Part 2
DYNAMICAL SYSTEMS

1 Control of Differential Equations

The equation &(t) = f(t,z(t), u(t)) can be studied by fixing the control func-
tion u(-) and looking at the ordinary differential equation () = g(¢,z(t))
for the function g(t,x) = f(t,z,u(t)). The standard elementary theory
of ordinary differential equations can’t be applied, however, because that
would require g(¢,x) to be continuous in ¢. Continuity won’t be available if
in obtaining g we allow u(t) merely to be measurable in t.

First therefore on our agenda is a statement of conditions guaranteeing
that an ordinary differential equation under weaker assumptions than con-
tinuity in ¢ has a unique solution. It is important for our purposes that the
solution exist not just over an unknown small interval [to, %o + €] but over
the entire given interval [tg,¢;]. This requires additional assumptions.

Derivative notation. For a vector-valued mapping A : R* — R™
with h(z) = (h1(x),...,hn(z)), we will denote by Vh(z) the m X n matrix
of first partial derivatives of h(z) with respect to the components of z =
(z1,...,2n). The rows of Vh(z) are thus the gradients Vh;(x). This matrix,
which is called the Jacobian of h at z, can be used to express directional
derivatives of h.

By definition, of course, the mapping h is differentiable at z if the dif-
ference quotient mappings

ks(w) = [h(z + sw) — h(z)]/s for s #0

converge to a linear mapping k : R — R™ and do so uniformly over all
bounded sets of w. (The latter means that for any € > 0 and any bounded
set W, there exists § > 0 such that |ks(w)—k(w)| < € for allw € W when s €
(0,6).) The limit is then denoted by h/(z;w). Continuous differentiability
of h means that this limit depends continuously on z. It is equivalent to
having Vh(z) exist and depend continuously on z, in which case one has
b (z;w) = Vh(z)w.

For any matrix A € R™*", such as A = Vh(z), we shall take the norm
|A| to be given by

|A| = max |Aw|/|w| = max |Aw|.
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Lipschitz continuity. In the theory of differential equations and else-
where, the concept of Lipschitz continuity has a strong role. A mapping
h: R™ — R™ is said to be Lipschitz continuous on a set Xg C R™ if there is
a constant A\ > 0 such that

|h(z') — h(z)| < M|z’ — =| for all z,z' € X,.

An important fact is that h does satisfy this condition relative to a convex
set Xy if h is differentiable with |Vh(z)| < X for all z € X,.
This follows from the mean value theorem: In setting

0(s) =w-h((1 —s)z + sz’)
for any z,z’ € X, and any choice of w € R™, we get
(df/ds)(s) = w - Vh((1 — s)z + sz')(z' — z) for 0 < s < 1,

so that for some o € (0,1) we have

w- (h(z') —h(z)) = 6(1)—06(0) = (do/ds)(o)

= w-Vh((1-0)z+oz')(z' — )

and consequently

lw- (h(z') = h(z))| < |w||[Vh((1 - o)z +0z')||z’ — 1

< Awlle' 2.

This being true for every w, we can in particular take w = h(z') — h(z)
and obtain the inequality claimed. (The convexity of X is needed so that
the point (1 — s)z + sz’ will remain in Xy for 0 < s < 1 and give us
V(1 - 5)z + sa/)] < \)

Note that if A is continuously differentiable and the set X is closed and
bounded, then the norm |Vh(z)| as a continuous function of z is indeed
bounded above on Xy by some A.

Theorem 2.1 For the function f : [to,t1] X R™ — R™ suppose that
1. f(t,z) is measurable in t for fized z and differentiable in x for fized t.
2. For any bounded set Xy C R", there is a constant X > 0 such that
|Vef(t,z)| < X a.e. int € [ty,t1] for every z € Xo.
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3. There is a constant p > 0 such that |f(t,z)] < p(l + |z|) a.e. in
t € [to,t1] for every z € R™.

Then for each a € R™ there is a unique trajectory z(-) € AX[to,t1] such that

z(t) = f(t,z(t)) for a.e. t € [to,t1], and z(ty) = a.

Some observations about the conditions in this theorem can help in ap-
plying it. If the first partial derivatives of f(¢,z) in = depend continuously
on t and z jointly, then |V f(t,z)| depends continuously on (¢,z) and is
bounded above on [ty,t1] x X for any bounded set Xy, € R™. In this case
the second assumption in Theorem 2.1 is indeed satisfied.

If Assumption 2 in Theorem 2.1 holds globally, that is to say not just for
bounded X but for Xy = R", then f(¢, x) is globally Lipschitz continuous in
z essentially uniformly in ¢: There is a constant A such that for all z, 2’ € R,

If(t,x") — f(t,z)| < Nz’ — x| for a.e. t € [to,t1]-

In this case if in addition the function f(-,Z) belongs to L°[ty, 1] for at
least one z € R™, the third assumption in Theorem 2.1 will be satisfied too.

The proof of Theorem 2.1 will require the following fact about the preser-
vation of measurability under composition. This fact will also be useful to
us later.

Proposition 2.2 Let h : [ty,t1] X R™ — R™ be such that h(t,w) is measur-
able in t for fired w and continuous in w for fized t. (Note: These are called
the Carathéodory conditions on the mapping h.) Suppose v(t) = h(t,w(t)),
where w(t) is measurable in t. Then v(t) is measurable in t.

Proof. Our argument will use the characterization of measurability
discussed in Section 4 of Part 1. Because w(-) is a measurable function, it is
the pointwise a.e. limit of a sequence of piecewise constant functions w"(-).
Let v¥(t) = h(t, w"(t)). We have

Uli)rgo h(t,w"(t)) = h(t,w(t)) a.e. t € [to, 1]
by the continuity of h in its second argument. Therefore the functions
v”(-) converge pointwise a.e. to v(-). If we can demonstrate that v”(-) is
measurable for each v, we will be able to conclude that v(-) is measurable.
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Fix v. Because w”(-) is piecewise constant, the interval [to, 1] can be
partitioned into finitely many subintervals I} on which w”(-) has a constant
value wy. Define v} (t) = h(t,w}). Then v}(-) is a measurable function by
the measurability of A in its first argument. We have

v (t) = vj(t) for t € I},
so v¥(+) is indeed measurable. O

The following growth property is very useful in proving Theorems 2.1
and 2.5.

Proposition 2.3 Let z(-) € AX°[to,t1] satisfy the estimates
|z(t)] < po(t) + pa(t)|z(t)| for a.e. t € [to,t1] and |z(to)| < «,

for certain functions po(-) and pi(-) in L3°[ty,t1] and a constant o > 0.
Then
|z(t)| < p(t) for all t € [to,t1],

where p(-) is the unique solution to the linear differential equation

p(t) = po(t) + pa(t)p(t) for a.e. t € [to, t1], p(to) = e,

namely i
p(1) = (o + fo(t) e

with fi1(t) = ftz pi1(s)ds and jig(t) = ftf) e (8 o (s)ds.

Proof. Let &£(t) = |z(¢)|. The function £(-) is Lipschitz continuous
on [tg, 1], because it is composed of the Lipschitz continuous function z(-)
and the euclidean norm | - | (which is Lipschitz continuous with modulus 1:
16| = |a|| < |b—al). Thus £(-) € A$[to,t1]. In particular £(t) exists for
almost every ¢ € [tg,t1]. On the open subset of [tg,t1] where £(t) > 0, it
is clear from the ordinary chain rule that £(t) = @(t) - z(t)/|z(t)| wherever
z(t) exists (which is a.e.). At points ¢ strictly between ¢y and ¢; where
£(t) = 0, we must have £(t) = 0 if £(t) exists at all, because these are points
at which the function &(-) achieves its minimum over [tg,?1]. From these
facts it follows that £(t) < |&(t)| for a.e. ¢ € [to,t1]. Therefore

§(t) < po(t) + pa(H)E(t) ae., and &(to) < a.

27



Consider now the function (t) = £(t) — p(¢). This has
0(to) = &(to) —plto) < a—a <0

and also, for a.e. t € [to, t1],
0(t) = £(t) — p(t) < [po(t) + m(BE®)] — [po(t) + p1()p(1)] = m ()0(D).
Then the function ¢(t) = 0(t)e () has
o(t) = (0(t) — p1()0(t))e ™D < 0 a.e. t € [to, t1]

and p(tg) = 0(ty) < 0, so ¢(t) is nonincreasing in ¢ and in particular satisfies
o(t) < 0 for all ¢ € [tg,t1]. This implies that 6(¢) < 0 for all ¢, i.e. that
&(t) < p(t) for all ¢, our desired conclusion. O

Proof of Theorem 2.1. For any function z(-) € Cy[to, t1], let M(z(-))
denote the function y(-) given by

t
y(t) =a+ : f(s,z(s))ds.
0
Our aim is to show the existence of a unique z(-) such that M(z(-)) = z(-),
i.e. a unique fized point of the mapping M. This will be the desired solution
to our differential equation.

Before proceeding, we must verify that the function y(-) = M (z(-)) is
well defined and, like z(-), belongs to Cp[to,t1], in fact to AS°[tg,t1]. By
Proposition 2.2, f(¢,z(t)) is measurable in ¢, inasmuch as z(¢) is measurable
(actually continuous) in ¢. Furthermore, by Assumption 3 in the theorem
the function v(t) = f(¢,z(t)) has

lo(t)] < p(l+ |z(t)]) for a.e. t € [to, 1],

where the function on the right is continuous in ¢ and therefore is bounded
above on [tg,t1]. Thus v(-) belongs to L°[to,t1] and it follows that y(-) is
well defined and belongs to AS°[tg, t1], as claimed.

We show next that the mapping M has at most one fixed point, i.e.
that the differential equation can’t have two different solutions starting at
a. Suppose z(-) and z/(-) both were solutions and let 7y be the larger of the
two norms ||z(+)||ec and ||z'(+)||ec, so that z(t) and z'(t) belong for every
t € [to, t1] to the closed ball of radius ry around the origin of R". This ball
is a bounded convex set. We can apply Assumption 2 of the theorem to this
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set as Xo and invoke the property of Lipschitz continuity cited before the
statement of the theorem. This will give us a value )¢ such that

If(t,2'(t)) — f(t,z(t))] < Xolz'(t) — z(t)| for a.e. t € [ty,t1].

Counsider the function z(t) = z'(t) — z(t). It too belongs to AX[tg,t;] and
satisfies 2(t) = f(t,2'(t)) — f(t,z(t)) a.e., therefore |2(t)| < Ao|z(t)| a.e. By
Proposition 2.3 (as applied to uo(t) = 0, p1(t) = A, and a = |2(t0)|) we
then have |z(t)| < po(t) for all ¢ € [to, t1], where po(t) = |z(to)|el*t0) 0. But
2(to) = 2'(to) — z(tg) = a —a = 0. Thus z(t) =0, i.e. 2/(t) = z(¢t). This
finishes the verification of uniqueness.

The rest of the proof aims at establishing existence in a constructive
manner. Any fixed point z(-) of M would in particular have

[2(8)] < [f(E2(t)] < (1 +[z(8)]) a-e. and |z(to)| = |al

by virtue of Assumption 3 of the theorem. By Proposition 2.3 (as applied to
po(t) = p1(t) = p and a = a) it therefore would have to satisfy |z(t)| < p(t)
for all ¢ € [to, 1], where

(1) = (1+ fa)el ") — 1.

Let S be the subset of Cy[tg,t1] consisting of the functions z(-) that satisfy
|z(t)| < p(t) for all t. Obviously every such function has

lz()lloo < p(t1).

We claim that M(z(-)) € S for every z(-) € S. Indeed, if y(-) = M (z(-))
with z(-) € S, we have |y(t9)| = p(to) and

9l = 17 @& 2(@)] < p(1+ |2(@)]) < u(l+ () = 4(2)

for a.e. t € [to,t1] so that |y(¢)| < p(t) for all ¢ € [tg,t1], i.e. y(-) € S.

By Assumption 2 in the theorem, as applied earlier but this time to X
equal to the closed ball of radius p(¢1) around the origin of R™, there exists
a number A > 0 such that

[f(t,z") — f(t,z)] < A|z' — x| for a.e. t € [to,t]
when |z| < p(t1) and |7'| < p(¢1) in R"™. Then

If(t,2'(t)) — f(t,z(t))] < Mz'(t) — z(t)| a.e. for z(-),2'(-) € S.
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In particular, for the functions y(-) = M(z(-)) and ¢'(-) = M('(-)), which
satisfy

t

W@ -u0] = | [ 17s26)) = s als)las
< [ 176 - foalslas
< A0 -@lds < (0= wAO) — 2]

we get [y (1) — y()|loo < (1 — t0)A||2'(:) — 2(-)||oo- In other words, the
mapping M : S — S is Lipschitz continuous with modulus (¢; — o).

Starting now from any z°(-) € S, let us generate a sequence of functions
by z¥(-) = M(z*~!). These functions all belong to S. We shall show they
converge to a fixed point z(-) of M, and this will complete the proof.

It will be enough to demonstrate convergence of z” to such an z(-) with
respect to the norm || - ||, but it is valuable to note that the convergence
will then necessarily occur also with respect to the stronger norm ||| ||| of
the space AX[to,t1]. This is because the Lipschitz bound

|f (&, 2"(2)) — f(£,2(2)] < Ala”(2) — =(2)],
when taken together with the equations
#"TL(t) = f(t,z"(t)) and (t) = f(t,z(t)) for a.e. [tg,t1],
which correspond to z¥*1(-) = M(z*(-)) and z(-) = M (z(-)), implies that
127 () — (t)| < Az () — z(t)| for ae. [to,t1].
Inasmuch as V! (¢y) = z(ty) = a, we have by definition

2" () = 2()llle = max{|z"* (k) — z(to)l, [|2"**(-) = 2()]]oc}
18741() = ()l

and therefore
N2+ () = 2()loo < All2”(-) = 2(-) |l oo-

Thus if ||z¥(-) —z()||cc = 0 we automatically also have |||z"(-)—z(-)|||oc = O
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We start now on the proof of the claimed convergence. Divide the interval
[to,t1] into &g = sp < $1 < s2 < ... < Sy, = t1, where the subintervals
I, = [sk—1, k) all have length s —sgp_1 < 1/(14 A). Observe that over each
such subinterval we have

|21 () — 2¥(t)]

t
= o) = o))+ [ (7o (6) - F(s, o)
<l () — () + [ 1F (s (s)) — Fs2 N (s)) ds

Sk—1
t
< | (sk—1) — ¥ (sp-1)| + A/ ¥ (s)) — "7 (s)|ds
Sk—1
< |2 (sg-1) — 2" (sk-1)] + (3 — s5-1)A max [z7(s) 2" (s)l,

where (sg — sg—1)A < A/(1+ A). Thus if we define = A/(1 + X) and set

a1 () — 2" (NI = max [z (s) — g (s),

with the notational interpretation that ||z**1(-) — x”(-)||£2) = 0, we obtain
the relations

e+ () = 2" ONE < [l () =2 (OIIE™ + Bll=” () — =" ()1
for k =1,2,..., where 8 < 1.
iFrom these relations we have for £ = 1 that
le () =2 NI < Bll=*() — =" (IS
and therefore by induction that
e+ () = 2" (L < Bl () — 2" (IIL-
This implies that
So2alle” () = 2" OISR < oo

and in particular that in the restricted space C,,(I1) the sequence of functions
z"(+) is a Cauchy sequence, hence converges there to a certain function that
we may denote by z1(+).

Now in general, our relations among the restricted norms give us

Sz ) = ON% < Bllle() =2 OIS
+ B Iz () — 2 OIS,
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This can be written as

V1) = 2N + (1= B) S 2 () — 2 ()Y
<EN Ll ) =2 ONE™ + Blla' () = 21D,

where 1 — 8 > 0. Thus

S0l ) =2 (I
<@=-B)E ) 2 OlI% ™ + Bllzt () =2 () ]

for all N. It follows then that
B [lz7 () = T ONE <0 = 232127 () — 2 ()P < oo

By induction, therefore, the sequence of functions = is Cauchy in every one
of the restricted spaces C,(Ix), k = 1,2,...m, and it converges in them to
functions zx(-). The latter agree at the join points and constitute a single
function z(-) in Cp[to,t1]. In each C,(I)) we have

Tim [|2* () — ()| ¥ =

and since

[12() = 2()lleo =, max_{|2”(-) = z()||&,

this gives us
. v _
Tim [|a*() — 2()]|oe = 0.

In other words, z¥(-) converges to z(-) in Cy[to, t1]. Since z*1(:) = M (z¥(-))
and M is a continuous mapping on S (actually Lipschitz continuous), we
have in the limit that z(-) = M (z(-)). Thus z(-) is a fixed point of M, and
our proof of Theorem 2.1 is complete. O

Remarks. The proof of Theorem 2.1 has established some important
facts beyond the statement of the theorem itself. It has shown for in-
stance that the uniqueness of the solution holds relative to the larger space
Al[to,t1]: if z(-) in this space satisfies the differential equation, then z(-)
actually must be in AX[tg,?1]. More noteworthy perhaps is the constructive
nature of the proof. We can start with any function z°(-) in Cy,[to, ¢1] having
2°(t9) = a, for instance the constant function 2°(t) = a, and by defining

t
' T(t) = a+/ f(s,z"(s)ds for v =0,1,...
to
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get a sequence of functions in AS°[t,t1] that converges in the norm of
AS°[to, t1] to the desired solution z(-).

Example. The case of f(t,z) = A(t)z + b(t) is that of a linear differen-
tial equation. It satisfies all the assumptions of Theorem 2.1 as long as the
components of A(t) and b(t) are measurable, essentially bounded functions
of t € [tg,t1]. One can take A = ||A(")||co and p = max{, [|b(-)||oc}-

Example. The need for Assumption 3 in Theorem 2.1, in order to obtain
a solution z(-) over the whole interval [tg,?;] instead of just some unknown
subinterval [ty,to + €], is shown by the classical equation (t) = 1 + z(t)?,
z(0) = 0, on the interval [0,7] for any ¢ > 7/2. The unique solution over
any interval [0, 7] with 7 < /2 is z(t) = arctant, and this function tends
to oo as t approaches 7/2. There is no hope then of having a solution over
the entire interval [0,7]. The critical value ¢ = 7/2 is called the escape time
for this equation. Assumption 3 makes sure that no such escape time is
encountered in the interval [tg, 1].

We are able now to answer questions about control systems by applying
Theorem 2.1 to a composite function.

Theorem 2.4 Let f : [tg,t1] x R® x R* — R™ be such that

1. f(t,z,u) is measurable in t for fived x and u, continuous in (z,u) for
fized t, and differentiable in x for fixed t and u.

2. For any bounded sets Xy C R" and Uy C R% there is a constant X > 0
such that |V f(t,z,u)| < X a.e. int € [ty,t1] for every x € Xy and
u € Up.

3. For any bounded set Uy C R? there is a constant y such that |f(t,z,u)|
< p(l+ |z|) for a.e. t € [ty,t1] and every x € R™ when u € Uy.

Then for each a € R™ and u(-) € LP[to,t1] there is a unique trajectory
z(-) € AS[to, t1] satisfying

z(t) = f(t,z(t),u(t)) for a.e. t € [to,t1] and z(tg) = a.

Proof. Fix any a(-) € L[to,t1] and define f(t,z) = f(t,z,u(t)). To

obtain our result, we need only demonstrate that f satisfies the hypothesis
of Theorem 2.1.
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Clearly f(t, ) is differentiable in z for each fixed ¢ by Assumption 1 on
f. This assumption also gives us f(¢,z,u(t)) measurable in ¢ for fixed z by
Proposition 2.2. Thus f satisfies Assumption 1 in Theorem 2.1.

Let 7 = ||4(+)||oo and take Uy to be the set of all u € R? having |u| < 7.
Then Assumptions 2 and 3 of the present theorem yield Assumptions 2 and
3 of Theorem 2.1. This is all that had to be verified. O

A particular case where Assumptions 1 and 2 of Theorem 2.4 are fulfilled
is the common one where f(¢,z,u) and V, f(t, z,u) depend continuously on
t, z and u jointly, and there is a continuous function yo : R* — R such that

|f(t,z,u)| < po(u)(1 + |z|) for all ¢ € [tg, 1],z € R™ and u € R

Example. The linear control system
z(t) = A(t)z(t) + B(t)u(t), =z(to) =a

meets the assumptions in Theorem 2.4 if the components of the matrices
A(t) and B(t) are measurable, essentially bounded functions of ¢ € [to, t1]-
This is true in particular, of course, if these components are continuous or
even constant functions of ¢.

2 Approximate Controls and Linearization

The concept of control can be seen now in terms of a mapping F that as-
signs to each choice of initial state @ and control function u(-) in L3°[to, 1]
a uniquely determined trajectory z(-) in A9°[to,t1], denoted by z(-) =
F(a,u(-)). Theorem 2.4 sets down general conditions on the control equation

z(t) = f(t,z(t),u(t)) a.e. t € [to,t1], z(to) = a,

under which this mapping F : R"™ x LP[to, t1] = AX[to, 1] is well defined.
Many questions can then be asked about properties of F that are of interest
in their own right and relevant also to a later investigation of controllability
and optimal control.

The continuity of F is obviously an important issue. Suppose z”(-) =
F(a”,u"(-)), where a¥ — a in R" and v”(-) — u(-) in LP[to,?1], that is
to say, |[u”(-) — u(-)||oc = 0. Do the functions z”(-) then converge to the
function z(-) = F(a,u(-)) in AZ°[to, t1] in the sense that |||z¥(-) —z(-)|||cc —
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0?7 This would mean that F is continuous as a mapping from the Ba-
nach space R" X LP[to,t1] (whose norm can be taken to be ||(a,u(-))|| =
max{|al|, ||u(-)||oc }, for instance) to the Banach space A°[to, t1].

The question here is really one of approximation. Suppose we want to
generate the trajectory z(-) = F(a,u(-)) but for one reason or another are
unable to implement the control function u(-). Perhaps u(-) is discontinuous,
and the mechanism we are modelling can only deal in practice with contin-
uous controls. We have to consider what will happen when we replace u(-)
by an implementable approximating control u”(-), where the approximation
gets better and better as v — oco. Another consideration might be that we
are somewhat uncertain of the true initial state a but can approximate it
by a”, where a” — a. The trajectory for v”(-) and a” is z¥(-). Will this get
closer and closer to z(-) as our approximations improve?

We have posed the continuity property of F in terms of a particular
kind of approximation for control functions, namely the one dictated by the
norm in L£3°[tg,?1]. For most purposes, however, this kind of approximation
demands too much. We cannot, for instance, in this sense approximate
a discontinuous control function u(-) by a sequence of continuous control
functions u”(-), because the limit of a sequence of continuous functions that
converges with respect to the norm || - ||o is necessarily another continuous
function.

A natural property to consider instead is that of convergence of u”(-)
pointwise a.e. to u(-). Indeed, we know that any function u(-) in the space
LP[to,t1] can be approximated in this sense by a sequence of functions
u”(+) that are continuous, or for that matter piecewise constant. This kind
of approximation can be effected even with |[u”(-)||co < ||u(-)||oo for all v, if
desired.

The next theorem shows that F behaves continuously under this broader
kind of approximation, provided that we also appropriately weaken the de-
mands made on the convergence of z¥(-) to z(-). It is no longer appropriate
to expect |||z¥(-) — z(*)|||cc = 0, which would entail ||2”(-) — (-)||cc — O.
Rather we need to look for pointwise a.e. convergence of these derivatives.

Norm convergence of u”(-) to u(-) in L [to,?1] does, of course, in partic-
ular imply pointwise convergence almost everywhere. Later, when we come
to discuss the differentiability of F, we shall return to the question of the
continuity of F with respect to the norms on L3°[tg,¢1] and AYX[to, t1].
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Theorem 2.5 For a control system
z(t) = f(t,z(t),u(t)) for ae. t € [ty,t1] and z(ty) =a

in which f satisfies the conditions in Theorem 2./, the associated mapping
F : (a,u()) = z(-) has the following property. If the initial states a” in R™
converge to a and the control functions u”(-) in LP[to, t1] converge pointwise
a.e. on [tg,t1] to u(-) with the norms ||[u”(-)||co all bounded by some number
7, then the corresponding trajectories ¥ (-) = F(a”,u"(-)) converge to z(-) =
F(a,u(-)) with respect to the norm ||-||oo as elements of Cn[to, t1], while their
derivatives ¥ (-) converge pointwise a.e. to z(-) on [to,t1].

Proof. Let oy be an upper bound for the sequence of norms |a”|. Let
Uy be the closed ball of radius r around the origin of R%, and let u be
the corresponding growth constant for f whose existence is guaranteed by
Assumption 3 in Theorem 2.4. We have u”(t) € Up a.e., so

27(8)] = [f (& 2" (8), u”(8))] < u(1 + [2”(2)]) for ae. t € [to, t1].
Applying Proposition 2.3 (with po(t) = p1(t) = p and a = «p), we see that
12V (8)| < p(t) = (ap +1)el~0" — 1 for all ¢ € [tg, t1]-

This holds for the trajectory z(-) = F(a,u(-)) too, by the same reasoning.

Let Xy be the closed ball of radius p(¢1) around the origin of R"™. Then
z¥(t) and z(t) belong to X, for all ¢ € [to,?1]. Take A to be the constant
corresponding to f, Xy, and Uy in Assumption 2 of Theorem 2.4. This
bound yields the Lipschitz estimate

|f(t, 2" (t),w) — f(t,z(t),w)| < A|z"(t) — z(t)| a.e. t for any w € Uy.

Consider now the functions y”(t) = z¥(t) — z(t). These satisfy

9”@ = |2"@) —z@)] = |f@2"(@),w"(1) = Ft,2(2),u(?))]

< |F@2"(@), v (1) — [t 2(2),u”(2))]
+ [f(E,2(2), v (1) = f(t,2(t), u(?))]
< Az"(8) = 2(8)] 4 po(t) = Aly”(8)] + w6 (2)

for almost every t € [to, 1], where the functions
po(t) = [f (8 z(t), u” () — f(E,2(2), u(®))]
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are measurable (by Proposition 2.2 and Assumption 1 of Theorem 2.4 on f)
with

[F (& 2(8), u” (@) + [f (8 2(2), u(?))]

po(t) <
< 2u(1+z(8)]) < 2u(1+p(t))

and satisfy
po(t) = 0 ae. t € [ty,t1] as v — oo.

Applying Proposition 2.3 (with uo(t) = pg(t), p1(t) = A, and a = [y” ()| =
|a¥ — al), we obtain

t
(8] < (la” ~al +/ e Ay (5)ds)e" 0 for all ¢ € [to, ]
to
and consequently
t1
||y”(')||oo < [|av _ a| +/t 6_(s_t0)’\u5(s)ds]e(t1_to)’\_
0

The properties cited for the functions u§(-) imply that the integrals
ttol e~ (571X ¥ (s)ds converge to 0 as v — oo. From this and the As-
sumption that |a” — a] — 0 we may conclude that ||y”(:)||cc — 0. But
y’(-) = x¥(-) — z(-). Therefore the functions z”(-) converge to z(-) as ele-
ments of C,[to, 1], as claimed.

At the same time we see from the inequality

|97 (@)] < Aly” ()] + 1o (2)

and the limit ||y”()||oc — O that |g¥(¢)| — 0 for a.e. t € [to,t1]. Therefore
z”(-) converges to Z(-) pointwise a.e. on [tg,?1]. O

Continuity questions are not the only ones to consider. Much of the
actual work done in control applications is concerned with linear control
systems of the form

z(t) = A(t)z(t) + B(t)u(t) for a.e. t € [to,t1], z(to) = a,

both for practical and theoretical convenience, and the question of approxi-
mation of nonlinear systems by such systems is naturally raised. It is clear
that one can always take a nonlinear expression f(¢,z,u) and replace it by
a linear one like A(t)z + B(t)u, but what does this mean in terms of the
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mapping F associated with the control system? Is there a sense in which
we can rigorously introduce such approximations as a form of “linearizing”
F? If so, what are the mathematical properties of such linearizations, and
how reliable can we expect them to be?

In calculus, the idea of linearizing a function is closely connected with
differentiation. A function on R can be approximated by replacing its graph
around a certain point by the tangent line to the graph at that point, and
in this way one obtains a linear function. It is not surprising that something
quite analogous happens in our infinite-dimensional setting.

For the moment, let us just think of F as a mapping from a space W to
another space X, both of these being linear spaces (vector spaces) supplied
with norms. The norm in each case will simply be denoted by || - ||. Later
we will take W = R"™ x LP[to,t1] and X = AC[to, t1].

The mapping F : W — X is said to be differentiable at the point wg € W
(in the sense of Fréchet) if the difference quotient mappings G, defined for
s # 0 by

Gs(2) = s [F(wy + s2) — F(wg)] for z € W

converge to uniformly on all bounded sets of W to a mapping G : W — X
that is linear and moreover continuous in the norm to norm sense. The
uniform convergence on bounded sets of W means that for any choice of
r > 0 and € > 0 there is a § > 0 such that, for all z satisfying ||z|| < r and
s satisfying 0 < |s| < d, one has ||Gs(z) — G(#)|| < €. The linear mapping G
is then called the derivative of F at wp, and the notation F'(wy; 2) = G(2)
gives the directional derivative of F at wg relative to z.

This concept gives a precise expression to the local approximation of F
by its “first order expansion,” a linearized mapping: We have

Flwg + sz) = F(wg) + sG(z)
and can write this legitimately as
F(w) = F(wo) + G(w — wo) + o(w — wo),
where o(w — wp) denotes an expression with the property that
l|w — wol| 7Y ||o(w — wo)|| = 0 as |Jw — wg|| = 0.

The issue now is whether, under some reasonable assumptions on our
control system function f, the control mapping F : R" x LP[to,t1] —
A®[to, t1] is differentiable. We shall show that it is, and that the derivative
is the control mapping associated with a system obtained by linearizing f.
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Theorem 2.6 Consider a control system
z(t) = f(t,z(t),u(t)) for a.e. t € [to,t1], z(ty) = a,

in which the function f is differentiable in u as well as x, and the Jacobians
Vif(t,z,u) and Vo f(t,z,u) as well as f(t,x,u) itself all depend continu-
ously on (t,z,u). Assume also the growth property that:

For any bounded set Uy C RY there is a constant p such that
|f(t,z,u)|< p(1+|z|) for a.e. t € [to,t1] and every x € R™ when
u € Up.

Then the mapping F : R™ x LP[to, t1] = AX[to, t1] with F(a,u(-)) = z(-) is
not only well defined by the standards of Theorem 2./, but also differentiable
at every pair (a,u(-)). Its derivative at (a,u(-)) is the mapping G : R™ X
LP[to,t1] = AC[to, t1] with G(b,v()) = y(-), where y(-) is the trajectory
corresponding to the initial state b and the control function v(-) in the linear
system

y(t) = A(t)y(t) + B(t)o(t) for a.e. t € [to,t1], y(to) =0
with

A(t) = Ve f(t,z(t),u(t)) and B(t) = Vuf(t, z(t),u(t)),
z(+) being the trajectory F(a,u).

Proof. The continuity and differentiability assumptions made here on
f are stronger than the ones in Theorem 2.4. They ensure certainly that f
satisfies the Carathéodory conditions and has |V, f (¢, z,u)| bounded above
relative to any bounded set [to, t1]x X xUy. Thus the hypothesis of Theorem
2.4 is fulfilled and the mapping F is well defined.

Fix any pair (a,u(-)) in R" < L°[to, t1] and let z(-) = F(a,u(-)). Consider
arbitrary b € R™ and v(:) € L3°[to, t1], fixed for the time being, and for each
s # 0 define z4(+) to be the trajectory F(a+ sb,u(-) + sv(-)), i.e. the unique
solution to

zs(t) = f(t,zs(t), u(t) + sv(t)) for a.e. t € [to,t1], zs(to) =a+ sb.
Further define y(t) = s [z4(t) — z(t)], so that

ys() = s [F(a+sbul) + sv(-) — Fla,u(-))].
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Our task is to show that ys(-) converges in the space AS°[to,t1] to the tra-
jectory y(-) generated by the linearized system: y(-) = G(b,v(:)). This con-
vergence must be demonstrated moreover to be uniform in the sense that
for arbitrary choice of » > 0 and € > 0 we can find a § > 0 not depending
on the particular b and v(-) as long as |b| <7 and ||v(-)||cc < 7, such that

llys(-) = y(llleo <€ when 0 < |s| < 6.

Recall here that

ys () =y ()lleo = max{[ys(to) — y(to)l, |19 (-) = ¥ ()0}

i From the definitions we have
ys(to) — y(to) = s~ [zs(t0) — z(to)] —y(to) = s 'fa+sb—a] —b=0

and

§s(t) — () = s as(t) — &(8)] - §(2)
+s7H (8 2s(1), u(t) + su(t) — f(t2(2), u(®)] - [A®)y () + B(t)v(t)]
TG 2(2) + sys(), ult) + sv()) — f(E2(2), u(?))]

=V f (4, 2(t),u(®)y(t) = Vuf (& 2(t), u(t))v().

Let us introduce the function z4(t) = ys(t) — y(t). We have z,(t9) = 0,
so that

Hys () = yllloo = [ll2s()llloo = 1125 ()] oo
It is the latter, then, whose convergence to 0 must be ascertained.
Define
9s(t,2) = sUf(t,x(t) + sy(t) + sz, u(t) + sv(t) — f(t,z(t), u(t))]
—Va f(t,z(t), u(®))y(t) — Vuf (¢, z(t), u(t))v(t).

In terms of this we have the differential equation
25(t) = gs(t, z5(t)) a.e. t € [to,t1], with zs(tg) = 0.

An analysis of the properties of this equation will produce for us the desired
conclusion that ||25()||cc — 0 and does so with a certain uniformity relative
to the choice of the underlying elements b and v().

The main fact to invoke now is the continuity of the first derivatives of
f in z and w with respect to all the variables, including ¢. This implies by
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the classical calculus of functions of several variables (via the mean value
theorem) that the difference functions

hs(t,:v,u,y,'u) = s_l[f(t,x+sy,u+8'v) —f(t,(E,’U/)]
_Va:f(ta x,u)y - Vuf(t,.’E,U)’U

converge to 0 as s — 0 and do so uniformly over any bounded set of points
(t,z,u,y,v). It follows in our setting of functions z(-), u(-), y(-), and v(-)
that for any choice of 7 > 0 and € > 0 there will be a § > 0 such that

|hs(t, z(t), u(t), y(t) + z,v(t))| < € for a.e. t € [to,11]
when 0 < [s] < 4, |2| <7, [b] <7, and ||v(:)||eo < 7

The norm on b enters in because y(-) depends on b as well as v(-); but
the vectors y(¢) will remain in a bounded region of R™ independent of the
particular choice of b and v(-) as long as |b] < r and ||v()||ec < 7 for
some fixed r. Again one can make use of Proposition 2.3. For this linear
differential equation, one has

l9@)] < [ADy@)] + [B@)[[o(2)] for ae. t € [to, £1].

(In Proposition 2.3 one can take po(t) = r|B(t)|, u1(t) = |A(t)|, and o =7
to establish the desired bound.)
Of course gs(t,2) = hg(t, z(t),u(t), y(t) + z,v(t)), so we get

lgs(t,z)| < € for a.e. t € [to,11]
when 0 < [s| < 4, |z] <7, ]b] <7, and ||[v(-)||eo < 7

Under this property we find that the function zs(-) must, by virtue of the
differential equation it satisfies, have |25(t)| < € over any interval [tg, o + 7]
on which |zs(t)| < 7. Over such an interval it then has

201 =1 [ & <e(t- )

because z5(tg) = 0. Obviously, therefore, after fixing any r > 0 and taking
¢ small enough that e(t1 —tg) < r, we will be able to select § > 0 such that,
regardless of the particular b and v(-) as long as |b] < 7 and ||v(-)||ec < T,
we will have

|zs(t)| < r for all ¢ € [to,t1] when 0 < |s| < .
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Then
|Z5(t)| < € for a.e. t € [to,t1] when 0 < [s| < 4.

In other words, after fixing any r > 0, we can find for given any € > 0 a
d > 0 such that, regardless of the particular b and v(-) as long as |b| < r and
[lv(-)||oo < 7, we will have

[125(-)]|oo < € when 0 < |s| < 4.

This is just what we needed to prove. O

Corollary 2.7 Under the assumptions in Theorem 2.6 the mapping F :
R™ x LP[to, t1] — AL[to, 1] is in particular continuous everywhere relative
to the norms on these spaces.

Proof. The definition of differentiability (in the sense of Fréchet) implies
continuity in the norms, as can readily be verified. O

Note that even though the function f is assumed in Theorem 2.6 to be
continuous with respect to t, the linearized equation that one gets will not
necessarily have A(t) and B(t) continuous in ¢. This is of course due to the
fact that the control function u(-) at which the linearization is taken might
not be continuous in t.

The concept of linearization made rigorous in Theorem 2.6 is especially
important in treating problems of keeping a system in or near equilibrium. In
the context already discussed in a preliminary way in Section 2 of Chapter 1,
let us imagine an autonomous nonlinear control equation with the property
that for a certain state zg, an equilibrium state, one has

f(i‘(), 0) =0.

Then the perturbed trajectory z(-) emanating from an initial state Zo + b
near to Ty can be approximated by z(t) = Zo + y(¢), where y(-) is obtained
by solving

y(t) = Ay(t) + Bu(t) for a.e. t € [to,t1] and y(tp) =a

where A = V,f(Z9,0) and B = V,f(z9,0). Characteristics of the ma-
trices A and B will largely determine the modes of control as long as the
perturbations remain small.
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Needless to say, when perturbations become large this kind of local lin-
earization could fail to be effective in determining how to restore the system
to equilibrium. The key ingredient to any estimate of the range of effective-
ness of the linearization would be an analysis of the actual rates of uniform
convergence referred to in the definition of the differentiability of the map-
ping F. The specific foundations for this are laid out in the proof of Theorem
2.6.
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