R 3 S

i

n

-t T

Branch and Bound

7.1 DIVIDE AND CONQUER

Consider the problem:
z = max{cz : z € S}.

How can we break the problem into a series of smaller problems that are easier,
solve the smaller problems, and then put the information together again to
solve the original problem?

Proposition 7.1 Let S = S1U...USk be a decomposition of S into smaller
sets, and let z* = max{cz : z € S} fork =1,...,K. Then z = max; z*.

A typical way to represent such a divide and conquer approach is via an
enumeration tree. For instance, if S C {0,1}3, we might construct the enu-
meration tree shown in Figure 7.1.

Here we first divide S into Sop = {r € S : z; = 0} and S; = {2 €
S:xzy =1}, then Soo = {z € So: 22 =0} = {z € S : z; = z2 = 0},
So1 = {z € So : z2 = 1}, and so on. Note that a leaf of the tree Sj,i,i; is
nonempty if and only if £ = (¢1,42,%3) is in S. Thus the leaves of the tree
correspond precisely to the points of B3 that one would examine if one carried
out complete enumeration. Note that by convention the tree is drawn upside
down with its root at the top.

Another example is the enumeration of all the tours of the traveling sales-
man problem. First we divide S the set of all tours on 4 cities into S(;2), S(13),
S(14) where S(;; is the set of all tours containing arc (ij). Then S(;4) is di-
vided again into S(12)(23) and S(12)(24), and so on. Note that at the first level
we have arbitrarily chosen to branch on the arcs leaving node 1, and at the

91

92 BRANCH AND BOUND

Fig. 7.1 Binary enumeration tree

second level on the arcs leaving node 2 that do not immediately create a sub-
tour with the previous branching arc. The resulting tree is shown in Figure
7.2. Here the six leaves of the tree correspond to the (n — 1)! tours shown,
where 1112i3i4 means that the cities are visited in the order ¢,,12, 13, i4,%; re-
spectively. Note that this is an example of multiway as opposed to binary
branching, where a set can be divided into more than two parts.

(1)

1234 1243 1342 1324 1432 1423

Fig. 7.2 TSP enumeration tree

7.2 IMPLICIT ENUMERATION

We saw in Chapter 1 that complete enumeration is totally impossible for most
problems as soon as the number of variables in an integer program, or nodes in
a graph exceeds 20 or 30. So we need to do more than just divide indefinitely.
How can we use some bounds on the values of {z*} intelligently? First, how
can we put together bound information?

F
;-
a

B

IMPLICIT ENUMERATION 93

Proposition 7;2 Let S = S, U...USk be a decomposition of S into smaller

sets, and let z¥ = max{cz : = € Sk} fork =1,...,K, Z* be an upper bound

on z* and z* be a lower bound on zF. Then Z = max, Z* is an upper bound
on z and z = maxy z* is a lower bound on z.

Now we examine three hypothetical examples to see how bound informa-
tion, or partial information about a subproblem can be put to use. What can
be deduced about lower and upper bounds on the optimal value 2z and which
sets need further examination in order to find the optimal value?

Example 7.1 In Figure 7.3 we show a decomposition of S into two sets S
and Sy as well as upper and lower bounds on the corresponding problems.

- MAX 27 25
13 2°
. _—
20 bs 25
ONES
20 15

15

Fig. 7.3 Pruned by optimality

We note first that Z = max; z* = max{20,25} = 25 and z = maxx zF =
max{20,15} = 20.

Second, we observe that as the lower and upper bounds on 2; are equal,
z1p = 20, and there is no further reason to examine the set S;. Therefore the
branch S; of the enumeration tree can be pruned by optimality. .

Example 7.2 In Figure 7.4 we again decompose S into two sets S; and S»
and show upper and lower bounds on the corresponding problems.

MAX 27 26
13 21
—_—
20 EG 26
18 21 '

21

Fig. 7.4 Pruned by bound

We note first that Z = max; z* = max{20,26} = 26 and z = max, 2*¥ =
max{18,21} = 21.

Second, we observe that as the optimal value has value at least 21, and the
upper bound Z! = 20, no optimal solution can lie in the set S;. Therefore the
branch S; of the enumeration tree can be pruned by bound. -

oy o el By e S
gt e g ‘_.;{ ‘ﬁ,‘ .'\
AL b E .- ¥

R i 13) r

i3
R
i

94 BRANCH AND BOUND

Example 7.3 In Figure 7.5 we again decompose S into two sets S; and Sz
with different upper and lower bounds.

MAX 40 37
. 13

24 37

13 13

Fig. 7.5 No pruning possible

k k

We note first that Z = max; z® = max{24,37} = 37 and z = max, 2
max{13,—} = 13. Here no other conclusion can be drawn and we need to
explore both sets S; and S, further. .

Based on these examples, we can list at least three reasons that allow us
to prune the tree and thus enumerate a large number of solutions implicitly.

(i) Pruning by optimality: 2; = {maxcz : z € S;} has been solved.
(ii) Pruning by bound: % < z.
(iii) Pruning by infeasiblity: S; = ¢.

If we now ask how the bounds are to be obtained, the reply is no differ-
ent from in Chapter 2. The primal (lower) bounds are provided by feasible
solutions and the dual (upper) bounds by relaxation or duality.

Building an implicit enumeration algorithm based on the above ideas is now
in principle a fairly straightforward task. There are, however, many questions
that must be addressed before such an algorithm is well-defined. Some of the
most important questions are:

What relaxation or dual problem should be used to provide upper bounds?
How should one choose between a fairly weak bound that can be calculated
very rapidly and a stronger bound whose calculation takes a considerable
time?

How should the. feasible region be separated into smaller regions S = S; U
... USK? Should one separate into two or more parts? Should one use a
fixed a priori rule for dividing up the set, or should the divisions evolve as a
function of the bounds and solutions obtained en route?

In what order should the subproblems be examined? Typically there is a
list of active problems that have not yet been pruned. Should the next one
be chosen on a the basis of last-in first-out, of best/largest upper bound first,
or of some totally different criterion?

NIREIUE o o . =R

BRANCH AND BOUND: AN EXAMPLE 95

These and other questions will be discussed further once we have seen an
example.

7.3 BRANCH AND BOUND: AN EXAMPLE

The most common way to solve integer prograims is to use implicit enumera-
tion, or branch and bound, in which linear programming relaxations provide
the bounds. We first demonstrate the approach by an example:

z = max4r, — Iy (7.1)
Try -2z, < 14 (7.2)

z, < 3 (7.3)

2ry — 29 < 3 (7.4)

re Z2. (7.5)

Bounding. To obtain a first upper bound, we add slack variables 3, x4, x5 and
solve the linear programming relaxation in which the integrality constraints
are dropped. The resulting optimal basis representation is:

= — H9 4.. 1. -
Z = max = —3x3 —3I4

. 1, 2. _ 20

T +7I3 +524 = =

i3] +Iq4 = -3

2 10... . .23

—-—7-2133 +—7—.L4 +rs = =

Zi, T2, I3, z4, x5 = 0.

Thus we obtain an upper bound Z = -572, and a nonintegral solution (T, T2) =

(270, 3). Is there any straightforward way to find a feasible solution? Appar-
ently not. By convention, as no feasible solution is yet available, we take as
lower bound z = —oo.

Branching. Now because z < Z, we need to divide or branch. How should we
split up the feasible region? One simple idea is to choose an integer variable
that is basic and fractional in the linear programming solution, and split the
problem into two about this fractional value. If z; = T; ¢ Z!, one can take:

S1=8Sn{z:z; <|75]}

S2 =Sﬁ{x::vj 2 l—fj-l}
It is clear that S = S; U Sy and S; NSy = ¢. Another reason for this
choice is that the solution Z of LP(S) is not feasible in ecither LP(S;) or

LP(S2). This implies that if there is no degeneracy (i.e., multiple optimal LP
solutions), then max{Z;,Z2} < %, so the upper bound will strictly decrease.

96 BRANCH AND BOUND

Fig. 7.6 Partial branch-and-bound tree 1

Following this idea, as Z; = 20/7 ¢ Z!, we take S; = SN {z : z; < 2}
and S; = SN {z :x; > 3}. We now have the tree shown in Figure 7.6. The
subproblems (nodes) that must still be examined are called active.

Choosing a Node. The list of active problems (nodes) to be examined now
contains S;,S3. We arbitrarily choose S;.

Reoptimizing. How should we solve the new modified linear programs LP(S;)
for ¢« = 1,2 without starting again from scratch?

As we have just added one single upper or lower bound constraint to the
linear program, our previous optimal basis remains dual feasible, and it is
therefore natural to reoptimize from this basis using the dual simplex al-
gorithm. Typically, only a few pivots will be needed to find the new optimal
linear programming solution.

Applying this to the linear program LP(S;), we can write the new con-
straint z; < 2 as z; + s = 2,s > 0, which can be rewritten in terms of the
nonbasic variables as

1., 2 = 6
-7 T4 +85=—7%.
Thus we have the dual feasible representation:
Z) = max —579 —%.’133 —iz,

1 2 20
I +5Z3 +5T4 =
T2 +z4 = 3
2 10 23
—%T3 +55T4 +Ts = %
1 —2 - .68
T3 7 T4 +5 = 7
z, I2, Z3, Ty, Zs, S > 0.

After two simplex pivots, the linear program is reoptimized, giving:

Z; = max 32 —ir5 —3s
T +s =2
z2 —5%s +S8 3
T3 -5 —5s =1
Ty +3xs +6s =3
Ty, T2, T3, T4, s, s >0

BRANCH AND BOUND: AN EXAMPLE 97
with Z; = 8, and (Z1,73) = (2, 3)-
Branching. S; cannot be pruned, so using the same branching rule as before,

we create two new nodes S;; = S;N{z: 2 <0} and Sj2 = S1N{z:z; > 1},
and add them to the node list. The tree is now as shown in Figure 7.7.

Fig. 7.7 Partial branch-and-bound tree 2

Choosing a Node. The active node list now contains Sz, S11, S12. Arbitrar-
ily choosing S2, we remove it from the node list and examine it in more detail.

Reoptimizing. To solve LP(S;), we use the dual simplex algorithm in the
same way as above. The constraint 1 > 3 is first written as ¢, —t = 3,¢t > 0,
which expressed in terms of the nonbasic variables becomes:

1 2 — 1
T3+ 54+t = —3.

-3

From inspection of this constraint, we see that the resulting linear program

= 59 4 1
Z9 = Imax 7 —7$3 —71‘4
1 2 20
T +3%3 +5T4 2
b)) +x4 = 3
-—%-:1:3 +-—.'E4 +z5 = -277§
1 2 ~1
7 T3 +5T4 +t 7
z, 2, z3, T4, Zs5, t Z 0
is infeasible, Zo = —o0, and hence node S; is pruned by infeasibility.

Choosing a Node. The node list now contains S;;, S12. Arbitrarily choosing
S12, we remove it from the list.

Reoptimizing. S12 = SN {z : z; < 2,25 > 1}. The resulting linear program
has optimal solution Z!? = (2,1) with value 7. As 7'2 is integer, z!% = 7.

.
3
*f
f
-fz
|

98 BRANCH AND BOUND

Fig. 7.8 Complete branch and bound tree

Updating the Incumbent. As the solution of LP(S)2) is integer, we update
the value of the best feasible solution found z «— max{z,7}, and store the
corresponding solution (2,1). S)2 is now pruned by optimality.

Choosing a Node. The node list now contains only S;;.

Reoptimizing. S1; = SN {z : z; < 2,z2 < 0}. The resulting linear program
has optimal solution T!'! = (%,O) with value 6. As z = 7 > Z;; = 6, the node
is pruned by bound.

Choosing a Node. As the node list is empty, the algorithm terminates. The
incumbent solution z = (2,1) with value z = 7 is optimal.

The complete branch-and-bound tree is shown in Figure 7.8. In Figure 7.9
we show graphically the feasible node sets S;, the branching, the relaxations
LP(S;), and the solutions encountered in the example.

7.4 LP-BASED BRANCH AND BOUND

In Figure 7.10 we present a flowchart of a simple branch and bound algorithm,
and then discuss in more detail some of the practical aspects of developing
and using such an algorithm.

Storing the Tree. In practice one does not store a tree, but just the list of
active nodes or subproblems that have not been pruned and that still need to
be explored further. Here the question arises of how much information one
should keep. Should one keep a minimum of information and be prepared to
repeat certain calculations, or should one keep all the information available?
At a minimum, the best known dual bound and the variable lower and upper

ST v i Ve P S e Y

LP-BASED BRANCH AND BOUND 99

o Feasible Points

First Bound Constraints

Second Bound Constraints

X

1

Fig. 7.9 Division of the feasible region

bounds needed to restore the subproblem are stored. Usually one also keeps
an optimal or near-optimal basis, so that the linear programming relaxation
can be reoptimized rapidly.

Returning to the questions raised earlier, there is no single answer that
is best for all instances. One needs to use rules based on a combination of
theory, common sense, and practical experimentation. In our example, the
question of how to bound was solved by using an LP relaxation; how to
branch was solved by choosing an integer variable that is fractional in the
LP solution. However, as there is typically a choice of a set C of several can-
didates, we need a rule to choose between them. One common choice is the
most fractional variable:

arg maxjec min(fj,1 — fj]

where f; = 27 — |z}, so that a variable with fractional value f; = 1 is best.
Other rules are based on the idea of estimating the cost of forcing the variable
z; to become integer.

How to choose a node was avoided by making an arbitrary choice. In
practice there are several contradictory arguments that can be invoked:

(1) It is only possible to prune the tree significantly with a (primal) feasible
solution, giving a hopefully good lower bound. Therefore one should descend
as quickly as possible in the enumeration tree to find a first feasible solution.
This suggests the use of a Depth-First Search strategy. Another argument for

e i
e M

g rerh, Lo F
.y

T TP

dveb AT ie e A

e

PP

v e e L il TR s W At g ST L | T BN gl o <

100 BRANCH AND BOUND

Tiitialization

Initial Problem S with
Formulation P on List

2 = -Infinity

incumbent 2* woid

Y STOP
Incumbent 2°* Optimal

Choose Problem S* with
Formulation P*

v

Solve LP relaxation over
Dual Bound ' = LP valuc
2'(LP) = LP solution

R}

If P* empty. prunc by infeasibility

v

l——— If :*< 2, prune by bound

v

Y If 2(LP) integer, update primal
1 bound 2 = 3*, and incument z* = r*(LP)
Prune by optimality
‘w
Return two subproblems Si and S}
] with formulations P} and P;

Fig. 7.10 Branch-and-bound flow chart

such a strategy is the observation that it is always easy to resolve the linear
programming relaxation when a simple constraint is added, and the optimal
basis is available. Therefore passing from a node to one of its immediate
descendants is to be encouraged. In the example this would imply that after
treating node S7, the next node treated would be Si; or Sj; rather than S;.

(ii) To minimize the total number of nodes evaluated in the tree, the optimal
strategy is to always choose the active node with the best (largest upper)
bound (i.e., choose node s where Z, = max;Z;). With such a rule, one will
never divide any node whose upper bound Z; is less than the optimal value
z. This leads to a Best-Node First strategy. In the example of the previous
section, this would imply that after treating node S;, the next node chosen

e S R R K Ry A

P L I i

£ ek

| o wsra v b+ remen

o s e e

USING A BRANCH-AND-BOUND SYSTEM 101

would be Sy with bound 5—7? from its predecessor, rather than Sy; or Si2 with
bound 2. '

In practice a compromise between these ideas is often adopted, involving an
initial depth-first strategy until at least one feasible solution has been found,
followed by a strategy mixing best node and depth first so as to try to prove
optimality and also find better feasible solutions.

7.5 USING A BRANCH-AND-BOUND SYSTEM

Commercial branch-and-bound systems for integer and mixed integer pro-
gramming are essentially as described in the previous section, and the default
strategies have been chosen by tuning over hundreds of different problem in-
stances. The basic philosophy is to solve and resolve the linear programming
relaxations as rapidly as possible, and if possible to branch intelligently. Given
this philosophy, all recent systems contain, or offer,

1. A powerful (automatic) preprocessor, which simplifies the model by redu-
cing the number of constraints and variables, so that the linear programs are
easier

2. The simplex algorithm with a choice of pivoting strategies, and an interior
point option for solving the linear programs

3. Limited choice of branching and node selection options

4. Use of priorities

and some offer

5. GUB/SOS branching
6. Strong branching

7. Reduced cost fixing
8. Primal heuristics

In this section we briefly discuss those topics requiring user intervention.
Preprocessing, which is very important, but automatic, is presented in the
(optional) next section. Reduced cost fixing is treated in Exercise 7.7, and
primal heuristics are discussed in Chapter 12.

Priorities. Priorities allow the user to tell the system the relative importance
of the integer variables. The user provides a file specifying a value (import-
ance) of each integer variable. When it has to decide on a branching variable,
the system will choose the highest priority integer variable whose current lin-
ear programming value is fractional. At the same time the user can specify a
preferred branching direction telling the system which of the two branches to

JUREL St

Ty N

o Lo

e e

i b AR S

o .

102 BRANCH AND BOUND
explore first.

GUB Branching. Many models contain generalized upper bound (GUB) or
special ordered sets (SOS) of the form

k
Z.’L‘j =1
i=1

with z; € {0,1} for j = 1,...,k. If the linear programming solution z*
has some of the variables z7,...,z} fractional, then the standard branching
rule is to impose S} = SN{z :z; =0} and S, = SNn{z : z; = 1} for
some j € {1,...,k}. However, because of the GUB constraint, {z : ; = 0}
leaves k — 1 possibilities {z : ; = 1},x; whereas {z : x; = 1} leaves only
one possibility. So S) is typically a much larger set than S;, and the tree is
unbalanced.

GUB branching is designed to provide a more balanced division of S into
S; and S,. Specifically the user specifies an ordering of the variables in the
GUB set ji,...,jk, and the branching scheme is then to set

Si=8Sn{z:z;;, =0i=1,...r} and
Sy=8SNn{z:z;;, =0i=r+1,...k},

. t . .
where r = min{t : 3_;_, x}, > 3}. In many cases such a branching scheme is
much more effective than the standard scheme, and the number of nodes in

the tree is significantly reduced.

User Options (a) Cutoffs. If the user knows or can construct a good feas-
ible solution to his or her problem, it is very important that its value is passed

to the system as the incumbent value to serve as a cutoff in the branch and
bound.

(b) Simplex Strategies. Though the linear programming algorithms are
finely tuned, the default strategy will not be best for all classes of problems.
Different simplex pricing strategies may make a huge difference in running
times for a given class of models, so if similar models are resolved repeatedly
or the linear programs seem very slow, some experimentation by the user
with pricing strategies is permitted. In addition, on very large models, in-
terior point methods may be best for the solution of the first linear program.
Unfortunately, up to now such methods are still not good for reoptimizing
quickly at each node of the tree.

(c) Strong Branching. The idea behind strong branching is that on difficult
problems it should be worthwhile to do more work to try to choose a better
branching variable. The system chooses a set C of basic integer variables that
are fractional in the LP solution, branches up and down on each of them in

i e I SRR

s

PREPROCESSING* 103

turn, and reoptimizes on each branch either to optimality, or for a specified

number of dual simplex pivots. Now for each variable j € C, it has upper
bounds z]-D for the down branch and zU for the up branch. The variable hav- : =‘_'
ing the largest effect (decrease of the dual bound)

j* =arg minjec max[zP, 2V &
is then chosen, and branching really takes place on this variable. Obviously,

solving two L Ps for each variable in C is costly, so such branching should only
be used when the other criteria have been found to be ineffective.

o e AL B ABrmn R s % & e RSt Ll e

7.5.1 If All Else Fails

What can one do if a particular problem instance turns out to be difficult,
meaning that after a certain time

(i) no feasible solution has been found, or

(ii) the gap between the value of the best feasible solution and the value of
the dual upper bound is unsatisfactorily large, or

(iii) the system runs out of space because there are too many active nodes in
the node list?

Finding Feasible Solutions. This is in general A"P-hard. Some systems
have simple primal heuristics embedded in them. Also as discussed earlier,
using priorities and directions for branching can help. How to find feasible

solutions, starting from the LP solution or using explicit problem structure,
is the topic of Chapter 12.

Dy AR TR LA e

Finding Better Dual Bounds. Branch-and-bound algorithms fail very of- ‘g
ten because the bounds obtained from the linear programming relaxations
are too weak. This means that tightening up the formulation of the prob- 1%
lem is of crucial importance. Systematic ways to do this are the subject of
Chapters 8-11. Specifically the addition of constraints or cuts to improve the
formulation is treated in Chapers 8 and 9, leading to the development of a po-
tentially more powerful branch-and-cut algorithm. The Lagrangian relaxation
and column generation approaches of Chapters 10 and 11 provide alternative :
ways to strengthen the formulation by convexifying part of the feasible region. S

i
o
7.6 PREPROCESSING* &]

b

e i,

g Sk
L2 i g

Before solving a linear or integer program, it is natural to check that the formu-
lation is “sensible”, and as strong as possible given the information available.

=

T

s e e P PTG YA R ST e R I T

B e

T I TR TR TR TR

BTy A g YN | e A
G { A N

104 BRANCH AND BOUND

All the commercial branch-and-bound systems carry out such a check, called
preprocessing. The basic idea is to try to quickly detect and eliminate redund-
ant constraints and variables, and tighten bounds where possible. Then if the
resulting linear /integer program is smaller/tighter, it will typically be solved
much more quickly. This is especially important in the case of branch-and-
bound because tens or hundreds of thousands of linear programs may need to
be solved.

First we demonstrate linear programming preprocessing by an example.

Example 7.4 Consider the linear program

max 2r; + I — I3
527 — 2x9 + 8z3 < 15
8y 4+ 3z — 3 =2 9
Ty + z2 + zx3 < 6
0 _<_ I S 3
0 < o S 1
1 S I3.

Tightening Bounds. Isolating variable x, in the first constraint we obtain
52, < 15422, —813<154+2x1-8x1=9

where we use the bound inequalities zo < 1 and —z3 < —1. Thus we obtain
the tightened bound z; < %.

Similarly isolating variable x3, we obtain

823 <15+2x,-52; <1564+2%x1-5%x0=17,

and the tightened bound z3 < %.
Isolating variable x5, we obtain

219 > 521 +823-15>5x04+8x%x1—-15=—-T7.

Here the existing bound z3 > 0 is not changed.

Turning to the second constraint, isolating x; and using the same approach,
we obtain 8z; > 9 -3z, +123>9—-3+1 =7, and an improved lower bound
) 2 %

No more bounds are changed based on the second or third constraints.
However, as certain bounds have been tightened, it is worth passing through
the constraints again.

Constraint 1 for z3 now gives 8z3 < 15+2z2 —5z; <15+2-5x £ = 13

8'
Thus we have the new bound z3 < 101

Redundant Constraints. Using the latest upper bounds in constraint 3, we see
that 9 101
<-4+14+——<6,
Ty +x2+2x3 5 +1+ 64

PREPROCESSING* 105

and so this constraint is redundant and can be discarded. The problem is now
reduced to '

max 21, +x9 —I3
5¢1 —2z2 +8z3 <15
811 +3xo —Zz3 >9

§<m <3 0<22<1, 1<z3< g

Variable Fizing (by Duality). Considering variable x2, observe that increasing
its value makes all the constraints (other than its bound constraints) less tight.
As the variable has a positive objective coefficent, it is advantageous to make
the variable as large as possible, and thus set it to its upper bound of 1.
(Another way to arrive at a similar conclusion is to write out the LP dual.
For the dual constraint corresponding to the primal variable z; to be feasible,
the dual variable associated with the constraint o < 1 must be positive. This
implies by complemementary slackness that r2 = 1 in any optimal solution.)

Similarly, decreasing x3 makes the constraints less tight. As the variable
has a negative objective coefficient, it is best to make it as small as possible,
and thus set it to its lower bound z3 = 1. Finally the LP is reduced to the

trivial problem
max{2z; : % <z <2} .

Formalizing the above ideas is straightforward.

Proposition 7.3 Consider the set S = {z : apzo + Z;;l a;z; <bl;<z; <
uj for 3 =0,1,...,n}.

(i) Bounds on Variables. If ag > 0, then

zo< (b= D ajli— Y ajuj)/ao,
Jj:a;>0 Jj:a; <0
and if ag < 0, then
Ty 2> (b— Z ajlj - Z a,-uj)/ao.
j:a; >0 ja;<0
(i) Redundancy. The constraint agzxo + E;;l a;z; < b is redundant if
Z aju; + Z ajl; <bd.
j:a;>0) Jj:a; <0
(iii) Infeasibility. S = 0 if

Z ajlj + Z a;u; > b.

J:a; >0 j:a;<0

i
f
b
i
;

ot PR AT YT TG

106 BRANCH AND BOUND

(iv) Variable Fizring. For a mazimization problem in the form: max{cz :
Az < bl <z <u}, ifa;; 20 foralli=1,...,m and ¢; <0, then z; = ;.
Conversely if a;; <0 for alli=1,...,m and c; > 0, then z; = u;.

Turning now to integer programming problems, preprocessing can some-
times be taken a step further. Obviously, if z; € Z! and the bounds I, or u;
are not integer, we can tighten to

[] <25 < |u].

For mixed integer programs with variable upper and lower bound constraints
ljy; < z; < ujy; with y; € {0,1}, it is also important to use the tightest
bound information.

For BIPs it is common to look for simple “logical” or “boolean” constraints
involving only one or two variables, and then either add them to the problem
or use them to fix some variables. Again we demonstrate by example.

Example 7.5 Consider the set of constraints involving four 0-1 variables:

7z +3x; —4dx3 —234 < 1
—2x; +7xz9 +3x3 24 < 6
—2x9 —-3x3 —b6xry < -5
3z, —2z3 > -1
T € B4

Generating Logical Inequalities. Examining row 1, we see that if ; = 1,
then necessarily z3 = 1, and similarly z; = 1 implies 4 = 1. This can be
formulated with the linear inequalities ; < z3 and z; < z4. We see also
that the constraint is infeasible if both £; = 22 = 1 leading to the constraint
T +z2 <1

Row 2 gives the inequalities o < x; and z2 + 3 < 1.

Row 3 gives zo + 14 > 1 and z3 + x4 > 1.

Row 4 gives z; > z3.

Combining Pairs of Logical Inequalities. We consider pairs involving the same
variables.

From rows 1 and 4, we have r; < z3 and z; > z3, which together give
T = I3.

From rows 1 and 2, we have z; + 2 < 1 and z; < x; which together give
zo = 0. Now from x5 + 4 > 1 and x5 = 0, we obtain x4 = 1.

Simplifying. Making the substitutions o = 0,13 = z1,24 = 1, all four con-
straints of the feasible region are redundant, and we are left with z; € {0,1},
so the only feasible solutions are (1,0,1,1) and (0,0,0,1). n

B Tl

QAT T

