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Part 1
INTRODUCTORY IDEAS

1 States and Controls

In mathematical modeling the concept of a “state” is very general, but it
typically refers to a specification of the quantities that fully describe, at a
particular moment in time, the system being modeled. For our purposes
here, this will mean the specification of a vector z = (z1,...,z,) in the
space R".

For example, in describing the solar system on an elementary level in
terms of only the nine planets, we might have x consist of three position
coordinates and three velocity coordinates for each planet. This is because
the specification of these coordinates at any particular time is supposed
to determine by the laws of classical mechanics all future positions and
velocities of the planets through the effects of gravity. A state of the solar
system would then be a vector in R%%.

The state of an economy, like that of the United States, might be iden-
tified with a vector having thousands of components. These components
could give the current amounts of amounts of employment in various sec-
tors, the current inventories of various goods, interest rates for various types
of borrowing and lending, and so forth.

Our interest is drawn not just to one fixed state, but to the way that
states may change or evolve in time. We usually want to think therefore of
a varying state z(t) = (z1(t),...,Z,(t)), which can be pictured as a moving
point in R™. Fundamentally then we focus on the study of a function from
some real interval [tg,?1] to R™, which is called a state trajectory.

This trajectory could be denoted again simply by the symbol z, but to
avoid confusion over the point of view being taken at any moment, whether
that of a single vector or a vector-valued function, it is often helpful to write
z(+) in the latter case. Derivatives of z(t) with respect to ¢, when they exist,
are denoted by &(t), Z(t), ...

The evolution of states is very often governed by differential equations
with initial conditions, such as

&(t) = f(t, (1)) with z(t) = ao,

Z(t) = f(t,z(t), 2(t)) with z(to) = ao, ©(to) = ao,



which are said to be of first order, second order, and so forth. Under fairly
general assumptions, which will be discussed later, such an equation with
initial conditions determines a unique trajectory z(-). Of course this kind of
evolution is utterly deterministic. Possibilities for controlling the evolution
can be introduced, though, as will be seen presently.

Example: An object moved by forces. Let z(t) denote the position
of the object in R3. Let m be its mass, and let the force vector acting at
time ¢ and position z(t) be ¢(t, z(t)). Then, according to Newton’s Law, the
motion of the object will be governed by

#(t) = m™Lo(t, z(t)), with z(ty) = ag, &(to) = ao.

The initial position ag and initial velocity ag will thus determine the position
z(t) at all times ¢ > .

It may be possible, however, for us to alter the magnitude or direction
of the force in order to influence how the object moves. Let us model this
capability by saying that the force exerted at time ¢ depends not only on
t and the current position, but on a vector u(t) € R? whose components
are parameter values that we may specify as functions of ¢. For instance,
these parameters might represent the settings on various levers or dials that
operate a piece of equipment. The differential equation then takes the form

#(t) = m™ro(t, z(t), u(t)) with 2(tg) = ag, (o) = ao-

We choose the function u(-), and a certain trajectory z(-) results—depending
of course on the initial position ay and velocity ag, which likewise could be
subject to our choice.

Control of general dynamical systems. Any system governed by
an ordinary differential equation can be expanded to a control system by
introducing additional variables—called control variables in contrast to the
given state variables. The control variables are the components of a vector
u = (u1,...,uq) in a control space R%. The differential equation then takes
a form such as

z(t) = f(t, z(t),u(t)) with z(tg) = ao,

B(t) = f(t,2(1), (), u(t)) with z(to) = ao, #(to) = ao,

or perhaps something of still higher order. Luckily it’s not necessary to
develop the theory with all these different orders of differential equations



running parallel to each other, which would be very burdensome. First
order covers everything, because of a standard trick.

Recall that for the second-order equation just written we can achieve a
first-order formulation by introducing a new state vector y(t) = (y1 (%), y2(t)),
where y; stands for z and gy for . In this manner we get an equivalent
equation in R%™:

9(t) = g(t, y(t),u(t)) with y(to) = bo,

where by = (ag, dg) and

g(tayau) = g(taylayQau) = (y27f(t7y17u))'

In the case of the object moved by forces, the new state vector would be
comprised of the position and velocity vectors of the object and would be
an element of RS.

For ordinary differential equations of order higher than 2, the reduction
to the first-order case follows a similar pattern.

Constraints. Working with a control system
z(t) = f(t,z(t),u(t)) with z(t9) = ao,

we may want to achieve a certain specified state a; at a later time time t;:
z(t1) = a1. This would be a terminal constraint. More generally such a
constraint could take the form z(¢;) € Ej, or even (t1,z(t1)) € E; in the
case of variable t1, where the set E; might be defined by a collection of
equations or inequalities.

There could be restrictions on the control parameter values at our dis-
posal, as represented by control constraints:

u(t) € U, or u(t) € U(t), or u(t) € U(t,z(t)).

A simple example of the first case can be found in the control of forces by the
equipment that generates them. Each control variable u; might be imagined
as ranging over an interval which corresponds, say, to the possible positions
of a certain lever or the settings of a certain dial. The intervals can all be
normalized to [0, 1] by a change of scale. Then U = [0,1] x ... [0, 1].

The general third case of control constraints, where u(t) € U(t, z(t)), is
said to involve partial feedback. The trajectory z(-) depends on the chosen
control function u(-), but the control vector u(t) at time ¢ is restricted to a
set that depends in part on the current state z(t).



An example of such forced partial feedback in control can be seen in the
modeling of an inventory system, where the components of z(¢) represent
the supplies of various goods being kept in a storage facility, say, while
the components of u(t) describe activities like production, consumption or
maintenance of these goods. The extent of the activities could be affected
by the current supplies. For instance, if the capacity for storing a particular
type of good is completely used up, then for the time being no more of that
good can be added to the inventory. Another possibility is that storage of
a particular good requires a lot of maintenance effort, and this restricts the
amount of effort that can be devoted to processing a different kind of good
into or out of inventory. Budget limits could place joint restrictions on z(t)
and u(t) too.

Besides control constraints there could be state constraints of the form

z(t) € X, or z(t) € X(t).

Controllability. An obvious question under all these circumstances
is whether there even exists a control function u(-) which, along with the
corresponding trajectory z(-) obtained from the differential equation and
initial condition, satisfies all the given constraints. This is the issue of
controllability. A substantial part of control theory is devoted to the study
of controllability. One hopes, of course, to have posed the situation and
model in such a way that controllability is present.

Then, however, a second issue arises. Usually there will be more than one
control function for which all the conditions are met, and we have to decide
which such function should be selected. An opportunity therefore arises for
optimization: We can try to choose the u(-) that is “best” according to some
criterion.

Objectives. One simple concept of optimality in the case of a terminal
constraint like (t1,x(t1)) € Ej is to have this condition be achieved with the
lowest possible value of ¢; > ty3. Such would be a minimum time problem of
optimal control. More generally one could try to choose the control function
to minimize an expression of the form

t1
[ folt,a(®), u(®)dt + k(tr,a(t2).
0

Either of the functions fy or k in this expression could vanish. The case
where fy vanishes and k(t1,z(t1)) = t; is the one of minimum time, as
already described. In some applications the integral term could be related



to energy, more specifically to the amount of work performed. Or it could
represent accumulating “costs,” in contrast to the final cost given by the
term at time ¢q.

Control theory as a branch of optimization. The framework we
have arrived at is one where a set U of control functions u(-) is specified
by various constraints, and over this set U, if it is nonempty, a certain
“cost” expression is to be minimized. (It would equally be possible to speak
of maximizing something, of course, but minimization is adopted as the
standard formulation.) In this we have a typical problem of optimization,
with its questions of feasibility and optimality. Feasibility is studied more
specially under the heading of controllability. Optimality is studied in terms
of finding useful characterizations of the control functions and trajectories
that achieve minimal “cost.”

Optimal control problems are distinguished from other kinds of opti-
mization problems, however, in several important respects. Chief among
these is the fact that the set I/ over which the minimization takes place is a
set of functions of time, normally continuous time. Further, the constraints
defining this set involve a differential equation. We are concerned therefore
with infinite-dimensional optimization.

The specification of the particular function space in which to work be-
comes an important consideration in such a context. Mathematical techni-
calities take on a much larger role than in other branches of optimization
such as nonlinear programming.

Note that the question of whether we are free to choose the terminal time
t1 as part of the specification of the control function u(-), or whether #; is
fixed for us in advance, poses a serious complication in the choice of function
space. Most of the standard function spaces are linear spaces (vector spaces)
involving functions over a fized interval. Two control functions defined over
different time intervals can’t be added together and therefore can’t ordinarily
be regarded as belonging to the same standard space. Fortunately it is
possible to develop much of the theory as if t; were fixed and then by various
mathematical devices derive from it the results desired for problems in which
t1 is not fixed.

2 Open—Loop Versus Closed—Loop Control

The overview of control theory given so far is one-sided. It neglects one of
the most crucial ideas in the subject, that of feedback. We have mentioned



that situations may arise where the control vectors available at a particular
time may be subject to restrictions that depend on the current state. More
important, though, is that we may wish to develop the solution to an optimal
control problem in the form of a feedback law:

u(t) = c(t, z(t)).

Such a law represents a way of automatically executing the solution to a
control problem by means of a mechanism that engineers could build into a
system. Instead of imagining that we first turn our computers to minimize
a cost expression over a set U of control functions to get an optimal u(-),
and then plug this u(-) into the control equation to get

&(t) = g(t, x(t)) with g(¢,z) = f (¢, z,u(t)),

we imagine replacing the given control system by a deterministic system

z(t) = g(t, z(t)) with g(¢,z) = f(t,z, c(t, z)).

This needs some explanation. From the usual optimization point of view
we would be focusing on a single problem where the initial time ¢y and state
a are fixed. The solution to the problem would be a control function u(-), not
necessarily unique, which is calculated in advance and then “implemented.”
We would make no input during the implementation itself; the system would
just follow the trajectory we have prescribed.

There are difficulties with such an approach in practice. It only tells us
what to do for a single choice of initial time and state. If we were to change
our minds, or try to solve slightly different problem a little later, we would
have to carry out the entire computation all over again. Most seriously,
the approach relies too heavily on the deterministic framework and doesn’t
allow us to make corrections based on random events or errors that might
intervene during implementation. It does not seem to be the right way to
be thinking about controlling an actual complex system in real time.

Quite possibly we don’t know with absolute certainty what the state of
the system is at any given moment. The presumed initial state may have
been obtained from measurements that are subject to inaccuracies. If after
following the implementation of a control u(-) for a while we see that the
system doesn’t seem to be doing what it is supposed to, shouldn’t we be
able to take some recourse, and if so, how?

Our need for recourse increases when the system is not totally cut off
from the world and may have to react to outside events that have not been



included in the model. For example, we may be trying to keep a telescope
or antenna focused on a particular target. A sudden gust of wind or a
minor earth tremor could knock it out of line. A control system would then
come into play in order to restore it to the proper position. This would be
activated with the displaced position of the telescope as the initial state. But
while the restoration is going on, another gust of wind could come along.

Random events and errors aren’t the only thing to worry about. Our
entire model of the system being controlled may be an oversimplification,
and indeed it almost should be: That is the nature of mathematical mod-
elling and one of its stunning virtues. Tremendous success can be achieved
by working with just a few key features in a situation and neglecting the
rest. Mathematics is, after all, the science of abstraction. But we hope at
the same time to be protected in some degree from the effects of oversimpli-
fication. We can’t fall into the trap of taking our model too seriously, where
practical consequences are concerned.

It is in this setting that we can appreciate the importance of having
a control law that does not require us, each time something happens or
seems threatening to go wrong, to turn on our whole optimal-control-finding
computer program again and grind out an updated control function u(-) that
is henceforth supposed to be optimal for all time. Instead we can just have
a mechanism that reads the current time t and state z(¢) of the system
from various data inputs and sensors, and on the basis of this transmits an
appropriate control vector u(t) to the controlling equipment. If a disturbance
affects the system, no matter: The mechanism will perceive the new state
and alter the control vector accordingly.

In such a case it is customary to speak of closed—loop control. The
feedback loop from states to controls is “closed.” The other case, where the
optimal control function is determined in advance and then merely plugged
in, is accordingly termed open—loop control. No feedback at all occurs from
states to controls during execution; the feedback loop is “open.”

A great advantage of the closed—loop point of view is that it suggests ways
of proceeding even in the absence of full knowledge or treatment of what
might be optimal. One can experiment with various control laws u(t) =
c(t,z(t)) to see how well they work. Through experience, one can select
a law that operates more or less satisfactorily and is reasonably easy to
implement. It is no wonder, therefore, that in closed—loop theory there is
a large emphasis on so-called suboptimal control, and that this branch of
the subject is much more heavily drawn upon by engineers than open—loop
theory. One of the most significant facts learned through applications of



control has been that relatively elementary control laws can serve well in
obtaining acceptable performance of complex systems.

We shall see, however, that closed—loop control depends very much in
concept and insight on open—loop control, which is therefore more funda-
mental. It is by studying the optimality rules in open—loop control that we
can discover the kinds of control laws that lead to the best performance and
correctly account for the presence of various constraints.

Tracking problems with penalties. These ideas can understood more
fully in the context of tracking problems in engineering. In such problems
one desires to guide a system “as well as one can” along a pre-specified
trajectory Z(-). Suppose the control system has the autonomous form

z(t) = f(z(t),u(t)) with u(t) € U, z(t) € X.

(Autonomous in referring to differential equations means time-independent:
here f, U, and X don’t themselves depend on t¢.) Let T denote the future
time marking the end of the period over which we are trying to track the
trajectory Z(-). For reasons soon to become apparent, let 7 rather than ¢y
denote the time at which we wish to start the tracking. The control system
might not have the capability of tracking the trajectory z(-) exactly, and
anyway we may have to start from some point that is not on the trajectory,
namely z(7) = a. (This may be due to a disturbance, as already explained.)
What we can attempt to do in this case is to choose the control function
u(-) to minimize a penalty cost expression

[ Iotatt) ~ 2(6) + atuteia,

where ¢(-) gives the cost associated with the choice of control vector and
p(-) assigns a positive penalty to all vectors different from 0. In our earlier
description of optimal control, this would correspond of course to choosing

folt,z,u) = p(z — z(t)) + q(u), 1=0.

In particular one might have

pz(t) — 2(1) = alz(t) - 2(t)],

where | - | denotes the euclidean norm and a > 0 is a weighting coefficient.
This sounds merely like open—loop control, but the crucial idea is that
we consider the problem not just for one initial pair (7,a), but for all such



possible pairs. In solving the problem for a particular pair (7,a), we can
expect to obtain a certain control function u,, over the interval [7,T]. Let
the initial control vector specified by this function be denoted by c(7,a);
thus ¢(7,a) = urq(7). We then have in principle a control law that should
work at all times and in all states: u(r) = ¢(7,z(7)), where notation can
now be changed from 7 to t.

No more than a heuristic introduction to such a way of thinking is in-
tended at this stage. There are many serious technical questions involved.
Among them: Does the control function u,, even exist? What if it is not
unique? What will be the mathematical nature of the function c(-,-) derived
in this way, and can it be legitimately substituted in the given differential
equation? We will address such questions later.

Nonetheless some lessons are apparent. The most important of these is
that the form of the closed—loop feedback law obtained through such con-
siderations depends on the optimality conditions for the open—loop control
problems solved to get the functions u,4(-).

At present, most applications of control theory to tracking problems as-
sume that the functions p and ¢ in the penalty cost expression are quadratic,
the differential equation is linear, and that constraints on controls and states
are not present at all: U = R? and X = R™. This is due to the fact that
optimal control laws can readily be calculated for this more elementary case
by what amounts to the method just described. Constraints on controls and
states truly are present, of course, in most situations, so this is an illustration
of mathematical convenience getting the better of reality.

Mathematical models don’t have to be completely realistic, or we would
never achieve anything in applying mathematics. The main test is whether
a model provides good insights and useful, reasonably reliable results when
used judiciously. Still, we should not lose sight of the route by which a par-
ticular methodology has been reached. By following the route more closely
at a later time, and with the advantage or newer theoretical ideas, it may be
possible to come up with significant improvements. This is certainly one of
the motivations for the continued study of open—loop control in association
with serious applications of control, even if on the surface it may appear less
practical than closed—loop control.

Restoration of equilibrium. The most important case of tracking
problems occurs when Z(t) = I, a point representing a state of equilibrium.
We wish to stay in this state of equilibrium and could do so, once we are
there, with the control u(t) = 0: We suppose we have f(Zo,0) = 0, so that
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the trajectory z(t) = Zo does correspond to the control u(t) = 0 in the
differential equation &(t) = f(¢, z(t), u(t)).

The question then is what to do if we should find ourselves out of equilib-
rium at time 7 in some state a # Zy. We look for an appropriate control law
that will optimally, or at least suboptimally, get us back into equilibrium.

In this situation it is especially apparent that, while optimality would be
nice, the matter of being able to move reliably back toward the equilibrium
state from wherever we are could in itself be far more important. It is the
stability of the system that is at issue. We seek a control law guaranteeing
that once a disturbance has intervened and the system is momentarily out of
equilibrium, it won’t just slip into worse and worse states until a breakdown
occurs. An example would be the control of mechanisms such as wing flaps
on an aircraft in flight.

An optimal control law that in principle did the best possible job of
restoring equilibrium would be worthless if, in practice, it were so delicate
to implement that it might fail as a result of small errors. But too much
emphasis on optimality is only potential one source of trouble. Any control
law is bound to be based on a mathematical model of the system being
controlled, and as already mentioned, this might be quite crude. While this
is often a virtue, it can also lead to danger if we become too complacent
about it. The convenience of deriving nice control laws by using quadratic
penalties and linearized dynamics, neglecting constraints on states and con-
trols, is wonderful, but it might afford too local an approximation in some
cases. The control scheme could then go awry if disturbances are larger than
anticipated.

A final comment at this point about equilibrium problems is that the
choice of a particular terminal time 7" seems rather arbitrary. For this rea-
son it often makes sense pass to the case where T' = co. One speaks then
of an infinite horizon control problem. The study of such problems requires
still greater battles with mathematical technicalities, but somewhat para-
doxically it often leads to control laws that are simpler and more agreeable
in the end.

Closely connected to this is the idea of trying to follow from any dis-
turbed state the minimum time trajectory for getting back to equilibrium,
instead of a trajectory that minimizes a particular penalty expression. Such
an approach too frees us from having to specify a finite horizon T'.
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3 Variational Problems

As mathematical theories go, optimal control theory is relatively new. It
came into its own in the late 1950’s and 1960’s. Yet it is deeply connected
with a far older subject which has been one of the most fertile in all the
history of mathematics, namely, the calculus of variations.

The calculus of variations seems at first sight to have an entirely dif-
ferent orientation, and indeed the concept of “control” never occurs in its
confines. It does concern the optimization of trajectories in R", however.
These trajectories, because they are not usually visualized as arising from
differential equations, are often referred to as arcs instead. (The word “arc”
is a sort of synonym for “parametrized curve.”)

Problems in the calculus of variations can have many forms, but the
most fundamental is that of a so-called problem of Lagrange: Minimize

t1
/ L(t, o(t), () dt
to
over all arcs z(-) (with prescribed differentiability properties) that satisfy
the endpoint conditions

z(tg) = ap and z(t1) = a1.

A vastly more general form is that of a problem of Bolza: Minimize

/:1 Lo(t, z(t), () dt + lo(to, 2(to), 1, z(t1))

0

subject to constraints

. SO forz:l T
Li(t,x(t),m(t)){ —0 fori:r,—}— 1,..,. To
<0 forj=1,...,s,
:O forj:$+1,...,80-

lj(t(), -T(tO),tla .T(tl)) {

Note that endpoint constraints in this formulation do cover the simpler ones
for a problem of Lagrange, which could be expressed as a system of 2n
equations on the coordinates of the vectors ay = (ag1,...,a0,) and a1 =
(a11,---,a1n), namely

:I,‘j(t()) — agj; = 0 and :L‘j(tl) — a1 = 0 for j = 1,. Loy
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The constraints in a problem of Bolza can also be viewed more abstractly
in the form

(t,z(t),z(t)) € D and (to,z(tg), t1,2(t1)) € E

for certain sets D and FE.

Example: A hanging cable. Classical problems in the calculus of
variations often use ¢ just as a general parameter, not necessarily interpreted
as time. For example, there is the problem of a hanging cable, fixed at both
ends and having a given length. What is the shape of the curve it assumes,
this being the curve that minimizes the potential energy? This can be set
up in various ways, but one of them is to use ¢ as the arc length parameter
along the cable, which for simplicity we can suppose not to be stretchable.
The constraints only concern fixed endpoints of the cable, so the problem
is one of Lagrange in which the ¢ interval is fixed. More generally, though,
there might be obstructions that prevent the cable from hanging freely.
Perhaps it has to drape partly over a large rock. In this case constraints
must be imposed on the positions z(¢) that can be taken on, and the problem
becomes one of Bolza. If the endpoints of the cable are not completely fixed,
e.g. because they are fastened to poles that might bend, one would get a
problem in which the endpoints just have to satisfy certain equations that
characterize the range of locations that they could taken on. If the cable is
stretchable, the ¢ interval might be modeled as variable too.

Calculus of variations as a branch of optimal control. Every
problem in the calculus of variations can be regarded mathematically as a
special case of a problem in optimal control. All we need to do is introduce
the trivial differential equation

z(t) = u(t), i.e. take f(t,z,u) = u.

Thus in the Bolza format we minimize

/t“ L(t, (t), u(t))dt + 1(to, ko), t1, (1))

0

subject to this differential equation and
(t,z(t),u(t)) € D and (tg,x(tg),t1,2(t1)) € E.

The condition (t,z(t),u(t)) € D could be rewritten notationally as u(t) €
U(t,z(t)) for a certain choice of the set U(t, z(t)).
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Optimal control as a branch of the calculus of variations. What is
less apparent, but will be quite important for us theoretically, is the converse
fact: FEwvery problem of optimal control can be formulated as a seemingly
unconstrained problem of Bolza in the calculus of variations —provided that
one is willing to admit functions L and [ that are extended-real-valued, i.e.
can take on not only real values but co. Technically this is more complicated
to achieve with rigor, but a rough sketch of the idea at this early stage will
nonetheless be helpful. It will serve to underline the essential unity of control
theory and the calculus of variations and also to point the way toward some
of the technical developments that will later have to be undertaken.

Let us first consider not a control problem, but a problem of Bolza with
constraints expressed in abstract form, as above. Such a problem can be
rewritten as a seemingly unconstrained problem of Bolza, as follows. We
define functions L and [ by

_} Lo(t,z,v) if (t,z,v) €D

Lt @ v) = { 00 if (t,z,v) ¢ D

_ l(](t(),.’L'(),tl,.’L‘]_) if (t07x07t17'7"1) € E

l(tO,u/EO’tl,«Tl) - { lf (tO,.’I;‘O,tl,fEl) ¢ E.

We then consider the problem of minimizing the expression

t1
/to Lt o(t), & (t))dt + (to, z(to), 11, z(t1))
with no constraints at all imposed explicitly on the arc z(-).

In fact this reformulated problem is equivalent to the given problem
of Bolza and merely has the constraints represented implicitly instead of
explicitly. We can’t fully justify this without getting prematurely into too
many technical details, but the crucial idea is that of representing constraints
by imposing infinite penalties when they are violated. In the reformulated
problem, we have no interest in arcs z(-) for which the expression being
minimized has the value oo. Arcs for which the expression is not oo must,
however, under the right technical assumptions and interpretation, satisfy

L(t,z(t),z(t)) < oo and I(to,z(to),t1,z(t1)) < oo.
This means of course that such arcs satisfy the desired constraints

(t,z(t),u(t)) € D and (to,z(to),t1,z(t1)) € E.
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Now let us look at an optimal control problem where the expression

/tl Folt, 2(8), u(t))dt + k(tr, 2(t1))-

to

is to be minimized subject to constraints
u(t) e Ut z(t), «(t) € X(¢), (t1,z(t1)) € B,

and of course
&(t) = f(t, z(t),u(t)) with z(to) = ao-

Let D be the set of all (¢, z,v) € R x R™ x R™ such that z € X (¢) and there
exists a vector u satisfying

u € U(t,z) and f(t,z,u) = v.

For each choice of (t,z,v) € D, let L(t,z,v) be the minimum value of
f(t,z,u) over the set of u vectors just described, but for (¢,z,v) ¢ D define
L(t,z,v) = oco. Thus L(¢,z(t),£(t)) will be the cheapest cost at which the
velocity () can be achieved by some choice of control vector at time ¢, if it
can be achieved at all, with an infinite penalty if it can’t. Similarly define
the function [ by

k t ? if t ’ ,t 9 c R X X E
l(t0,$0,t1,w1){ (b1, 21) othefrsvi:e), 1,21) {ao} 1

Our claim (heuristic for now) is that under these definitions the expres-
sion :
1

: L(t,z(t),z(t))dt + l(to, z(t1), t1, z(t1))

will take the value oo unless the arc z(-) is such that
z(to) = ao, (t1,x(t1)) € v, =(t) € X(¢),
and there exists a function u(-) with u(t) € U(t,z(t)) and f(t, z(t),u(t)) =
z(t). Moreover then the expression in question is the lowest value of
t1
fo(t, z(t), u(t))dt + k(t1, z(t1))

to

over all control functions u(-) corresponding in this way to z(-). Thus we
have a problem of Bolza whose minimizing arcs z(-) are the optimal arcs for

15



the given control problem. From any such arc z(-) it is possible to recover
the corresponding optimal control function u(-).

Nonsmooth analysis. The seemingly unconstrained problems of Bolza,
that furnish this bridge between calculus of variations problems in z(-) and
control problems in u(-) are far from being the kind covered by classical
theory. In the past, only finite functions L and | were admitted, whereas
these can take on co. Moreover they need not even be continuous functions,
much less differentiable. Classical methods that rely on taking derivatives
of L and [ can’t be applied.

All is not hopeless, though. There is now in existence a version of cal-
culus that can effectively be used in handling such functions L and [. It
is called nonsmooth analysis. (“Smoothness” is a synonym for continuous
differentiability.) This form of analysis works with generalized concepts of
continuity and differentiability that remain viable even when function values
can jump to oo. It makes possible the derivation of very general optimality
conditions that reduce to well known conditions when applied to standard
types of problems.

By means of nonsmooth analysis, a neoclassical theory of variational
problems can be built up which emulates classical theory in its fundamental
concepts but at the same time provides a solid framework for problems in
optimal control and other modern problems as well. The development of
this theory is a matter of current research, but we shall at least be able to
see the main outlines that are emerging. The new theoretical view offers
fresh insights into many important issues.

4 The Right Spaces of Functions
It may at first seem natural, in dealing with the control equation

o(t) = [t =(t),u(t)),

to assume that z(-) is differentiable and u(-) is continuous. In much of math-
ematics, especially applied mathematics, people are accustomed to taking
for granted that such properties are physically reasonable and are there for
the asking. To this way of thinking, based heavily on the traditions and
successes of classical calculus, there is hardly any point in tampering with
such fundamental assumptions, other than as a purely academic experiment.
Real systems do behave “smoothly,” if for no other reason than inherent fric-
tions and lags in response that prevent true discontinuities in performance,
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so why focus on anything less? Anyway, how could the control equation
even be interpreted if z(-) were not differentiable?

In adopting such an attitude, however, one would naively be missing an
essential feature of control models, and more generally of any mathematical
models involving optimization. When we set up a problem in terms of an
optimization model, we certainly have in mind that the problem ought to
have a solution. But whether it does have a solution or not is an issue
that can’t merely be entrusted to our intuition. It depends on technical
details about which we need to exercise caution. Wishful thinking about
the properties we imagine a solution ought to have could lead us to an
inappropriate formulation that excludes the solution we should be looking
for. Optimization problems can have unexpected complications.

Rightly or wrongly we may be confident that the real situation we are
attempting to model does yield a solution, but this is almost irrelevant as
far as our model is concerned, because we can’t be completely sure that the
model does a very good job of capturing the real situation. If we are so
confident about a solution existing, then we should look to this as a test
of the validity of our model: We should check to see that the problem we
have formulated is guaranteed by mathematics to have a solution, under
the assumptions we have imposed. If not, then we have failed to do a
good job of mathematical modeling and may have overlooked some crucial
features. Here, by the way, lies the important function of ezistence proofs
in mathematics, which is sometimes unappreciated.

Example: An emergency ride. An elementary control problem will
illustrate this point. An ambulance picks up an injured man to take him
to the hospital a short distance away. He needs to be delivered there as
soon as possible. Let us suppose the road to the hospital is straight, and
there is no other traffic. We can think of the ambulance as an object of
mass m represented by a point in one-dimensional space. Its motion is to
be controlled by forces so that, starting at rest, it will proceed from the
pick up location to the origin (the hospital) and stop there. As explained in
Section 1, the state of the ambulance at any time needs to be modeled in this
case as a vector in R?, the first coordinate giving the ambulance’s position
and the second coordinate its velocity. The ambulance must therefore be
brought from an initial state of the form (b,0) to the terminal state (0,0).
The question is how to do so as quickly as possible.

The control equation will be based on Newton’s Law of motion. We could
go through the details of setting it up, but for the purpose at hand this is
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not really necessary. It is clear that the control possibilities are essentially
of two kinds:

ui1(t) = how much the driver presses on the ambulance’s accelerator,

ug(t) = how much the driver presses on the ambulance’s brakes.

We can model the control therefore as a vector u(t) € [0,1] x [0, 1].

In this simplified situation the solution to the control problem is obvious.
The driver should begin by pressing the accelerator all the way down and
keep it that way until a certain critical moment, when he switches over to
pressing the brakes all the way down. The switch-over is timed so that the
ambulance comes to a halt exactly at the hospital. Mathematically this
means that the optimal control function will have the form

{ (1,0) fort<r,

u(t) = (0,1) fort>r,

where 7 is the switch-over time. The solution u(-) is thus a discontinuous
function; it is of a type known as a “bang-bang” control, because it makes use
only of the extreme possibilities in the control set U = [0, 1] x [0, 1]. Because
of the discontinuities in the control, the corresponding state trajectory will
exhibit discontinuities in its derivatives, and at these discontinuities certain
derivatives will fail to exist, at least in the two-sided sense.

We could, of course, adopt the view that these discontinuities are an
artifact caused by oversimplification. Truly the driver can’t instantaneously
shift his foot from the accelerator to the brakes, so the optimal control we
have found is not implementable. Our model doesn’t therefore conform to
reality. But what would be the alternative? Should we try to incorporate a
complete and accurate model of the motions of the driver’s foot? Should we
just introduce arbitrary “smoothing coefficients” into the mathematics? If
the latter, how could we claim that our model was still anything other than
a convenient mathematical approximation?

As long as we are going to introduce a mathematical approximation
anyway—which is inherent in the nature of modeling, as already discussed—
we may as well choose one that gets to the heart of the situation, which in
this case is in fact an underlying tendency to discontinuity. Although the op-
timal control furnished by such a model may not actually be implementable,
it can serve as an ideal toward which we may strive in implementation.

Piecewise continuous controls—no panacea. Examples like the
preceding suggest that we might be wise in allowing for piecewise continuous
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control functions u(-) in the equation

#(t) = f(t,2(1), u(?))-

Assuming that f itself is continuous, we would then have Z(-) piecewise
continuous. Thus z(-) would be piecewise differentiable; there could be
jumps in the derivative that cause abrupt “corners” on the trajectory.

The need for at least this much generalization was long ago recognized
even in the calculus of variations, where arcs with discontinuous derivatives
are known to occur as solutions to some problems of Lagrange in which
the integrand L is infinitely many times differentiable. Most textbooks on
optimal control proceed in terms of piecewise continuous controls. This
approach works out less simply than one might suppose, however, and it
still leaves the resulting theory vulnerable to serious questions.

The biggest question is whether solutions can be guaranteed to exist
in the class of piecewise continuous controls any more than in the class of
continuous controls. Without this, not much has been gained. A control
problem can be thought of as a kind of machine for which the input consists
of the data defining the problem, such as the function f in the dynamics, the
control set U, and so forth, and the output is the solution or set of solutions.
It is one thing to make assumptions about the input, which can be verified,
and another in the case of the output, which is not known in advance.

Many attempts at applying control theory exhibit a fundamental flaw in
logic. It is assumed that the formulated problem has a solution u(-) in the
class of piecewise continuous control functions, and certain mathematical
properties that are known to characterize a solution, if it happens to be in
this class, are then invoked. After some work, a piecewise continuous u(-) is
identified that does have these properties, and it may even be the only such
control function. The conclusion is then made that this function u(-) does
indeed solve the problem—Dbut this is erroneous. The reasoning would be
correct if we did know that the problem had a solution that belonged to the
class of piecewise continuous functions, and this was the only u(-) in that
class with the necessary properties. But we don’t usually know that.

Again we see the importance of having an appropriate existence theo-
rem before proceeding to invoke conditions on a solution. Unfortunately,
the class of piecewise continuous functions is not well disposed to existence
theory, because of certain difficulties about taking limits.

The term “piecewise” refers to finitely many pieces. Trouble arises be-
cause in proving existence of solutions one generally needs to establish some
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“compactness” property: A sequence of approximate solutions will have a
subsequence converging to a true solution. But in a sequence of piecewise
continuous functions, successive functions may involve more and more pieces,
so that the limit, in whatever sense it is to be interpreted, won’t just have
finitely many pieces.

The concept of piecewise continuous functions has other subtleties as
well, and we should pause here to give a really rigorous definition. A function
u(+) @ [to,t1] — R? is piecewise continuous if the interval [to,#1] can be
expressed as the union of finitely many closed subintervals Iy, on each of
which there is a continuous function u(-) agreeing with u(-) except possibly
at the endpoints of I;. ;From this it follows that a piecewise continuous
function has right and left limits at every point, and these are the same
except at possibly a finite number of points.

Note that the particular value assigned to a piecewise continuous func-
tion at a “jump” point does not much matter. Functions that differ only
in such respects can, for most purposes, be regarded as the “same.” Thus
in an important sense a piecewise continuous function is not just a single
function but a sort of equivalence class of functions.

We are led by this and the cited difficulties about working with piecewise
continuous functions to search for a better class of functions, and we are
prepared to accept that for such function a kind of equivalence could well
play a role too. We find just the right class in the so-called measurable
functions.

Measurable Functions. The term “measurable” is unfortunate as an
appellation for functions. It comes from measure theory, of course, but
measurable functions attract interest for reasons of their own. It is not
necessary to study measure theory to see their usefulness.

In what follows, we suppose the reader has some acquaintance already
with measurable functions and related concepts, because otherwise we would
be obliged to go into much more detail about them. Nonetheless we sketch
a more or less independent way of developing the subject, as motivated by
the applications we intend to make. This approach would not be suitable
for abstract levels of measure theory, but it does provide insights—sadly
neglected in most texts—about the nature of measurable functions of a
single real variable.

The fundamental notion is that of a negligible subset S of R. By defini-
tion this means that for any ¢ > 0, no matter how small, it is possible to find
a sequence of intervals Ij, of lengths I such that S C [J§Z; and X321} < €.
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In particular if S contains only countably many points, e.g. if S is finite or
empty, then S is negligible. It can be shown on the basis of the definition
that the union of countably many negligible sets is still negligible.

Two functions from [tg,#;] to R? are regarded as equivalent if they dif-
fer only on a negligible subset of [tg,?1]. This is often expressed by saying
that they agree a.e., where the abbreviation “a.e.” stands for “almost ev-
erywhere” and is always to be interpreted as referring to an exceptional set
that is negligible. For example, piecewise continuous functions that differ
only at a finite number of jump points agree a.e. and are thus equivalent in
the sense just introduced.

A sequence of functions u”(-) (we shall typically use v, the Greek letter
“nu,” as the index for sequences) is said to converge pointwise a.e. on [tg, 1]
to a function wu(-) if

lim u”(t) = u(t) for almost every t € [tg, 1]

V—oQ

For example, the functions u”(t) = sin” 2wvt on [0,1] converge pointwise
a.e. to the function u(t) = 0, but there are countably many points ¢ where
convergence does not take place.

Now we come to the main characterization of measurable functions for
our context—this could actually be used as a definition of measurability. A
function u(-) : [to,t1] — R® is measurable if and only if there is a sequence
of continuous functions u”(-) that converges to u(-) pointwise a.e. Moreover
this characterization remains true if “continuous” is replaced by “piecewise
continuous” or by “piecewise constant” —piecewise constant functions are
(vector-valued) step functions.

We shall not furnish a proof of this characterization here. (It follows
from a well known theorem of Lusin.) Rather we adopt it as the criterion
for measurability that we use in demontrating things about the concept.
In terms of this criterion, for example, one can readily verify the following
standard facts:

e If a sequence of measurable functions u”(-) converges pointwise a.e. to
a function u(-), then u(-) is measurable.

e A vector-valued function is measurable if and only if each of its real-
valued component functions is measurable.

e Sums and scalar multiples of measurable functions are measurable. In
the real-valued rather than vector-valued case, the same is true also
for products and quotients (where nonzero).
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e The pointwise supremum or infimum of a finite (or countable) collec-
tion of measurable real-valued functions is again measurable.

e If the interval [tg,%1] is expressed as the union of finitely many (or
even countably many) disjoint subintervals Iy, and the function w(-)
on [tg,t1] is defined by u(t) = ug(t) for all ¢t € I, where each ug(-) is
measurable, then u(-) is measurable.

o If v(t) = h(u(t)) where u(-) is measurable and h is continuous, then
v(-) is measurable.

In the last assertion, it is important that i be continuous and not just mea-
surable. Otherwise the conclusion could fail. A more general composition
result, involving v(t) = h(t, u(t)), will be proved in Section 1 of Part 2.

Integration. Although we shall not say much about integration theory,
a few reminders about the role of measurability may be helpful. For the
most part, it is enough to speak of real-valued and extended-real-valued
functions, because vector-valued functions can always be broken down into
their real-valued component functions.

The main thing is that the definition of an integral ftzl f(t)dt requires,
as a precondition, that f(¢) be measurable in ¢t. Measurability is normally
not enough by itself, though, for the integral to be well defined. One case
where it is enough is the case of f(¢) > 0 for almost every ¢. Then the
integral is a uniquely determined number in [0, 0o], and it is 0 if and only if
actually f(t) = 0 for almost every ¢t. More generally, if f is not nonnegative
but satisfies f(t) > —p(t) for almost every ¢, where p is a nonnegative
function with ft’;l p(t)dt < oo; then the integral of f is a well defined number
in (—o0,00|. Similarly, of course, if f(t) < p(t) for almost every ¢, then
the integral of f is a value in [—o0, 00). If actually |f(¢)| < p(t) for such a
function p, then the integral of f is necessarily finite. In this case, f is said to
be a summable function. Thus f is summable if and only if ft';l |f(t)|dt < oco.
The integral of f is the same as the integral of any function equivalent to f.

A fundamental convergence result for integrals is provided by Fatou’s
Lemma:

If the extended-real-valued measurable functions f*(-) satisfy f¥(t) >
g(t) for almost every t, where g(-) is summable, then

lim inf Jofr)dt > [ liminf f*(t)dt.
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Likewise, if f¥(t) < h(t) for almost every t, where h(-) is summable,
then

limsup [ f¥(t)dt < [} limsup f*(t)dt.
V—r00 V—r00

By combining these two statements in the case where actually lim,, o, f*(t) =
f(t) for almost every ¢, one obtain the convergence of fti)l fY(t)dt to ttol f(t)dt.
This is the Lebesgue dominated convergence theorem. It can be stated as
follows in the general vector-valued case.

If a sequence of measurable functions w”(-) converges pointwise
a.e. to a function w(-) and satisfies |w”(t)| < p(t) a.e. for all v,
where p(-) is summable, then

t1 tl
lim [ w”(f)dt — / w(t)dt.

V—00 to to

This theorem, in conjunction with the characterization of measurable func-
tions as pointwise a.e. limits of continuous (or piecewise continuous, or piece-
wise constant) functions, tells us by the way that the integral of a measurable
function, when it exists, can be obtained as the limit of the classically defined
integrals of approximating functions.

Function spaces. If u(t) is measurable in ¢, then so is |u(t)|, where |- |
denotes the absolute value when wu(t) is a real number and the Euclidean
norm when u(t) is a vector. This is a special case of the composition of a
measurable function with a continuous function. A function u(-) : [to, t1] —
R% is said to be essentially bounded if there is a number p, with 0 < p < oo,
such that |u(t)| < p for almost every ¢ € [tg,t1]. The lowest such number p
(it exists) is denoted by ||u(-)||oo-

The space of all essentially bounded functions u(-) : [to,t1] — R% is de-
noted by L [to,t1]. It is the main space we shall be interested in for control
functions. It contains all continuous and piecewise continuous function, in
particular. It is a Banach space under the norm || - ||s, which means of
course that it is a linear space (closed under addition and scalar multipli-
cation) in which any sequence of elements u”(-) that is a Cauchy sequence
converges to some element u(-):

[[u”(-) — u(-)||oo = 0 as v — oo.

(The sequence is Cauchy if for every € > 0 there is an index vy such that
for all v,/ > vp, one has |[u” (-) — u”(")||e0 < €.)
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Other standard spaces, of course, are the Lebesgue spaces EZ[to, t1] for
1 < p < oo, which consist of the functions u(-) — R? having fé}l lu(t)|Pdt <
oo. Each of these is a Banach space with norm ||u(-)||, = [fti)l lu(t)|Pdt]'/P.
In particular, the space Eb[to,tl] consists of all the summable functions
u(-) = R%. Strictly speaking, these spaces consist of equivalence classes of
functions that agree almost everywhere, rather than of individual functions;

We shall denote by AP[tg,t1] the space of functions z(-) : [to,t1] — R"™
such that

t
z(t) =a+ [ v(r)dr for some v(-) € LP and a € R".
to

Such a function is necessarily continuous with z(¢p) = a and has the property
that for almost every ¢, ©(t) exists and equals v(t).

The functions in Al [tg,#1] are the so-called absolutely continuous func-
tions, whereas the ones in A$°[to, t1] are known to be the Lipschitz contin-
uous functions z(-). The latter functions, which will concern us the most
in the context of control, are characterized by the existence of a constant
A > 0 such that

lz(t') — z(t)] < Mt' —¢| for all ¢,¢' € [to,t1].

In fact, A has this property if and only in A > ||Z(-)]|o-
The norm on A} [tg, 1] is taken to be

2O = fz (o)l + 121,
whereas the one on AP[to, 1] is
lz()lloo = max{|z(to)], |2 (-)loo}-
More generally, on AP [ty,t1] for 1 < p < oo we would have
1lzO)llp = [2(o)” + [12()| 517

In each case the norm gives us a Banach space.
The space of continuous functions z(-) : [tg,t1] — R"™ will be denoted by
Cnlto,t1]. Obviously

Ato, t1] C Cplto, t1] C L[to, t1]-

The norm on Cy[to, 1] is the same as the one on L9°[to, 1], namely || - ||co,
and under this Cy,[to, 1] too is a Banach space.
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