
2. PROBLEM FORMULATION

To set the stage for solving a problem of optimization, it’s necessary first to formulate
it in a manner not only reflecting the situation being modeled, but so as to be amenable to
computational techniques. This raises a number of fundamental issues, which range from
the problem format to be adopted to criteria for when a problem is “well posed.”

Basic problem: Minimize a function f0 : IRn → IR, the objective function, over a
specified set C ⊂ IRn, the feasible set.

Max versus min: Maximizing a function g is equivalent to minimizing −g, so there’s
no loss of generality in concentrating on minimization. This is the convention in
much of optimization theory.

Solution concepts. Different things can be sought in a problem of optimization. The
following terms identify the main concepts.

Feasible solution: Any point x that belongs to C, regardless of the value it gives to
f0. Just finding such a point could be difficult numerically in cases where the
constraints are complicated or numerous, and indeed, the very existence of a
feasible solution may sometimes be an open question. This is just a first-level
solution concept, but important nevertheless.

Optimal solution: A point x̄ furnishing the minimum value of f0 over C, i.e., a feasible
solution such that f0(x̄) ≤ f0(x) for all other feasible solutions x. This is more
specifically what is called a globally optimal solution, when contrast must be made
with the next concept.

Locally optimal solution: A point x̄ ∈ C such that, for some neighborhood U of x̄,
one has f0(x̄) ≤ f0(x) for all x ∈ C ∩ U . Optimality in this case is asserted not
relative to C as a whole, but only relative to some sufficiently small ball around
x̄. In practice it may be very hard to distinguish whether a numerical method has
produced a globally optimal solution or just a locally optimal one, if that much.

Optimal set: The set of all (globally) optimal solutions (if any).

Optimal value: The greatest lower bound to the values of f0(x) as x ranges over C.
There may or may not be a point x̄ ∈ C at which f0 actually attains this value.
Furthermore, although the optimal value is always well defined, it could fail to
be finite. It is −∞ when f0 is not bounded below on C, and on the other hand,
it is ∞ by convention if C = ∅.
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Constraint manipulation: Constraints can be expressed in more than one way, and
some forms of expression may be more convenient in one context than another.

Function constraints: In conditions like fi(x) = ci, or fi(x) ≤ ci, or fi(x) ≥ ci, fi is
called a constraint function.

(1) An equality constraint fi(x) = ci can be expressed equivalently, if desired, as
a pair of inequality constraints: fi(x) ≤ ci and fi(x) ≥ ci.

(2) An inequality constraint fi(x) ≥ ci can be expressed also as −fi(x) ≤ −ci.

(3) An inequality constraint fi(x) ≤ ci can be expressed also as −fi(x) ≥ −ci.

(4) An inequality constraint fi(x) ≤ ci can be expressed as an equality constraint
fi(x) + si = ci involving an additional decision variable si, itself constrained
to be nonnegative. Such a variable is called a slack variable.

(5) Any constraint fi(x) = ci, or fi(x) ≤ ci, or fi(x) ≥ ci, can be expressed in
terms of gi(x) = fi(x)− ci as gi(x) = 0, or gi(x) ≤ 0, or gi(x) ≥ 0.

Abstract constraints: For methodological purposes it’s often convenient to represent
only some of the constraints in a problem in terms of constraint functions fi and
to lump the rest together in the abstract form x ∈ X.

For instance, a requirement on x = (x1, . . . , xn) that 0 ≤ x1 ≤ 1 could
be represented by two function constraints g1(x) ≥ 0 and g2(x) ≤ 1 with
g1(x) = g2(x) = 1·x1 +0·x2 + · · ·+0·xn, but it could also be incorporated into
the description of a set X to which x must belong.

Boxes: A set X ⊂ IRn is a box if it is a product I1 × · · · × In of closed intervals Ij ⊂ IR.
To require x ∈ X is to require xj ∈ Ij for j = 1, . . . , n. Here Ij could be bounded or
even consist of just one point, or it could be unbounded or even (−∞,∞).

Nonnegative orthant: the box IRn
+ = [0,∞)× · · · × [0,∞).

Whole space: the box IRn = (−∞,∞)× · · · × (−∞,∞).

Linear and affine functions: A function g on IRn is called affine if it can be expressed
in the form g(x1, . . . , xn) = d0 + d1x1 + · · · + dnxn for some choice of constants
d0, d1, . . . , dn. Many people simply refer to such a function as linear, and in this they
are following a long tradition, but in higher mathematics the term linear is reserved
for the special case of such a function where the constant term vanishes: d0 = 0.
Thus, g is linear when there’s a vector d = (d1, . . . , dn) ∈ IRn such that

g(x) = d·x (the inner product, or dot product, of two vectors)

17



Linear constraints: Conditions fi(x) = ci, fi(x) ≤ ci or fi(x) ≥ ci in which the
function fi is linear—or affine. Or, conditions x ∈ X in which X is a box.

Conventional problem format in finite-dimensional optimization:

(P)
minimize f0(x) over all x = (x1, . . . , xn) ∈ X ⊂ IRn satisfying

fi(x)
{
≤ 0 for i = 1, . . . , s,
= 0 for i = s + 1, . . . ,m.

The feasible set C for (P) consists of the points x ∈ X satisfying all the constraints
fi(x) ≤ 0 or fi(x) = 0. Here in particular, X could be all of IRn, in which
case the condition x ∈ X would impose no restriction whatever.

Unconstrained minimization: the case where X = IRn and “m = 0,” i.e., no equality
or inequality constraints are present, so that C = IRn.

Linear programming: the case where a linear (or affine) function f0 is minimized
subject to linear constraints: the functions f1, . . . , fm are affine and the set X is
a box (e.g. X = IRn or X = IRn

+).

Quadratic programming: like linear programming, but the objective function f0 is
allowed to have quadratic terms, as long as it remains convex , as defined later.
(Note: in quadratic programming the constraints are still only linear!)

Nonlinear programming: this term is used in contrast to linear programming, but a
much more important watershed will eventually be seen in the distinction between
convex programming and nonconvex programming.

Geometric considerations: In problems with a few, simple constraints, the feasible
set C might be decomposable into a collection of “pieces,” each of which could be
inspected separately in an attempt to locate the minimum of the objective function.
For instance, if C were a (solid) cube in IR3, one could look at what happens at the
8 corners, along the 12 edges, on the 6 faces, and in the cube’s interior.

For most problems of interest in modern applications, however, there is little
hope in such an approach. The number of “pieces” would be astronomical, or there
would be no easy organization or listing of them. A further difficulty would lie in
identifying which of the constraints might be redundant. Then too, there could
be problems of degeneracy, where the constraints line up in odd ways and spoil
the possibility of a good description of the “pieces” of C. As if this weren’t enough
trouble, there is the real prospect that C might be disconnected. These considerations
force a different perspective on the analyst, who must look instead for a new kind of
geometric framework on which to base computational schemes.
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Geometry of linear constraints: Initial insight into a kind of geometry that does
provide important support in optimization can be gained through the following ideas,
which will later be subsumed under the broader heading of “convexity.”

Half-spaces and hyperplanes: Subsets of IRn of the form
{
x

∣∣ d·x = c
}

for a vector
d = (d1, . . . , dn) 6= (0, . . . , 0) and some constant c ∈ IR are called hyperplanes,
while those of the form

{
x

∣∣ d·x ≤ c
}

or
{
x

∣∣ d·x ≥ c
}

are called closed half-spaces.
(With strict inequality, the latter would be open half-spaces.) A linear equality
or inequality constraint on x thus corresponds to making x belong to a certain
hyperplane or closed half-space (unless the linear function is ≡ 0, in which case
the set isn’t a hyperplane or half-space but just ∅ or IRn, depending on c).

Polyhedral sets: A set C ⊂ IRn is called polyhedral if it can be represented as the
intersection of a collection of finitely many hyperplanes or closed half-spaces, or
in other words, specified by a finite system of linear constraints. (The whole space
IRn is regarded as fitting this description by virtue of being the intersection of the
“empty collection” of hyperplanes. The empty set fits because it can be viewed
as the intersection of two parallel hyperplanes with no point in common.)

Argument: When a set is specified by a collection of constraints, it is the intersec-
tion of the sets specified by each of these constraints individually.

Inequalities alone: In the definition of “polyhedral” it would be enough to speak
just of closed half-spaces, inasmuch as any hyperplane is itself the intersection
of the two closed half-spaces associated with it.

Boxes as a special case: Any box is in particular a polyhedral set, since it’s determined
by upper or lower bounds on coordinates xj of x = (x1, . . . , xn), each of which
could be expressed in the form d·x ≤ c or d·x ≥ c for a vector d lining up with
some coordinate axis. A box is thus an intersection of certain closed half-spaces.

Linear subspaces as a special case: Polyhedral sets don’t have to have “corners.” For
instance, any subspace of IRn is polyhedral, since by linear algebra it can be
specified by finitely many homogeneous linear equations.

Geometric interpretation of linear programming: The feasible set C in any linear
programming problem is a certain polyhedral set. The function f0 being minimized
over C is a linear function, so (unless f0 ≡ 0) its “isosurfaces”

{
x

∣∣ f0(x) = α
}
, as α

ranges over IR, form a family of parallel hyperplanes; the gradient of f0, which is the
same everywhere, is a certain vector perpendicular to all these hyperplanes. One is
seeking to find the “lowest” of the hyperplanes that still touches C.
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General constraints in vector notation: In the conventional format and beyond, it
may be useful to think of constraints as requiring the values of certain functions
f1, . . . , fm to lie within certain ranges. For instance, fi(x) may be required to lie
in a certain closed interval Ji of IR, which might or might not be bounded, and
which might even consist of just a single number (meaning that fi(x) had to have
a particular value—the case of an equality constraint). In vector notation such a
constraint system fi(x) ∈ Ji, i = 1, . . . ,m, comes out as

F (x) ∈ D, where F (x) =
(
f1(x), . . . , fm(x)

)
, D = J1 × · · · × Jm.

Here D would be a box, but more generally one can envision cases where the feasible
set over which f0(x) is to be minimized takes the form C =

{
x ∈ X

∣∣ F (x) ∈ D
}

for
sets X ⊂ IRn and D ⊂ IRm that aren’t necessarily boxes. Note that for a problem (P)
in conventional format one would have D = [0,∞)× · · ·× [0,∞)× [0, 0]× · · ·× [0, 0],
the box formed by the product of s copies of [0,∞) followed by m−s copies of [0, 0].

Penalties and the choice of objectives: The conventional problem format suggests
that a modeler should approach a situation looking for a family of functions fi of
certain decision variables xj , one of these functions being the objective function, and
the rest, constraint functions. But reality can be murkier. The distinction between
what should be set up as a constraint and what should be incorporated into the
expression to be minimized may be quite subtle and even in some cases just a matter
of the notation being adopted.

Essential objective function: An extreme but important example for theoretical pur-
poses is the device of translating a problem in the conventional format into the
minimization over all x ∈ IRn of the function

f(x) =
{

f0(x) if x ∈ C, the feasible set,
∞ if x /∈ C.

Here the condition x ∈ C is incorporated into the objective by imposing an infinite
penalty when it is violated.

Hard versus soft constraints: Some kinds of constraints are “hard” in the sense of
representing intrinsic conditions that can’t be violated. For instance, a vector
(x1, . . . , xn) may give a system of probabilities or weights through the stipulation
that x1 ≥ 0, · · · , xn ≥ 0 and x1 + . . .+xn = 1. It wouldn’t make sense to consider
the alternative where x1 ≥ −.0001 and x1 + · · ·+xn = .9999. Constraints of such
type are often built into the specification of the set X in the conventional format.
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Other constraints may have quite a different, “soft” character. For instance, in
asking that a mechanism under design ought to have a strength coefficient of at
least .78 the modeler may be expressing a general desire that could be changed a
bit once the costs and trade-offs are better known. A coefficient value of .76 may
be quite acceptable, once it is realized that the difference could cost a fortune.

Penalty expressions: In dealing with soft constraints fi(x) ≤ 0 or fi(x) = 0, it may
be better in many cases to introduce a penalty expression instead. Thus, instead
of enforcing an exact constraint, a term ϕi◦fi could be added to the objective
where (for the inequality constraint) ϕi(t) = 0 when t ≤ 0 but ϕi(t) > 0 when
t > 0. A popular choice is

ϕi(fi(x)) = αi max
{
0, fi(x)

}
with penalty parameter αi > 0,

but many other possible choices are available. It’s worthwhile sometimes to re-
lax the requirement of ϕi to just ϕi(t) ≤ 0 for t ≤ 0, with a negative penalty
interpreted as a reward (for satisfying the inequality with room to spare).

Multiple objectives: Contrary to what we hear every day, it is impossible to design
something to be the quickest, the cheapest and the most convenient all at the
same time. While a number of variables may be of keen interest in a situation, the
best that can be done is to optimize one of them while keeping the others within
reasonable ranges. As a compromise, one can look to minimizing an expression
like a weighted combination of the variables or more generally, in the case of
variables given by functions f1, . . . , fm, an expression ϕ

(
f1(x), . . . , fm(x)

)
.

Composite format in optimization: These considerations and others lead to a basic
problem model for optimization problems which differs from the conventional one
stated earlier, namely

minimize f(x) = ϕ
(
F (x)

)
over all x ∈ X ⊂ IRn

for a mapping F : IRn → IRm and a function ϕ : IRm → IR, where IR denotes the
extended real numbers, i.e., the interval [−∞,∞], in contrast to IR = (−∞,∞). The
feasible set in this case is considered to be

C =
{
x ∈ X

∣∣ F (x) ∈ D
}
, where D =

{
u ∈ IRm

∣∣ ϕ(u) < ∞
}
.
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Max functions and nonsmoothness: A “max function” is a function defined as the
pointwise maximum of a collection of other functions, for instance

g(x) = max
{
g1(x), . . . , gr(x)

}
.

Here the “max” refers to the arithmetic operation of taking the highest of the r

values g1(x), . . . , gr(x) (not necessarily all different) to be g(x). Such a function g

is generally nonsmooth; a function g is smooth if its first partial derivatives exist
and are continuous. Sometimes it’s preferable to deal with a nonsmooth function
directly, but other times there are tricks that can be brought in to achieve a problem
formulation with smooth functions only.

Example 1: Consider the problem of minimizing, over all of IRn, a function g of the
form just given. Suppose each of the functions gk is itself smooth. By introducing
an additional variable u ∈ IR, we can re-express the problem equivalently as

minimize f0(x, u) := u over all (x, u) ∈ IRn × IR satisfying

fk(x, u) := gk(x)− u ≤ 0 for k = 1, . . . , r.

The functions f0, . . . , fr are then smooth on IRn × IR.

Example 2: Suppose a problem is given in terms of penalty expressions as that of
minimizing

f0(x) +
s∑

i=1

αi max
{
0, fi(x)

}
+

m∑
i=s+1

αi

∣∣fi(x)
∣∣

over all x ∈ X ⊂ IRn, where the coefficients αi are positive. With additional
variables ui ∈ IR and the vector (u1, . . . , um) denoted by u ∈ IRm, we can write
this as the problem of minimizing

f̄0(x, u) := f0(x) +
m∑

i=1

αiui

over all (x, u) ∈ IRn × IRm satisfying x ∈ X and

fi(x)− ui ≤ 0 and ui ≥ 0 for i = 1, . . . , s,

fi(x)− ui ≤ 0 and − fi(x)− ui ≤ 0 for i = s + 1, . . . ,m.
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Abstract format for optimization: Sometimes it is useful to think of an optimization
problem with respect to x ∈ IRn as simply a problem of minimizing some function
f : IRn → IR over all of IRn. There is then a one-to-one correspondence between
problems and functions. As seen earlier through the notion of the essential objective
function for a problem in the conventional format, there is no real loss of generality
in taking this view, just a certain suppression of details from the notation.

Epigraphical geometry: The geometry in this case, as suggested by the remarks just
made about “max functions,” centers not on the graph of f but on its epigraph,
which is the set

{
(x, α) ∈ IRn × IR

∣∣ f(x) ≤ α
}
.

Overview of the different formats: While the conventional format has a long tradition
behind it and has become almost synonymous with “optimization,” the theoretical
power and modeling advantages of the composite format are now encouraging a trend
in that direction, at least among specialists. The abstract format is primarily a tool
for thinking about problems in various ways for theoretical purposes, rather than
an approach to modeling, but for that it is often very helpful. In this introductory
course the conventional format will receive the main attention, but the impression
should be resisted that all optimization models should be forced into that channel.
In the long run it’s better to have a broader perspective.

Aspects of good problem formulation: In many areas of mathematics, a problem
targeted for the application of a numerical method is not considered to be well
formulated unless the existence of a unique solution is assured, and the solution
is stable in the sense of being affected only slightly when the data elements of the
problem are shifted slightly. In optimization, however, the goals of uniqueness and
stability are unrealistic in the way they are usually interpreted, and that of existence
has to be adapted to the multiple notions of what may be meant by a solution.

Issues to consider:

Does a feasible solution exist?

Does an optimal solution exist (global optimality)?

Can there be more than one optimal solution?

What happens to the set of feasible solutions under perturbations in the problem?

What happens to the set of optimal solutions under perturbations in the problem?

What happens to the optimal value under perturbations in the problem?

Note: The optimal value always exists and is unique.
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The role of sequences: These issues are all the more important in view of the fact
that most problems have to be solved by a numerical method. Such methods don’t
just produce an answer, but instead (however this might be masked by the software)
generate a sequence of solution candidates which, it is hoped, get closer and closer to
something perhaps acceptable in lieu of a true optimal solution. Unless certain basic
conditions are fulfilled, in particular ensuring the existence of an optimal solution, the
candidates might not get progressively closer to anything meaningful at all. Anyway,
they might not satisfy the problem’s constraints exactly. Questions then arise as to
the effects that could be encountered if constraints are perturbed.

Example: potential trouble in one-dimensional minimization. Even in the case of
minimizing a function over an interval in IR, many pitfalls are apparent. An optimal
solution can fail to exist because the function is unbounded below, or because the
optimal value can be approached only in an asymptotic sense (getting arbitrarily
close, but without attainment), or simply because the function lacks the requisite
continuity properties. Gradual changes in the shape of the graph of the function, in
the case of multiple dips and humps, can induce discontinuity and multiplicities in
the behavior of the optimal solution set. All of these phenomena can make trouble
for methods that are supposed to generate a sequence of points tending somehow
toward a minimizing point.

Example: potential trouble in linear programming. As explained earlier, the fea-
sible set C in a linear programming problem is a certain polyhedral set. It could
be empty if the constraints are improperly chosen or even if they are perturbed
only slightly from their proper values. Furthermore, in minimizing a linear function
over such a set one can obtain as the set of optimal solutions a “corner,” an entire
“edge” of “face,” or other such portion. Indeed a gradual, continuous change in the
coefficients of the linear objective function can induce jumps in the answer.

Thus, even in the most elementary so-called linear cases of optimization, there
can be difficulties under all three of the headings of existence, uniqueness and stability
of solutions. In particular, two numerical formulations of a problem that differ only in
roundoff in input data—the number of decimal points allocated to the representation
of the various coefficients—could in principle have unique optimal solutions very
different from each other. Because only linear programming is involved, the two
optimal values would be close together, according to theoretical results we haven’t
discussed. But for more general classes of problems there can be discontinuities even
in the behavior of optimal values unless special assumptions are invoked.
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Existence of feasible solutions: Generally speaking, there is no good criterion to apply
to a system of constraints in order to ascertain on a theoretical level that there is
as least one point satisfying the system. However, a numerical approach is possible.
For a constraint system in the conventional problem format, a numerical method of
optimization could be applied to the auxiliary problem of minimizing the function

g(x) :=
s∑

i=1

αi max
{
0, fi(x)

}
+

m∑
i=s+1

αi

∣∣fi(x)
∣∣

over all x ∈ X, where the introduced penalty coefficients αi are all positive (e.g.
αi = 1). Obviously, g(x) = 0 for each x ∈ X satisfying the desired constraints,
whereas g(x) > 0 for all other choices of x ∈ X. Thus if the optimal value in the
auxiliary problem is 0 the optimal solutions to the auxiliary problem are precisely
the feasible solutions to the original problem, but if the optimal value in the auxiliary
problem is positive, there are no feasible solutions to the original problem.

Uniqueness of optimal solutions: The bad news is that there is no criterion, verifiable
directly in terms of a problem’s structure and data without going into computation,
that can be imposed on a general nonconvex problem to ensure the existence of at
most one optimal solution. This topic will be taken up later, after some theory of
convexity has been built up.

Existence of optimal solutions: The good news is that readily verifiable criteria are
available to ensure the existence of at least one optimal solution. The goal here will
be to develop such a criterion, not just for the sake of a bare existence result, but
in a form suited to the analysis of sequential approaches to finding solutions. This
obliges us to work with the possibility that, in the course of calculations, constraints
might only be satisfied approximately.

Approximate feasibility: Of special concern in connection with the stability of the
feasible set C is what happens when constraints are only required to be satisfied
to within a certain error bound. For any ε > 0, the set of ε-feasible solutions to a
problem in conventional format is

Cε :=
{

x ∈ X
∣∣∣ fi(x) ≤ ε for i = 1, . . . , s;

∣∣fi(x)
∣∣ ≤ ε for i = s + 1 . . . , m

}
.

Clearly Cε includes C, so the minimum value of f0 over Cε is less than or equal to
the minimum over C, the optimal value in the given problem.
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Well posed problems: The key concept that we’ll work with in connection with the
existence and approximation of solutions is the following. An optimization problem
in the conventional format will be deemed to be well posed when:

(a) the set X ⊂ IRn is closed as well as nonempty,

(b) the functions f0, f1, . . . , fm on IRn are continuous,

(c) For some ε > 0, the set Cε defined above has the property that, for every value
α ∈ IR, the set

{
x ∈ Cε

∣∣ f0(x) ≤ α
}

is bounded.

Easy special cases: Condition (a) is fulfilled when X is a nonempty box, or indeed
any nonempty polyhedral set. Condition (b) is fulfilled when the functions are
linear or affine, or are given by polynomial expressions in the variables xj .

Condition (c) is certainly satisfied when X itself is bounded, or if for every
α ∈ IR the set

{
x ∈ X

∣∣ f0(x) ≤ α
}

is bounded. Also, (c) is sure to be satisfied if
for some ε > 0 any one of the functions fi for i = 1, . . . , s has the property that the
set

{
x ∈ X

∣∣ fi(x) ≤ ε
}

is bounded, or one of the functions fi for i = s+1, . . . ,m

is such that the set
{
x ∈ X

∣∣ |fi(x)| ≤ ε
}

is bounded.

Caution: This concept refers to the manner in which an application of optimization
has been set up as a problem (P) in conventional format: it’s a property of the
problem’s formulation and depends on the specification of the functions fi, the
index s and the set X. A given application might be formulated in various ways
as (P), not only in the choice of decision variables but according to whether its
requirements are taken as inequality constraints, equality constraints, or lumped
into the abstract constraint x ∈ X. In some modes it could turn out to be well
posed, but in others perhaps not. This is true in particular because the “pertur-
bations” introduced in terms of ε affect the inequality and equality constraints
differently, and don’t affect the abstract constraint at all.

Review of terminology and notation for dealing with sequences: For the benefit
of students wanting a refresher, we briefly go over some of the facts and ideas of
advanced calculus coming into play here. Throughout these notes, we use super-
script ν, the Greek letter “nu”, as the running index for sequences so as to avoid
conflicts with all the other indices that may appear in various situations in reference
to coordinates, powers, etc. For instance, a sequence in IRn will be comprised of
points xν for ν = 1, 2, . . ., where xν = (xν

1 , . . . , xν
n). (Note that “sequence” always

means “infinite sequence,” but there’s nothing to preclude points from coinciding.
As a special case, every xν could be the same point c, giving a constant sequence.)
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Convergence: A sequence of points xν = (xν
1 , . . . , xν

n) in IRn is said to converge to
a point x = (x1, . . . , xn) (and therefore be a convergent sequence) if for each
coordinate index j one has xν

j → xj as ν →∞, or equivalently

|xν − x| → 0, where |x| :=
√

x2
1 + · · ·+ x2

n (Euclidean norm).

Then x is the limit of the sequence; this is written as xν → x, or x = limν→∞ xν .

Continuity: A function f : IRn → IR is continuous if whenever xν → x in IRn one
has f(xν) → f(x). The standard ways of verifying continuity involve such facts
as the sum or product of continuous functions being continuous, along with the
knowledge that certain elementary functions, for instance polynomial functions,
trigonometric functions, etc., are continuous. For a mapping F : IRn → IRm,
continuity is defined similarly by the condition that xν → x implies F (xν) →
F (x). In terms of a coordinate representation F (x) =

(
f1(x), . . . , fm(x)

)
, this is

equivalent to each of the component functions fi : IRn → IR being continuous.

Closedness: A set S ⊂ IRn is said to be closed if for every sequence of points xν ∈ S

(ν = 1, 2, . . .) that converges to a point x ∈ IRn, one has x ∈ S. A set is open if
its complement in IRn is closed. In the extreme cases of S = IRn and S = ∅, S is
both open and closed at the same time. The intersection of any family of closed
sets is closed. The union of any family of finitely many closed sets is closed.

Example: level sets of continuous functions. If a function f is continuous, then for
every choice of c ∈ IR the set

{
x

∣∣ f(x) ≤ c
}

and the set
{
x

∣∣ f(x) ≥ c
}

are
both closed. So too is the set

{
x

∣∣ f(x) = c
}
, which is their intersection.

Example: closedness of feasible sets. In an optimization problem in conventional
format, the feasible set C is closed if the set X is closed and the functions
f1, . . . , fm are continuous. This is because C is the intersection of X with
m other sets of the form

{
x

∣∣ fi(x) ≤ 0
}

or
{
x

∣∣ fi(x) = 0
}
, each of which is

closed. Elementary cases where X is closed are those where X is all of IRn or
where X is the product of closed intervals, i.e., X constrains each component
xj to lie in a certain closed interval of IR, either bounded or unbounded.

Example: boxes, polyhedral sets. These are the feasible sets for systems of linear
constraints, so they are closed because affine functions are continuous.

Boundedness: A set S ⊂ IRn is called bounded if lies within some (large enough) ball,
or in other words, if there exists ρ ∈ (0,∞) such that |x| ≤ ρ for all x ∈ S. An
equivalent characterization in terms of the coordinates xj of x is that there exist
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(finite) bounds αj and βj such that for every x ∈ S one has αj ≤ xj ≤ βj for
j = 1, . . . , n. As a special case, the empty subset ∅ of IRn is bounded.

Compactness: Closely related to closedness and boundedness is another property,
which ultimately is crucial in any discussion of existence of solutions. A set
S is called compact if every sequence {xν}∞ν=1 of points in S has at least one sub-
sequence {xνκ}∞κ=1 that converges to a limit. The Heine-Borel Theorem asserts
that a set S ⊂ IRn is compact if and only if S is both closed and bounded.

Cluster points: A point that is the limit of some subsequence of a given sequence,
although not necessarily the limit of the sequence as a whole, is called a cluster
point of the sequence. It follows from the theorem just quoted that every bounded
sequence in IRn has at least one cluster point (since a bounded sequence can in
particular be viewed as being in some large, closed ball, which by the theorem will
be a compact set). This leads to the occasionally useful criterion that a sequence
{xν}∞ν=1 in IRn converges (in its entirety) if and only if it is bounded and, because
of circumstances, can’t possibly have two different cluster points.

Standard criterion for the attainment of a minimum or maximum: A basic
fact of calculus related to optimization is the following. If a continuous function is
minimized over a nonempty , compact set in IRn, the minimum value is attained at
some point (not necessarily unique). Likewise, the maximum value is attained.

Shortcomings for present purposes: This criterion could immediately be applied to
optimization problems in conventional format by making assumptions that guar-
antee not only the closedness of the feasible set C (as already discussed) but also
its boundedness. Then, as long as the objective function f0 being minimized over
C is continuous, an optimal solution will exist. But in many problems of optimiza-
tion the feasible set isn’t bounded, and yet we still want a criterion for existence.
For instance, in “unconstrained” optimization we have C = IRn. Therefore, we
need a result that’s more general.

THEOREM 1 (existence of optimal solutions). Consider an optimization problem

(P) in conventional format, and assume it is well posed. Then the feasible set is closed. If

the feasible set is also nonempty, then the optimal set is nonempty and the optimal value

is finite. Furthermore, the optimal set is compact.

Proof. The assumption that the problem is well posed entails (in conditions (a) and (b)
of the definition of that property) the closedness of X and continuity of f1, . . . , fm. These
properties have already been seen above to imply that the feasible set C is closed.
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Under the assumption now that C is also nonempty, let x̃ denote any point of C and
let α̃ = f0(x̃). The problem of minimizing f0 over C has the same optimal solutions, if any,
as the problem of minimizing f0 over C̃ =

{
x ∈ C

∣∣ f0(x) ≤ α̃
}
. The set C̃ is nonempty,

because it contains x̃. It is closed by virtue of being the intersection of the closed set C

and the set
{
x

∣∣ f0(x) ≤ α̃
}
, which is closed because f0 is continuous by condition (b).

Furthermore, it is bounded because of condition (c) in the definition of well posedness.
Therefore, C̃ is compact. It follows from the standard criterion for the attainment of a
minimum that the problem of minimizing f0 over C̃ has an optimal solution. Hence the
given problem, of minimizing f0 over C, has an optimal solution as well.

Let x̄ denote an optimal solution, not necessarily the only one, and let ᾱ = f0(x̄).
Then ᾱ is the optimal value in the problem, and because f0 is a real-valued function this
optimal value is finite. The optimal set is

{
x ∈ C

∣∣ f0(x) = ᾱ
}
, and this is the same as{

x ∈ C
∣∣ f0(x) ≤ ᾱ

}
because strict inequality is impossible. The same argument applied

to the set C̃ tells us that this set, like C̃, is compact.

Example: problems with only an abstract constraint. As a simple case to which
the existence criterion in Theorem 1 can be applied, consider the problem

minimize f0(x) over all x ∈ X ⊂ IRn,

where there are no side conditions of the form fi(x) ≤ 0 or fi(x) = 0. The basic
criterion for good formulation comes down in this case to

(a) the set X ⊂ IRn is closed as well as nonempty,

(b) the function f0 is continuous,

(c) the set
{
x ∈ X

∣∣ f0(x) ≤ α
}

is bounded in IRn for all values of α ∈ IR.

Under these conditions, the conclusion is that the f0 does attain a minimum value
over X, and the set of minimizing points is compact. In particular (a) and (c) are
satisfied when X is compact. On the other hand, the result covers also the case
of unconstrained optimization, where X = IRn. The basic criterion in that special
situation is that f0 should be a continuous function whose level sets are bounded.

Example: the gap distance between two sets. For two nonempty, closed sets C1 and
C2 in IRn, the gap distance between C1 and C2 is the optimal value in the problem of
minimizing |x1 − x2| (Euclidean distance) over all x1 ∈ C1 and x2 ∈ C2, or in other
words, over all pairs (x1, x2) in the set X = C1×C2. While this optimal value is well

defined, as always, are there optimal solutions to this problem? That is, do there exist
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pairs (x̄1, x̄2) ∈ C1 × C2 for which |x̄1 − x̄2| is the minimum? A sufficient condition
for the existence of such a pair, as provided by Theorem 1 through the preceding
example, is the boundedness of the sets

{
(x1, x2) ∈ C1 × C2

∣∣ |x1 − x2| ≤ ρ
}
. This

obviously holds if both C1 and C2 are bounded, but one can show actually that the
boundedness of just one of the sets is enough.

If the gap distance between C1 and C2 is 0, does that mean these sets necessarily

have at least one point in common? Again, this hinges on the existence of a solution
to the optimization problem described. If the (x̄1, x̄2) ∈ C1×C2 yields the minimum
value |x̄1 − x̄2|, and this is 0, then obviously x̄1 = x̄2, and this is a point in C1 ∩C2.
An example where the gap distance is 0 but C1∩C2 = ∅ is furnished in IR2 by taking
C1 to be a hyperbola having C2 as one of its asymptotes. There are pairs of points
arbitrarily near to each other in these sets, yet the sets don’t meet.

Convergence to a solution: As groundwork for the consideration of numerical meth-
ods, it’s important to broaden Theorem 1 cover sequences such as could be generated
by such methods. The ε provision in “well-posedness” will be utilized in this. We
keep the discussion focused on a problem in conventional format and notation.

Feasible sequence: A sequence of points xν all belonging to the feasible set, or in other
words, satisfying

xν ∈ X, fi(xν) ≤ 0 for i ∈ [1, s], fi(xν) = 0 for i ∈ [s + 1,m].

Optimal sequence: A feasible sequence of points xν such that, for the optimal value
ᾱ in the problem, f0(xν) → ᾱ. (Note that this property says nothing about the
points xν themselves converging or even remaining bounded as ν →∞!)

Asymptotically feasible sequence: A sequence of points xν ∈ X with the property
that max

{
0, fi(xν)

}
→ 0 for i = 1, . . . , s, and fi(xν) → 0 for i = s + 1, . . . ,m.

An equivalent description of this property is that xν ∈ Cεν for some choice of
shrinking “error bounds” εν → 0.

Asymptotically optimal sequence: An asymptotically feasible sequence of points xν

with the additional property that, in terms of the optimal value ᾱ in the problem,
one has max

{
ᾱ, f0(xν)

}
→ ᾱ.

Comments: For some kinds of unconstrained problems or problems with linear con-
straints only, methods can be devised that generate an optimal sequence. Usually,
however, the most one can hope for is an asymptotically optimal sequence. The
properties of such sequences are therefore of fundamental interest. Note that
every optimal sequence is in particular an asymptotically optimal sequence.
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THEOREM 2 (optimality from sequences). Consider an optimization problem (P)
in conventional format, and suppose it is well posed. Assume also that the feasible set in

(P) is nonempty. Then any asymptotically optimal sequence
{
xν

}∞
ν=1

(hence any optimal

sequence) is bounded, and all of its cluster points (at least one exists) are optimal solutions

to (P). Furthermore, the sequence
{
f0(xν)

}∞
ν=1

converges to the optimal value in (P).

If in fact (P) has a unique optimal solution x̄, any asymptotically optimal sequence

(hence any optimal sequence) must converge (as a whole) to x̄.

Proof. Let ε be an error bound value for which condition (c) in the definition of well
posedness is satisfied. Denote the optimal value by ᾱ, and consider any number α ∈ (ᾱ,∞).
For any asymptotically optimal sequence

{
xν

}∞
ν=1

, we have xν ∈ X and there is an index
ν̄ such that, for all ν ≥ ν̄, we have

fi(xν) ≤ ε for i ∈ [1, s], |fi(xν)| ≤ ε for i ∈ [s + 1,m], f0(xν) ≤ α.

In other words, all the points xν with ν ≥ ν̄ lie in the set
{
x ∈ Cε

∣∣ f0(x) ≤ α
}
. This set

is bounded because of condition (c). Therefore, the sequence
{
xν

}∞
ν=1

is bounded.

Let x̄ denote any cluster point of the sequence; x̄ = limκ→∞ xνκ for some sub-
sequence

{
xνκ

}∞
κ=1

. Because X is closed by condition (a), and xνκ ∈ X, we have x̄ ∈ X.
From the continuity of the functions fi in condition (b), we have fi

(
xνκ

)
→ fi(x̄), and

through the asymptotic optimality of the sequence
{
xν

}∞
ν=1

this implies that

fi(x̄) ≤ 0 for i ∈ [1, s], fi(x̄) = 0 for i ∈ [s + 1,m], f0(x̄) ≤ ᾱ.

Since no feasible solution can give the objective function a value lower than the optimal
value ᾱ, we conclude that x̄ is an optimal solution.

To justify the final assertion of the theorem, we note that in the case described the
asymptotically optimal sequence, which is bounded, can’t have two different cluster points,
so it must converge. The only candidate for the limit is the unique optimal solution.

Comment: It merits emphasis that the case at the end of Theorem 2 is generally the
only one in which a proposed numerical method of solution that is truly able
to generate an asymptotically optimal sequence (some don’t even claim to do
that) is guaranteed to produce points closer and closer to a particular optimal
solution. Aside from some special situations dependent on convexity, or ones
where a locally rather than globally optimal solution is acceptable, the cluster
point property is the best that can be hoped for in computation.
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Comparison of possible solution methods: Different numerical techniques for trying
to solve an optimization problem can be quite different in their behavior. Some
general questions to ask are these:

Is the method valid, i.e., are the assumptions on which its justification depends satisfied

for the problem being addressed? If not, the output may be worthless. Here the
most frequent abuse is the neglect of convexity or differentiability assumptions.

What does the method actually claim to find, and how reliable is the claim? Methods
that are said to “solve” a problem often just try to approximate a point for which
various conditions associated mathematically with optimality, but not necessarily
guaranteeing optimality, are fulfilled. Some methods generate more information
about a problem and its potential solutions than do others, and this auxiliary
information could be useful on the side.

How robust is the method? Here the issue is whether the technique works dependably or
is liable to get stuck on problems for which the “flavor” isn’t quite to its liking.

Rates of convergence: An important issue in comparing different methods is their
speed. Real judgment can only come from computer experiments with well selected
test problems. But there’s also a theoretical discipline which tries to make compar-
isons on the basis of the rate at which the distance of f0(xν) to the optimal value ᾱ

decreases, or the distance of xν from an optimal solution x̄ decreases. For instance,
one can try to ascertain the existence of a constant c such that

|xν+1 − x̄| ≤ c|xν − x̄| for all indices ν beyond some ν̄.

Then the method is said to converge linearly at the rate c. If two methods both
guarantee convergence if this type, but one method typically yields a lower value of
c than the other, then that method can be expected to find solutions faster—at least
if computations are continued until the convergence behavior takes over. (Rates of
convergence usually apply only to some undetermined “tail portion” of the sequence
generated.) Modes of convergence can also differ more profoundly. A method with

|xν+1 − x̄| ≤ c|xν − x̄|2 for all indices ν beyond some ν̄

is said to converge quadratically . Such a method is likely to be much quicker than one
that converges only linearly, but it may carry additional overhead or be applicable
only in special situations. A method may exhibit finite convergence in the sense of
being certain to terminate after only finitely many iterations (no infinite sequence
then being involved at all), as is often true for example in linear programming. For
such cases still other forms of theoretical comparison have been developed.

32


