xν , this point
being denoted by x̂ν ; then x̂ν 6= xν , and qν(x̂ν) < qν(xν) = f(xν). (From the above,
this is equivalent to assuming that the matrix ∇2f(xν) is positive definite, hence in
particular nonsingular, while the vector∇f(xν) isn’t 0.) The vector wν = x̂ν−xν 6= 0
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is then called the Newton vector for f0 at x̄. It satisfies

wν = −∇2f0(xν)−1∇f0(xν).

It is a descent vector, and descent methods based on using it are called versions of
Newton’s method in optimization.

Argument: Because x̂ν minimizes ∇qν(x̂ν), it must be a stationary point of qν :

0 = ∇qν(x̂ν) = ∇f0(xν) +∇2f0(xν)[x̂ν − xν ] = ∇f0(xν) +∇2f0(xν)wν .

In solving this equation for wν , utilizing our assumption, which implies that
the inverse matrix ∇2f0(xν)−1 exists, we get the formula claimed. To verify
that wν is then a descent vector, observe that because qν(x̂ν) < qν(xν) we have
∇f0(xν)·wν + 1

2wν·∇2f0(xν)wν < 0. We wish to conclude that ∇f0(xν)·wν <

0. If this weren’t true, we’d have to have from the preceding inequality that
wν·∇2f0(xν)wν < 0. But this would contradict the positive definiteness of
∇2f0(xν), which was observed to follow from our assumption about qν attaining
its minimum at a unique point.

Relation to Newton’s method for equation solving: Newton’s method in classical form
refers not to minimizing a function but solving an equation F (x) = 0 for a smooth
mapping F : IRn → IRn. In principle, a sequence {xν}ν∈IN is generated from an
initial point x0 as follows. In iteration ν, the given equation is replaced by its
first-order approximation F (xν) + ∇F (xν)(x − xν) = 0. The unique solution
to this approximate equation is x̂ν = −∇F (xν)−1F (xν), as long as the inverse
matrix ∇F (xν)−1 exists, and one takes xν+1 = x̂ν .

Newton’s method in optimization corresponds closely to the case of this where
F (x) = ∇f0(x). It resembles applying the classical form of Newton’s method to
solving the equation ∇f0(x) = 0. But it differs in not just automatically taking
xν+1 = x̂ν = xν + wν but xν+1 = xν + τνwν for some step size τν determined
through a form of line search.

Effectiveness and validation of descent methods: Describing an approach to min-
imizing a function, or for that matter solving a vector equation, is a far cry from
establishing the circumstances in which it can be counted upon to work effectively,
or providing an analysis that helps comparison with other approaches. For such pur-
poses it is essential at the very least to make use of the conditions characterizing a
point at which a minimum occurs as well as, in some situations aspects of convexity.
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Convergence questions: The theory of numerical methods of optimization and why
(or whether) they work is full of ingenious ideas and pleasing geometry, as well as
rigorous, technical developments. For a small taste of what it involves, let’s consider
more closely the question of whether a descent method (with a particular scheme for
choosing decent vectors and executing line searches) for the unconstrained minimiza-
tion of a function f0 generates a sequence of points xν that in some way “solves” the
problem. Any such method does generate a decreasing sequence of function values
f0(x0) > f0(x1) > f0(x2) . . ., and any decreasing sequence of real numbers does have
a limit α ∈ IR, but unfortunately α could fall short of furnishing the optimal value
in the problem unless f0 has certain rather special properties. Nonetheless we can
search for guidance on when a method can sensibly be implemented and what it
might accomplish even if it doesn’t determine an optimal or locally optimal solution.

Well posed problems: On the basis of the observation after Theorem 1, an uncon-
strained problem of minimizing f0 over IRn is well posed as long as f0 is continu-
ous and all its level sets

{
x

∣∣ f0(x) ≤ α
}

are bounded. Certainly f0 is continuous
when it’s differentiable, as in the descent methods we’ve been investigating. In
unconstrained minimization there’s no distinction between feasible and asymp-
totically feasible sequences (every sequences is such), nor any between optimal
and asymptotically optimal sequences. As long as the problem is well posed, we
know then from Theorem 2 that every optimal sequence is bounded, and all its
cluster points are optimal solutions. However, this doesn’t necessarily make it
easier to generate an optimal sequence.

THEOREM 5 (convergence of descent methods; exact line search). Consider

a well posed problem of minimizing a function f0 over IRn, with f0 not just continuous

but differentiable, and let S be the set of all stationary points of f0 (the points x̄ where

∇f0(x̄) = 0). Consider a descent method that starts from a point x0 and generates

subsequent points by exact line search relative to vectors wν determined by a formula

wν = D(xν) having the property that, for each x /∈ S with f0(x) ≤ f0(x0), D(x) is a

uniquely determined descent vector for f0 at x, and D(x) depends continuously on x.

(The method terminates if xν ∈ S.)

(a) If the method generates an infinite sequence {xν}∞ν=0 (by not attaining a point of

S in finitely many iterations), this sequence must be bounded, and all of its cluster points

must belong to S.

(b) If actually there is only one point x̄ ∈ S with f0(x̄) ≤ f0(x0), the sequence is indeed

optimal and converges to x̄, this being the unique optimal solution.
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Proof. In each iteration with xν /∈ S, the vector wν is well defined according to our
hypothesis, and it is not the zero vector (because it is a descent vector). We minimize
ϕν(τ) := f0(xν + τwν) over τ ∈ [0,∞) to get τν and then set xν+1 = xν + τνwν . This
line search subproblem is itself a well posed problem of optimization because the sets{
τ ≥ 0

∣∣ ϕν(τ) ≤ α
}

are all bounded by virtue of the level sets of f0 all being bounded.
Thus it does have an optimal solution τν (perhaps not unique) by Theorem 1.

From the definition of wν being a descent vector, we know moreover that f0(xν+1) <

f0(xν) always. Thus the sequence {f0(xν)}∞ν=1 is decreasing and therefore converges to
some value α. Also, the sequence {xν}∞ν=1 is contained in the set

{
x

∣∣ f0(x) ≤ f0(x0)
}
,

which by hypothesis is bounded. Consider any cluster point x̄ of this sequence; there is
a subsequence {xνκ}∞κ=1 such that xνκ → x̄ as κ → ∞. In particular we have f0(x̄) = α,
because f0 is continuous. We wish to show that x̄ ∈ S in order to establish (a).

Suppose x̄ /∈ S. Then the vector w̄ := D(x̄) is a descent vector for f0 at x̄, and the
vectors wνκ := D(xνκ) are such that wνκ → w̄ (by our assumption in (a) that the mapping
D specifying the method is well defined everywhere outside of S and continuous there).
Because w̄ is a descent vector, we know there is a value τ̄ > 0 such that

f0(x̄ + τ̄ w̄) < f0(x̄).

On the other hand, for each κ we know that f0(xνκ+1) = f0(xνκ +τνκwνκ) ≤ f0(xνκ +τ̄wνκ)
because τ̄ is one of the candidates considered in the minimization subproblem solved by
τνκ . Taking the limit in the outer expressions in this inequality, we get

α ≤ f0(x̄ + τ̄ w̄)

because f0(xν) → α, xνκ → x̄ and wνκ → w̄ (again utilizing the continuity of f0). This
result is incompatible with the fact that f0(x̄ + τ̄ w̄) < f0(x̄) = α. The contradiction
establishes (a).

The extra assumption in (b) gives the existence of a unique optimal solution to the
unconstrained minimization problem, because (1) an optimal solution exists by Theorem 1,
(2) any optimal solution must in particular belong to S by Theorem 3, and of course any
optimal solution must belong to the set

{
x

∣∣ f0(x) ≤ f0(x0)
}
. From (a), this optimal

solution x̄ is the only candidate for a cluster point of {xν}∞ν=1. As noted earlier, a bounded
sequence with no more than one cluster point must be convergent. Thus, xν → x̄ and, by
the continuity of f0, also f0(xν) → f0(x̄). Since f0(x̄) is the optimal value in the problem,
we conclude in this case that the sequence is optimal.
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Specializations: Particular applications of the convergence result in Theorem 5 are
obtained by considering various choices of the mapping D.

Cauchy’s method with exact line search: Under the assumption that f0 is a C1 func-
tion, so that f0(x) and ∇f0(x) depend continuously on x, let D(x) = −∇f0(x).
This is a descent vector as long as x is not a stationary point (cf. Example 1). The
assumptions of Theorem 5 are satisfied, and we can conclude that if all the level
sets

{
x

∣∣ f0(x) ≤ α
}

are bounded the method will generate a bounded sequence
{xν}∞ν=1, all of whose cluster points are stationary points of f0. If in addition f0

is convex, these stationary points give the global minimum of f0. In that case
the method has generated an optimal sequence {xν}∞ν=1.

Newton’s method with exact line search: Under the assumption that f0 is a C2 func-
tion, let D(x) denote the Newton vector under the condition that it is well defined
for every x /∈ S with f0(x) ≤ f0(x0); we’ve seen this is tantamount to ∇f0(x)2

being positive definite for all such x. Then D(x) = −∇2f0(x)−1∇f0(x), so D(x)
depends continuously on x (because if a nonsingular matrix varies continuously,
its inverse varies continuously, a fact derivable from determinant formulas for the
inverse). As long as the level sets

{
x

∣∣ f0(x) ≤ α
}

of f0 are bounded, so that the
problem is well posed, Theorem 5 is applicable and tells us that the method will
generate a bounded sequence {xν}∞ν=1, all of whose cluster points are stationary
points of f0. In fact, because of the positive definiteness of the Hessians, any
cluster point must be a locally optimal solution to the problem of minimizing f0,
due to Theorem 3(b). Around any such cluster point, f0 is strictly convex, so if
f0 is convex as a whole there can only be one cluster point, x̄, this being the only
point where f0 attains its minimum. Then the sequence {xν}∞ν=1 is optimal and
converges to x̄.

Comparison: Cauchy’s method works quite generally, but Newton’s method requires
positive definiteness of the Hessians and therefore local strict convexity. But
Newton’s method has a much better rate of convergence than Cauchy’s method:
typically Newton’s method converges quadratically , whereas Cauchy’s method
only converges linearly . We won’t go into the theory of that here, however.

Compromise: Because Cauchy’s method and Newton’s method have complementary
strengths and weaknesses, they are often combined in a single descent method
in which, roughly speaking, the Cauchy descent vector is used early on, but
eventually a switch is made to the Newton descent vector. In some versions, this
approach would likewise fit into Theorem 5 for a certain formula for D(x).
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Extensions: Various features of Theorem 5 can readily be generalized. For instance,
other forms of line search rather than exact line search can be handled. While we
won’t be treating this or rates of convergence here, two other directions of extension
deserve to be indicated.

Example: Quasi-Newton methods

These popular methods try to span between the properties of Cauchy’s method and
Newton’s method of optimization in an especially interesting way. They select the
direction vector by wν = −Aν∇f0(xν), where the matrix Aν , generated in each
iteration by some further rule, is symmetric and positive semidefinite. The case of
Aν = I gives Cauchy’s method, while the case of Aν = ∇2f0(xν)−1 (when this matrix
is positive definite) gives Newton’s method. For reasons already suggested, a simple
choice like the one for Cauchy’s method is favored as long as the current point is
considered likely to be far from the solution, in order to take advantage of the global
convergence properties of that method without making too many demands on the
function f0, but a choice approximating the one for Newton’s method is favored near
a locally optimal solution x̄ at which ∇2f0(x̄) is positive definite (cf. the sufficient
second-order optimality condition in Theorem 3(b)). A central question is how to
select and update Aν by gleaning information about second-derivative properties of
f0 that may be present in the computations carried out up to a certain stage. This
is a large topic in itself with many clever schemes that have been developed through
years of research.

Example: Trust region methods

Newton’s method obtains the descent vector wν from the fact that xν + wν is the
point that minimizes the quadratic function qν giving the local second-order approx-
imation to f0 at xν (cf. Example 2). This is a potential source of trouble, because,
as we have seen, qν doesn’t achieve a minimum at a unique point unless the Hes-
sian ∇f0(xν) is positive definite. Instead of minimizing qν over all of IRn, one can
minimize it over a certain bounded neighborhood Xν of xν , which is called a trust
region. In denoting a minimizing point by x̂ν and defining wν = x̂ν − xν , one gets
a descent vector wν . The trust region can in particular be specified by linear con-
straints, like upper and lower bounds on the variables to keep their values near the
component values in the current vector xν , and the subproblem for producing wν is
then one of quadratic programming . This idea can be hybridized with the one behind
quasi-Newton methods.
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Optimization versus equation solving: The equation ∇f0(x) = 0 is a first step
toward identifying points that minimize a smooth function f0. This leads to the
notion that solving an unconstrained optimization problem might be reduced to
solving a system of equations, which has some degree of merit, but tends to misguide
beginners, to whom equation-solving is a more familiar idea. The best approaches
to equation-solving are through optimization, rather than the other way around.

Linear equations: In numerical analysis, the solving of Ax = b when A is symmetric
and positive semidefinite (and possibly quite large) plays a big role. Such an
equation gives the condition that is both necessary and sufficient for the mini-
mization of the quadratic convex function f0(x) = 1

2x·Ax − b·x over IRn. Thus,
this branch of numerical analysis is in truth a branch of numerical optimization.

Linear least squares: The problem of solving a general system Ax = b when A is not
necessarily symmetric or positive semidefinite can be approached as the problem
of minimizing the function f(x) = 1

2 |Ax− b|2. This has the advantage of making
sense even when the system is overdetermined (more equations than unknowns),
as in applications to parameter identification from accumulated data; if a true
solution can’t be obtained, the problem focuses instead on finding a vector x

which minimizes an error expression for the difference between the two sides of
the desired equation. Here f is a convex function with

∇f0(x) = A∗[Ax− b], ∇2f0(x) ≡ A∗A (A∗ = transpose of A).

Thus, solving ∇f0(x) = 0 means solving A∗Ax = A∗b, where the matrix A∗A is
symmetric and positive semidefinite. This fits the pattern mentioned first.

Nonlinear least squares: An approach often taken to solving F (x) = 0 in the case of
a general smooth mapping F : IRn → IRn, with F (x) =

(
f1(x), . . . , fn(x)

)
, is to

translate it to optimization by a trick that’s always available:

minimize g(x) := 1
2 |F (x)|2 = 1

2f1(x)2 + · · ·+ 1
2fn(x)2 over all x ∈ IRn.

If the optimal value in this problem is 0, the optimal solutions are precisely the
solutions to F (x) = 0. On the other hand, if the optimal value is positive, there
are no solutions to F (x) = 0.

Criticism: While this device is often useful, it’s likely to be off-track when the
equation F (x) = 0 already corresponds to an optimization problem in the
sense that F = ∇f0 for some function f0, a circumstance that all too often
goes unrecognized along with its potential for a more direct approach.
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