
1. WHAT IS OPTIMIZATION?

Optimization problem: Maximizing or minimizing some function relative to some set,
often representing a range of choices available in a certain situation. The function
allows comparison of the different choices for determining which might be “best.”

Common applications: Minimal cost, maximal profit, minimal error, optimal design,
optimal management, variational principles.

Goals of the subject: The understanding of

Modeling issues—

What to look for in setting up an optimization problem?

What features are advantageous or disadvantageous?

What devices/tricks of formulation are available?

How can problems usefully be categorized?

Analysis of solutions—

What is meant by a “solution?”

When do solutions exist, and when are they unique?

How can solutions be recognized and characterized?

What happens to solutions under perturbations?

Numerical methods—

How can solutions be determined by iterative schemes of computation?

What modes of local simplification of a problem are convenient/appropriate?

How can different solution techniques be compared and evaluated?

Distinguishing features of optimization as a mathematical discipline:

descriptive −→ prescriptive

equations −→ inequalities

linear/nonlinear −→ convex/nonconvex

differential calculus −→ subdifferential calculus
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Finite-dimensional optimization: The case where a choice corresponds to selecting
the values of a finite number of real variables, called decision variables. For general
purposes the decision variables may be denoted by x1, . . . , xn and each possible choice
therefore identified with a point x = (x1, . . . , xn) in the space IRn. This is what we’ll
be focusing on in this course.

Feasible set: The subset C of IRn representing the allowable choices x = (x1, . . . , xn).

Objective function: The function f0(x) = f0(x1, . . . , xn) that is to be maximized or
minimized over C.

Constraints: Side conditions that are used to specify the feasible set C within IRn.

Equality constraints: Conditions of the form fi(x) = ci for certain functions fi on IRn

and constants ci in IRn.

Inequality constraints: Conditions of the form fi(x) ≤ ci or fi(x) ≥ ci for certain
functions fi on IRn and constants ci in IR.

Range constraints: Conditions restricting the values of some decision variables to lie
within certain closed intervals of IR. Very important in many situations, for
instance, are nonnegativity constraints: some variables xj may only be allowed
to take values ≥ 0; the interval then is [0,∞). Range constraints can also arise
from the desire to keep a variable between certain upper and lower bounds.

Linear constraints: Range constraints or conditions of the form fi(x) = ci, fi(x) ≤ ci,
or fi(x) ≥ ci, in which the function is linear in the standard sense of being
expressible as sum of constant coefficients times the variables x1, . . . , xn.

Data parameters: General problem statements usually involve not only decision vari-
ables but symbols designating known coefficients, constants, or other data ele-
ments. Conditions on such elements, such as the nonnegativity of a particular
coefficient, are not among the “constraints” in a problem of optimization, since
the numbers in question are supposed to be given and aren’t subject to choice.

Mathematical programming: A traditional synonym for finite-dimensional optimiza-
tion. This usage predates “computer programming,” which actually arose from early
attempts at solving optimization problems on computers. “Programming,” with the
meaning of optimization, survives in problem classifications such as linear program-
ming, quadratic programming, convex programming, integer programming, etc.
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EXAMPLE 1: Engineering Design

General description. In the design of some object, system or structure, the values
of certain parameters can be chosen subject to some conditions expressing their
ranges and interrelationships. The choice determines the values of a number of
other variables on which the desirability of the end product depends, such as
cost, weight, speed, bandwidth, reliability,. . . . Among the choices of the design
parameters that meet certain performance specifications, which is the “best” by
some criterion?

Particular case: optimal proportions of a can. A cylindrical can of a given
volume V0 is to be proportioned in such a way as to minimize the total cost of
the material in a box of 12 cans, arranged in a 3×4 pattern. The cost expression
takes the form c1S1 + c2S2, where S1 is the surface area of the 12 cans and S2

is the surface area of the box. (The coefficients c1 and c2 are positive.) A side
requirement is that no dimension of the box can exceed a given amount D0.

design parameters: r = radius of can, h = height of can

volume constraint: πr2h = V0 (or ≥ V0, see below!)

surface area of cans: S1 = 12(2πr2 + 2πrh) = 24πr(r + h)

box dimensions: 8r × 6r × h

surface area of box: S2 = 2(48r2 + 8rh + 6rh) = 4r(24r + 7h)

size constraints: 8r ≤ D0, 6r ≤ D0, h ≤ D0

nonnegativity constraints: r ≥ 0, h ≥ 0 (!)

Summary. The design choices that are available can be identified with the set C

consisting of all the pairs (r, h) ∈ IR2 that satisfy the conditions

r ≥ 0, h ≥ 0, 8r ≤ D0, 6r ≤ D0, h ≤ D0, πr2h = V0.

Over this set we wish to minimize the function

f0(r, h) = c1

[
24πr(r + h)

]
+ c2

[
4r(24r + 7h)

]
= d1r

2 + d2rh,

where d1 = 24πc1 + 96c2 and d2 = 24πc1 + 28c2.
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Comments. This example illustrates several features that are quite typically found
in problems of optimization.

Redundant constraints: It is obvious that the condition 6r ≤ D0 is implied by the
other constraints and therefore could be dropped without affecting the prob-
lem. But in problems with many variables and constraints such redundancy
may be hard to recognize. From a practical point of view, the elimination of
redundant constraints could pose a challenge as serious as that of solving the
optimization problem itself.

Inactive constraints: It could well be true that the optimal pair (r, h) (unique??)
is such that either the condition 8r ≤ D0 or the condition h ≤ D0 is satisfied
as a strict inequality, or both. In that case the constraints in question are
inactive in the local characterization of optimal point, although they do affect
the shape of the set C. Again, however, there is little hope, in a problem with
many variables and constraints, of determining by some preliminary procedure
just which constraints will be active and which will not. This is the crux of
the difficulty in many numerical approaches.

Redundant variables: It would be possible to solve the equation πr2h = V0 for h

in terms of r and thereby reduce the given problem to one in terms of just r,
rather than (r, h). Fine—but besides being a technique that is usable only in
special circumstances, the elimination of variables from (generally nonlinear)
systems of equations is not necessarily helpful. There may be a trade-off
between the lower dimensionality achieved in this way and other properties.

Inequalities versus equations: The constraint πr2h = V0 could be written in the
form πr2h ≥ V0 without affecting anything about the solution. This is because
of the nature of the cost function; no pair (r, h) in the larger set C ′, obtained
by substituting this weaker condition for the equation, can minimize f0 unless
actually (r, h) ∈ C. While it may seem instinctive to prefer the equation to
the inequality in the formulation, the inequality turns to be superior in the
present case because the set C ′ happens to be “convex,” whereas C isn’t.

Convexity: This problem is not fully of “convex” type in itself, despite the pre-
ceding remark. Nonetheless, it can be made convex by a certain change of
variables, as will be seen later. The lesson is that the formulation of a prob-
lem of optimization can be quite subtle, when it comes to bringing out crucial
features like convexity.
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EXAMPLE 2: Management of Systems

General description. A sequence of decisions must be made in discrete time which
will affect the operation of some kind of “system,” often of an economic nature.
The decisions, each in terms of choosing the values of a number of variables, have
to respect various limitations in resources. Typically the desire is to minimize
cost, or maximize profit or efficiency, say, over a certain time horizon.

Particular case: an inventory model. A warehouse with total capacity a (in units
of volume) is to be operated over time periods t = 1, . . . , T as the sole facility
for the supply of a number of different commodities (or medicines, or equipment
parts, etc.), indexed by j = 1, . . . , n. The demand for commodity j during period
t is the known amount dtj ≥ 0 (in volume units)—this is a deterministic approach
to modeling the situation. In each period t it is possible not only to fill demands
but to acquire additional supplies up to certain limits, so as to maintain stocks.
The problem is to plan the pattern of acquiring supplies in such a way as to
maximize the net profit over the T periods, relative to the original inventory
amounts and the desired terminal inventory amounts.

inventory variables: xtj units of j at the end of period t

inventory constraints: xtj ≥ 0,
∑n

j=1 xtj ≤ a for t = 1, . . . , T

initial inventory: x0j units of j given at the beginning

terminal constraints: xTj = bj (given amounts) for j = 1, . . . , n

inventory costs: stj dollars per unit of j held from t to t + 1

supply variables: utj units of j acquired during period j

supply constraints: 0 ≤ utj ≤ atj (given availabilities)

supply costs: ctj dollars per unit of j acquired during t

dynamical constraints: xtj = max
{
0, xt−1,j + utj − dtj

}
rewards: ptj dollars per unit of filled demand

filled demand: min
{

dtj , xt−1,j + utj

}
units of j during period t

net profit:
∑T

t=1

∑n
j=1

[
ptj min

{
dtj , xt−1,j + utj

}
− stjxtj − ctjutj

]
Summary. The latter expression as a function of all the variables xtj and utj for t =

1, . . . , T and j = 1, . . . , n is to be maximized subject to the inventory constraints,
terminal constraints, supply constraints and the dynamical constraints. (These
constraints can be viewed as determining a certain subset of IR2Tn.)
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Comments. Again, there are many insights from this example into the challenges
that must be faced in optimization theory and practice.

Large-scale context: The number of variables and constraints that can be involved
in a problem may well be very large, and the interrelationships may be too
complex to appreciate in any direct manner. This calls for new ways of think-
ing and for more reliance on guidelines provided by theory.

Uncertainty: Clearly, the assumption that the demands dtj are known precisely in
advance is unrealistic for many applications, although by solving the problem
in this case one might nonetheless learn a lot. To pass from deterministic
modeling to stochastic modeling, where each dtj is a random variable (and
the same perhaps for other data elements like atj), it is necessary to expand
the conceptual horizons considerably. The decision vector (ut1, . . . , utn) at
time t must be viewed as an unknown function of the “information” available
to the decision maker at that time, rather than just at the initial time.

Dependent variables: The values of the variables xtj are completely determined
by the values of the variables utj for t = 1, . . . , T and j = 1, . . . , n through
the dynamical equations and the initial values. In principal, therefore, some
specific expression in the latter variables could be substituted for each xtj , and
the dimensionality of the problem could thereby be cut in half. But this trick,
because it hides basic aspects of structure, could actually make the problem
harder to analyze and solve.

Constraints versus penalties: The requirements that
∑n

j=1 xtj ≤ a for t = 1, . . . , T

and xTj = bj , although harmless-looking, are potentially troublesome in their
effect on computation and even on the existence and analysis of solutions.
Better modeling would involve some recourse in the eventuality of these con-
ditions not being satisfied. For instance, instead of a constraint involving the
capacity one could incorporate into the function being minimized a penalty
term, which kicks in when the total amount being stored rises above a (per-
haps with the interpretation that extra storage space has to be rented).

Max and min operations: The “max” operation in the dynamical constraints and
the “min” operation in the expression of the net profit force the considera-
tion of functions and mappings that can’t be handled by ordinary calculus.
Sometimes this is unavoidable and points to the need for fresh developments
in analysis. Other times it is an unnecessary artifact of the formulation. The
present example fits with the latter. Really, it would be better to introduce
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still more variables: vtj as the amount of good j used to meet demands at
time t. In terms of these variables, constrained by 0 ≤ vtj ≤ dtj , the dynamics
would take the linear form

xtj = xt−1,j + utj − vtj

and the profit expression would likewise be linear:

T∑
t=1

n∑
j=1

[
ptjvtj − stjxtj − ctjutj

]
.

Hidden assumptions: The alternative model just described with variables vtj is
better in other ways too. The original model had the hidden assumption that
demands in any period should always be met as far as possible from the stocks
on hand. But this might be disadvantageous if rewards will soon be higher,
and inventory can only be built up slowly due to the constraints on availability.
The alternative model allows sales to be held off in such circumstances.

EXAMPLE 3: Identification of Parameters

General description. A mathematical model has been formulated for a given situa-
tion, but to implement it the values of a number of parameters must be specified.
A body of data is known through experiment or observation. The task is to
determine the parameter values that best fit the data. Here, in speaking of the
“best” fit, reference is evidently being made to some criterion for optimization,
but there isn’t just one interpretation always of which criterion to use. (Note a
linguistic pitfall: “the” best fit suggests uniqueness of the answer being sought,
but even relative to a single criterion there could be more than one choice of
the parameters that is optimal.) Applications are found in statistics (regression,
maximum likelihood), econometrics, and virtually every area of science.

Particular case: “least squares” estimates. Starting out very simply, suppose
that two variables x and y are being modeled as related by a linear law y = ax+b,
either for inherent theoretical reasons or as a first-level approximation. The
values of a and b are not known a priori but must be determined from the data,
consisting of a large collection of pairs (xk, yk) ∈ IR2 for k = 1, . . . , N . These pairs
have been gleaned from experiments (where random errors of measurement could
arise along with other discrepancies due to oversimplifications in the model). The
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error expression

E(a, b) =
N∑

k=1

∣∣yk − (axk + b)
∣∣2

is often taken as representing the goodness of the fit of the parameter pair (a, b).
The problem is to minimize this over all (a, b) ∈ IR2. More generally, instead of
a real variable x and a real variable y one could be dealing with a vector x ∈ IRn

and a vector y ∈ IRm, which are supposed to be related by a formula y = Ax + b

for a matrix A ∈ IRm×n and a vector b ∈ IRm. Then the error expression E(A, b)
would depend on the m× (n + 1) components of A and b.

Comments. This kind of optimization is entirely technical: the introduction of some-
thing to be optimized is just a mathematical construct. Still, in analysis and
computation of solutions the same challenges arise as in other settings.

Constraints: The problem, as stated so far, concerns the unconstrained minimiza-
tion of a certain quadratic function in the parameters, but it is easy to imagine
situations where the parameters may be subject to various side conditions. In
the case of y = ax + b, for instance, it may be known on the basis of theory
for the variables in question that 1/2 ≤ a ≤ 3/2, while b ≥ −1. In the mul-
tidimensional case of y = Ax + b there may be the requirement of A being
symmetric (with m = n), which would entail the imposition of n(n − 1)/2
linear constraints of the form aji − aij = 0. Perhaps for some reason one also
needs to have a11 ≥ a22 ≥ · · · ≥ ann, and so forth. (In the applications that
are made of least squares estimation, such conditions are often neglected, and
the numerical answer obtained is simply “fixed up” if it doesn’t have the right
form. But this is clearly not good methodology.)

Nonlinear version: A so-called problem of linear least squares has been presented,
but the same ideas can be used when the underlying relation between x and
y is supposed to be nonlinear. For instance, a law of the form y = eax − ebx

would lead to an error expression

E(a, b) =
N∑

k=1

∣∣yk − (eaxk − ebxk)
∣∣2.

In minimizing this with respect to (a, b) ∈ IR2, we would not be dealing with
a quadratic function, but something much more complicated. The graph of E

in a problem of nonlinear least squares could have lots of “bumps” and “dips,”
which could make it hard to find the minimum computationally.
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Beyond squares: Many other expressions for error could be considered instead of a
sum of squares, and in some situations one of these might be preferable. Back
in the elementary case of y = ax + b, for example, one could look at

E(a, b) =
N∑

k=1

∣∣yk − (axk + b)
∣∣.

A different (a, b) would then be “optimal.” The optimization problem would
have a technically different character as well, because E would not only fail
to be quadratic but would even fail to be differentiable (at points (a, b) where
yk − (axk + b) = 0 for some k). Still more dramatic in this regard, yet quite
justifiable as an approach, would be the error expression

E(a, b) = max
k=1,...,N

∣∣yk − (axk + b)
∣∣.

The formula in this case means that the value assigned by E to the pair (a, b)
is the largest value occurring among the errors |yk − (axk + b)|, k = 1, . . . , N .
It is this maximum deviation that we wish to make as small as possible. Once
more, E is not a differentiable function on IR2, although it nevertheless has
plenty of good structure that can be utilized in analyzing and solving the
problem of optimization.

Other problems of approximation: Similar in character are problems in which
a given function f : [c, d] 7→ IR is to be approximated by a linear combination
of elementary functions fj : [c, d] 7→ IR, j = 1, . . . , n. The expressions fj(t)
could be monomials like tj (in which case f is being approximated by a poly-
nomial of a certain degree or less), or on the other hand they could be sine and
cosine terms (in which case f is being approximated by a truncated Fourier
series), say. With the unknown coefficient of fj denoted by sj , the problem
would be to choose the vector s = (s1, . . . , sn) ∈ IRn so as to minimize an
error expression like

Ep(s) =
∫ d

c

∣∣f(t)−
∑n

j=1
sjfj(t)

∣∣pdt, with p ∈ [1,∞)

(approximation in norm of Lp[c, d], the case of p = 2 being another version of
“least squares”), or alternatively

E∞(s) = max
c≤t≤d

∣∣f(t)−
∑n

j=1
sjfj(t)

∣∣
(this case, in the space L∞[c, d], being termed Chebyshev approximation).

9



EXAMPLE 4: Variational Principles

General description. The linear and nonlinear equations that are the focus of
much of numerical analysis are often associated in hidden ways with problems
of optimization. For an equation of the form F (x) = 0, involving a mapping
F : IRn 7→ IRn, a variational principle is an expression of F as the gradient map-
ping ∇f associated with some function f : IRn 7→ IR. Such an expression leads
to the interpretation that the desired x satisfies a first-order optimality condition
with respect to f . Under certain additional conditions on F , it may even be
concluded that x minimizes f , at least “locally.” A route to solving F (x) = 0
is thereby opened up in terms of minimizing f . Quite similar in concept are
numerous examples where instead of solving an equation F (x) = 0 with x ∈ IRn

one is interested in solving A(u) = 0 where u is some unknown function, and
A is a mapping from a function space (e.g. a certain Hilbert space) into itself.
In particular, A might be a differential operator, so that an ordinary or partial
differential equation is at issue. A variational principle then characterizes the
desired u as providing the minimum, say, of some functional on the space. In
fact, many of the most famous differential equations of physics have such an in-
terpretation, including Newton’s laws of motion (the local variational principle
of “least action”). On a different front, one can think of conditions of price equi-
librium in economics that can be characterized as stemming from the actions of
a multitude of “economic agents,” like producers and consumers, all optimizing
from their individual perspectives. Yet again, the equilibrium state following the
reactions which take place in a complicated chemical brew may be characterized
through a variational principle as the configuration of substances that minimizes
a certain energy function.

Particular case: the Dirichlet problem. A classical problem in PDE’s, posed in
its most elementary form, concerns an unknown function u(y1, y2) on a closed,
bounded region Ω ⊂ IR2 with boundary curve Γ. The function, assumed to be
continuous on Ω and twice differentiable on the interior of Ω, is required to satisfy,
in terms of a given function ϕ on Ω, the partial differential equation

∂2u

∂y2
1

(y1, y2) +
∂2u

∂y2
2

(y1, y2) = ϕ(y1, y2)

inside Ω as well as the boundary condition

u(y1, y2) ≡ 0 on Γ.
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It turns out that the solution to this problem is the unique function that minimizes
the expression

J(u) =
∫ ∫

Ω

[
ϕ(y1, y2)u(y1, y2) +

1
2

∂u

∂y1
(y1, y2)2 +

1
2

∂u

∂y2
(y1, y2)2

]
dy1dy2

over all functions u satisfying the boundary condition. Although this is not a
problem of finite-dimensional optimization, because u ranges over a space with
“infinitely many degrees of freedom,” one does get such a problem in passing
to a discretized version or an approximate problem in which u is restricted to
be a linear combination of a certain collection of basic functions (some kind of
truncated series), as must inevitably be done in bringing numerical methods to
bear. It is obvious that this is another way that optimization problems of very
high dimension could arise. A major branch of theory has to address the question
of how an infinite-dimensional problem can be approximated better and better
by a sequence of finite-dimensional problems, what kind of convergence can be
obtained from the respective solutions, and so on.

Comments. In the study of variational principles, optimization theory can provide
interesting insights quite independently of whether a numerical solution to a
particular case is sought or not.

Classical roots: Optimization problems over function spaces have been studied
since the 17th century, and they have been very influential not only in the
discovery of variational principles but in the development of tools of analysis,
especially functional analysis and topology. This branch of the subject has
traditionally been referred to by the quaint title of the calculus of variations.
A closely related modern counterpart, to be discussed in the next example, is
the theory of optimal control.

Unilateral constraints: While the side conditions considered with classical PDE’s
are typically equations of some kind, many problems handled nowadays involve
inequalities. For instance, it may be required above that

a(y1, y2) ≤ u(y1, y2) ≤ b(y1, y2)

for certain functions a and b given on Ω. From the standpoint of the PDE,
it’s not completely clear what this is supposed to mean, but in the context of
the optimization of J(u) the meaning is evident: this condition, in addition
to the boundary condition already imposed, is to restrict further the set C of
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functions u over which the minimization is to be carried out. From the theory
of such an optimization problem, a characterization of the minimizing u can
be derived. This characterization is in the form not of a PDE as such, but
a sort of generalized PDE called a variational inequality . The point is that
optimization theory, through notions of variational principles, can provide
guidelines to the appropriate generalization of PDE’s where a direct approach,
in terms of just playing with the equation, might go astray.

EXAMPLE 5: Optimal Control

General description: The evolution of a system in continuous time t can often be
characterized by an ordinary differential equation ẋ(t) = f(t, x(t)) with x(0) = x0

(initial condition), where ẋ(t) = (dx/dt)(t). (Equations involving higher deriva-
tives are typically reducible to ones of first order by well known tricks.) Here
x(t), called the state of the system, is a point in IRn. This is descriptive math-
ematics. We get prescriptive mathematics when the ODE involves parameters
for which the values can be chosen as a function of time: ẋ(t) = f(t, x(t), u(t)),
where u(t) ∈ U ⊂ IRm. Without going into the mathematical details necessary
to provide a rigorous foundation, the idea can be appreciated that under vari-
ous assumptions there will be a mapping which assigns to each choice of a control
function u(·) over a time interval [0, T ] a corresponding state trajectory x(·). Then,
subject to whatever restrictions may be necessary or desirable on these functions,
one can seek the choice of u(·) which is optimal according to some criterion. Al-
though such a problem would be infinite-dimensional, a finite-dimensional version
would arise as soon as the differential equation is approximated by a difference
equation in discrete time.

Particular case: an expedition to the moon. A space ship is to be sent from a
certain location on earth to land in an area on the moon. The state of the ship
at any time t can be described by a finite collection of values x1(t), . . . , xn(t),
which may include position coordinates, velocity coordinates, and other aspects
of deployment in flight related to orientation, spin, etc. The state is thus a
vector x(t) ∈ IRn. Without intervention, the ship would move in a deterministic
manner according to some ODE dictated by the laws of mechanics, but influence
can be exerted through the firing of various rockets incorporated in the ship, for
which there is some amount of control over the angle and thrust. To look at this
figuratively, imagine a control panel with m levers which can be set at positions
between 0 and 1. A point u(t) = (u1(t), . . . , um(t)) in the cube U = [0, 1]m ⊂ IRm
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specifies the positions of all the levers. Once a function u : [0, T ] 7→ U has been
chosen, the trajectory x followed by the space ship will be completely determined
over the time interval [0, T ] as the solution to an ODE ẋ(t) = f(t, x(t), u(t)) with
x(0) = x0. Restrict attention now to the class of control functions u such that
the final state x(T ) has its position coordinates in the targeted area of the moon,
its velocity coordinates all 0, and so forth; this will be a constraint of the form
x(T ) ∈ E. Further make restrictions like x(t) ∈ X(t) ⊂ IRn, for instance to ensure
that the trajectory of the ship does not penetrate the earth or the moon. Over
the control functions so described, the problem is to minimize some expression
like

J(u) =
∫ T

0

g(t, x(t), u(t))dt

giving the cost of the control, say. Other possibilities include looking for a control
function that gets the ship to its destination in the least time, for instance.

Comments.

Control in discrete time: Very similar problems can be set up in discrete rather
than continuous time, not just as an expedient for numerical purposes, but as
appropriate models in themselves. Such problems are finite-dimensional. A
case in point is the inventory problem in Example 2, where the xtj ’s are state
variables and the utj ’s are control variables.

Stochastic version: The system being guided may be subject to random distur-
bances, which the controller must react to. Further, there may be difficulty
in knowing exactly what the state is at any time t, due to the shortcomings
of sensors and measurement errors (another random effect). Control must
then be framed in terms of mappings which give the response at time t that
is most appropriate to the particular information available right then about
x(t). This is the formidable subject of stochastic optimal control , which at
present is only able to cope with rather special cases.

Adaptive version: Also very interesting as a mathematical challenge, but largely
out of reach of current concepts and techniques, is adaptive control , where
the controller has not only to react to unexpected events but learn the basics
of the system being controlled as time goes on. This is a bit like getting
behind the wheel of a car in bad weather when the roads are icy. In choosing
the control function, the desire to arrive at the destination in the quickest
manner compatible with the configuration of the roads and hills may have
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to be compromised with time spent on “test skids” to see what the tires can
take. A major difficulty in this area is the clear formulation of the objective in
the optimization, as well as the identification of what can or can’t be assumed
about the imperfectly known system.

Control of PDE’s: The state of a system may be given by an element of a function
space rather than a point in IRn, as when the problem revolves around the
temperature distribution at time t over a solid body represented by a closed,
bounded region Ω ⊂ IR3. The temperature can be influenced by heating or
cooling elements arrayed on the surface of the body. How should these ele-
ments be operated in order to bring the temperature of the body uniformly
within a certain range—in the shortest possible time, or with the least expen-
diture of energy?

EXAMPLE 6: Optimal Scheduling

General description. Choices must be made about the order in which certain ac-
tions ought to be taken, as well as scope of the actions. Decisions may concern
not only the values of continuous variables but discrete variables, which can take
on only integer values, or even logical variables, which are limited to 0 and 1.
There may thus be a mixture of finite-dimensional optimization and combinato-
rial optimization. Many such problems are almost intractable, even when posed
in just a halfway realistic form, but there are notable exceptions.

Particular case: flight scheduling. An airline must set up its weekly schedule
of flights. This involves specifying not only the departure and arrival times but
the numbers of flights between various destinations (these numbers have to be
treated as integer variables). Constraints involve, among other things, the avail-
ability of aircraft and crew and are greatly complicated by the need to follow
what happens to each individual plane and crew member. A particular plane,
having flown from Seattle to New York, must next take off from New York, and
it can’t do so without a certified pilot, who in the meantime has arrived from
Atlanta and gotten the right amount of rest, and so on. Aircraft maintenance
requirements are another serious issue along with the working requirements of
personnel based in different locations and having to return home at specified
intervals. The flight schedule must obviously take into account the passenger
demand for various routes and times, and whether they are nonstop. To the
important extent that random variables are involved, not only in the demands
but in the possibility of mechanical breakdowns, sick crew members and weather
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delays, various recourses and penalties must be built into the model. Somewhere
in this picture there should be an approach to scheduling which optimizes rela-
tive to cost or profit, say, but the example illustrates the great difficulties that
can arise in formulating mathematically the appropriate objective as well as the
constraints.

Comments. Successful solution of problems in this vein depends usually on a mar-
riage between techniques in ordinary “continuous” optimization and special ways
of handling certain kinds of combinatorial structure. One of the main areas in
which there have been strong achievements and interesting theoretical develop-
ments is that of networks (directed graphs). Remarkably many problems can be
set up and solved in terms of network flows and potentials.

Overview of areas of optimization: Because this course will concentrate on finite-
dimensional optimization (as in Examples 1, 2, and 3), infinite-dimensional applica-
tions to variational principles (as in Example 4) and optimal control (as in Example
5) will not be covered directly, nor will special tools for applications involving integer
variables or combinatorial optimization (as in Example 6) be developed. Still, many
of the ideas that will be dealt with here are highly relevant as background for such
other areas of optimization. In particular, infinite-dimensional problems are often
approximated by finite-dimensional ones through some kind of discretization of time,
space, or probability.
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