
1. Easy Interger LPs

Consider the linear integer program

IP minimize cTx
subject to Ax = b, 0 ≤ x , and x ∈ Zn ,

where c ∈ Rm, A ∈ Zm×n, and b ∈ Zm. The LP relaxation of IP is the linear program

IP relax minimize cTx
subject to Ax = b, 0 ≤ x .

We say that the a solution to IP relax is integral if all of its components are integer, that is,
it is feasible for IP . Note that if the solution to IP relax is integral, then it must also be the
solution to IP . In this section we ask the question

“When is the solution to the LP relaxation IP relax integral?”
Our answer requires us to more closely examine the nature of solutions to IP relax and how

they are represented. Recall from the Fundamental Theorem of Linear Programming that
if an LP has a solution, then it must have a basic feasible solution, or equivalently a vertex
solution. Let us review what this means.

Definition 1.1. A point x in the closed convex set C ⊂ Rn is said to be an extreme point
of C if whenever u, v ∈ C are such that x ∈ [u, v], then either x = u or x = v, where

[u, v] = {(1− λ)u+ λv |0 ≤ λ ≤ 1}
is the line segment connecting u and v.

If C is polyhedral convex, then we call the extreme points the vertices of C.

Theorem 1.1. Consider the the polyhedron Ω = {x |Ax = b, 0 ≤ x}, where m < n, A ∈
Rm×n and b ∈ Rm. We will assume that A is surjective (rank (A) = m). Then x ∈ Rn is
a vertex of Ω if and only if x ∈ Ω and there is an index set B ⊂ {1, . . . , n} with |B| = m,
{i |xi > 0} ⊂ B and AB is nonsingular, where AB is the matrix formed from the columns of
A in the index set B.

Proof. Let us first assume that x is a vertex of Ω. Set B = {i |xi > 0} and I = {i |xi = 0}.
Assume there is a zB ∈ Nul (AB)\{0}. Since xB > 0, there is an ε > 0 such that xB± tzB > 0
whenever −ε ≤ t ≤ ε. Let x̄, z̄ ∈ Rn be such that

x̄i =

{
(xB)i i ∈ B,
0 i 6∈ B

and z̄i =

{
(zB)i i ∈ B
0 i 6∈ B .

Then A(x̄ ± εz̄) = b and 0 ≤ x̄ ± εz̄, that is, x̄ ± εz̄ ∈ Ω and x = 1
2
(x̄ − εz̄) + 1

2
(x̄ + εz̄)

contradicting the fact that x is a vertex of Ω. Hence AB cannot have a null-space. In
particular, we have |B| ≤ m. If |B| = m we are done, so we assume that |B| < m. Since
Nul (AB) = {0}, the columns of AB are linearly independent. Since rank (A) = m, one can
find an index set of m − |B| other columns of A say C such that AB̂ is nonsingular, where

B̂ = B ∪ C. Reset B to B̂ to obtain the result.
Next we assume that x ∈ Ω and there is an index B ⊂ {1, . . . , n} with |B| = m,
{i |xi > 0} ⊂ B and AB is nonsingular. We need to show that x is a vertex. If x is not a
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vertex, then there exist x1, x2 ∈ Ω with x1 6= x 6= x2 and x = 1
2
(x1 + x2), or equivalently,

x2 = x + 1
2
z and x1 = x − 1

2
z where z = x2 − x1 6= 0. In particular, x ± 1

2
z ∈ Ω. Let

j ∈ I = {i |xi = 0}. Since (x ± 1
2
z)j ≥ 0, we must have zj = 0 for all j ∈ I. Since z 6= 0

and zI = 0, we have zB 6= 0. Moreover,

b = A(x+
1

2
z) = AB(xB +

1

2
zB) = b+

1

2
ABzB,

so that zB ∈ Nul (AB). This contradicts the assumption that AB is nonsingular. Therefore
x is a vertex of Ω. �

Recall that the index set B is call the basis, and the variables xj, j ∈ B are called the basic
variables. Using the notation introduced in Theorem 1.1, for any basis B ⊂ {1, 2, . . . , n} we
can write

b = ABxB + ANxN

z = cTBxB + cNxN ,

where N = {1, 2, . . . , n} \ B is the index set of the non-basic variables. Since AB is nonsin-
gular, we can multiply through by A−1B and rearrange to get

xB = A−1B b− A
−1
B ANxN(1)

z = BTA−1B b+ (cN − ANA−1B cB)TxN .(2)

This is called the dictionary associated with the basis B. Setting xN = 0 gives xB = A−1B b
which is called the basic solution associated with this basis. If, in addition, we have 0 ≤ A−1B b,
then this is called a basic feasible solution. Hence, by Theorem 1.1, the basic feasible solutions
correspond precisely to the vertices of the polyhedron Ω. Finally, the augmented matrix
associated with the system (1)-(2) is called the simplex tableau associated with the basis B.

With this algebraic structure in mind, we wish to determine conditions under which the
optimal basic feasible solution has all integer components. That is, if B is the optimal basis,
under what conditions is the vector

A−1B b

a vector of integers. We begin by first studying the question of when the solution of a square
system in integral. That is, given A ∈ Zn×n nonsingular and b ∈ Zn, under what conditions
is the solution to the system Ax = b integral? We approach this question using a very
classical method known as Cramer’s Rule which requires the use of determinants.

The Leibniz formula for the determinant of an n× n matrix A is

(3) det(A) =
∑
σ∈Sn

sgn (σ)
n∏
i=1

Aiσ(i),

where Sn is the set of all permutations of the integers {1, 2, ..., n}. These permutations are
functions that reorder this set of integers. The element in position i after the reordering σ
is denoted σ(i). For example, for n = 3, the original sequence [1, 2, 3] might be reordered to
[2, 3, 1], with σ(1) = 2, σ(2) = 3, σ(3) = 1. The set of all such permutations (also known as
the symmetric group on n elements) is denoted Sn. For each permutation σ, sgn (σ) denotes
the signature of σ; it is +1 for even σ and −1 for odd σ. Evenness or oddness can be defined
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as follows: the permutation is even (odd) if the new sequence can be obtained by an even
number (odd, respectively) of switches of numbers. For example, starting from [1, 2, 3] and
switching the positions of 2 and 3 yields [1, 3, 2], switching once more yields [3, 1, 2], and
finally, after a total of three (an odd number) switches, [3, 2, 1] results. Therefore [3, 2, 1] is
an odd permutation. Similarly, the permutation [2, 3, 1] is even since

[1, 2, 3]→ [2, 1, 3]→ [2, 3, 1],

an even number of switches.
The identity permutation is the unique element ι ∈ Sn for which ι(i) = i for all i =

1, 2, . . . , n. Note that there are zero switches. We say that ι is even so that its signature is
1, sgn (ι) = 1. Observe that if I is the identity matrix, then

det(I) =
∑
σ∈Sn

sgn (σ)
n∏
i=1

Ii σi = sgn (ι) = 1.

Given σ1, σ2 ∈ Sn, we can use composition σ = σ1 ◦ σ1 to obtain another element of
Sn. The discussion above on the signature of a permutation tells us that sgn (σ1 ◦ σ) =
sgn (σ1)sgn (σ2). Therefore, if Ã is the matrix obtained from A by permuting its columns
using the permutation π ∈ Sn, then Leibniz’s formula (3) tells us that

det(Ã) =
∑
σ∈Sn

sgn (σ)
n∏
i=1

Aiσ(π(i))

=
∑
σ∈Sn

sgn (σ)[sgn (π)]2
n∏
i=1

Aiσ(π(i))

= sgn (π)
∑
σ∈Sn

sgn (σ)sgn (π)
n∏
i=1

Aiσ(π(i))

= sgn (π)
∑
σ∈Sn

sgn (σ ◦ π)
n∏
i=1

Ai(σ◦π)(i)

= sgn (π)
∑
σ∈Sn

sgn (σ)
n∏
i=1

Aiσ(i)

= sgn (π) det(A).

Since we can also write Ã = APπ, where Pπ ∈ Rn×n is the permutation matrix corresponding
to π, this gives us the formula

det(APπ) = sgn (π) det(A).

Taking A = I and using the fact that det(I) = 1, we obtain

(4) det(Pπ) = sgn (π) det(I) = sgn (π) ∀π ∈ Sn.

Therefore, for every permutation matrix P ∈ Rn×n and matrix A ∈ Rn×n, we have

(5) det(AP ) = det(P ) det(A).
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If n = 2, then S2 only has 2 elements:

[1, 2]
ι→ [1, 2] and [1, 2]

σ→ [2, 1],

where sgn (ι) = 1 and sgn (σ) = −1. Therefore, given a 2×2 matrix

[
a b
c d

]
its determinent

is

det

([
a b
c d

])
= ad− bc .

We have the following basic result on how to compute the determinant recursively.

Theorem 1.2 (Laplace’s Formula for the Determinant). Suppose A ∈ Rn×n. For every pair
i, j ∈ {1, 2, . . . , n}, define the matrix A[i, j] to be the (n− 1)× (n− 1) submatrix of A obtain
by deleting the ith row and the jth column. The for each i0, j0 ∈ {1, 2, . . . , n},

det(A) =
n∑
i=1

aij0(−1)(i+j0) det(A[i, j0]) =
n∑
j=1

ai0j(−1)(i0+j) det(A[i0, j]) .

The terms Cij = (−1)(i+j) det(A[i, j]) are called the cofactors of the matrix A and the
transpose of the matrix whose ijth component is Cij is called the classical adjoint of A
denoted adj (A) = [Cij]

T . The determinant satisfies the following properties.

Theorem 1.3 (Properties of the Determinant). Let A,B ∈ Rn×n.

(1) det(A) = det(AT ).
(2) The determinant is a multi-linear function of its columns (rows). That is, if A =

[A·1, A·2, . . . , A·n], where A·j is the jth column of A (j = 1, . . . , n), then for any
vector b ∈ Rn and scalar λ ∈ R

det ([A·1, . . . , A·j + λb, . . . , A·n]) = det ([A·1, . . . , A·j, . . . , A·n])+λ det ([A·1, . . . , b, . . . , A·n]) .

(3) If any two columns (rows) of A coincide, then det(A) = 0.
(4) For every j1, j2 ∈ {1, . . . , n} with j1 6= j2 and λ ∈ R,

det(A) = det ([A·1, . . . , A·j1 + λA·j2 , . . . , A·n]) .

(5) If A is singular, then det(A) = 0.

Proof. (1) This follows immediately from Laplace’s formula for the determinant in Theorem
1.2.
(2) This follows immediately from Laplace’s formula:

det ([A·1, . . . , A·j + λb, . . . , A·n]) =
n∑
i=1

(aij + λbi)(−1)(i+j) det(A[i, j])

=
n∑
i=1

aij(−1)(i+j0) det(A[i, j]) + λ

n∑
i=1

bi(−1)(i+j0) det(A[i, j])

= det ([A·1, . . . , A·j, . . . , A·n]) + λ det ([A·1, . . . , b, . . . , A·n]) .

(3) The permutation πij ∈ Sn that interchanges i and j (πij(i) = j, πij(j) = i, πij(k) =
k ∀ k 6= i, j) is odd since sgn (πij) = 2 |i− j| − 1 as long as i 6= j. Therefore, by (4), the
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permutation matrix Pij which interchanges the columns i 6= j has det(Pij) = −1. Now
suppose that column i equals column j 6= i in the matrix A ∈ Rn×n, then, by (5), det(A) =
det(APij) = det(A) det(Pij) = − det(A). Hence det(A) = 0.
(4) This follows immediately from Parts (2) and (3).
(5) If A is singular, then its columns are linearly dependent. That is, there is a non-trivial
linear combination of its columns that give zero, or equivalently, there is some column j0
that is a linear combination of the remaining columns, A·j0 =

∑
j 6=j0 λjA·j. Therefore, by

Parts (2) and (3),

det(A) = det

(
[A·1, . . . , A·(j0−1),

∑
j 6=j0

λjA·j, A·(j0+1), . . . , A·n]

)
=

∑
j 6=j0

λj det
(
[A·1, . . . , A·(j0−1), A·j, A·(j0+1), , . . . , A·n]

)
= 0 .

�

We will also need two further properties fo the determinant. These appear in the next
theorem whose proof is omitted.

Theorem 1.4. Let A,B ∈ Rn×n, C ∈ Rm×n, and D ∈ Rm×m. Then the following two
formulas hold:

det(AB) = det(A) det(B)(6)

det

([
A 0
C D

])
= det(A) det(D) .(7)

Note that (5) is a special case of (6). As an application of (6) we compute the determinant
of A−1 when it exists:

1 = det(I) = det(AA−1) = det(A) det(A−1),

whenever A is nonsingular. That is, det(A−1) = det(A)−1.
We now return to the our discussion of the system Ax = b and Cramer’s Rule. Cramer’s

Rule states that if A is nonsingular, then the unique solution to the system Ax = b is given
componentwise by

xj =
det(Aj(b))

det(A)
, j = 1, 2, . . . , n,

where the matrix Aj(b) is obtained from A by replacing the jth column of A by the vector
b. The proof of Cramer’s Rule follows easily from the properties of the determinant. Indeed,
if x̄ is the unique solution to the system Ax = b, then b = Ax̄ =

∑n
j=1 x̄jA·j. Therefore, by
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Parts (2) and (3) of Theorem 1.3,

det(Aj(b)) = det
(
[A·1, . . . , A·(j−1), b, A·(j+1), . . . , A·n]

)
= det

(
[A·1, . . . , A·(j−1),

n∑
i=1

x̄iA·i, A·(j+1), . . . , A·n]

)

=
n∑
i=1

x̄i det
(
[A·1, . . . , A·(j−1), A·i, A·(j+1), . . . , A·n]

)
= x̄i det

(
[A·1, . . . , A·(i−1), A·i, A·(i+1), . . . , A·n]

)
= x̄i det(A)

giving Cramer’s Rule.
Let us examine the expressions det(Aj(b)) using Laplace’s formula for the determinant:

det(Aj(b)) =
n∑
i=1

biCij = CT
·j b,

where C·j is the jth row of the classical adjoint adj (A). That is,

x̄ =
1

det(A)
adj (A)b.

Since this expression is valid for all choices of b ∈ Rn, we must have

A−1 =
1

det(A)
adj (A).

We call this the adjoint representaton of the inverse.
Next suppose that the matrix A has only integer components. Then Leibniz’s formula

(3) tells us that det(A) is also integer and that adj (A) is integer since each cofactor of A,
Cij = (−1)(i+j) det(A[i, j]) is integer. Hence, from the adjoint representation of the inverse,
we see that A−1 must have all integer components if det(A) ∈ {−1, 1}. This motivates the
following definition and theorem.

Definition 1.2. A matrix A ∈ Rn×n is said to be unimodular if det(A) ∈ {−1, 1}.

Theorem 1.5. Let A ∈ Zn×n be non-singular. Then the following are equivalent:

(1) The solution to Ax = b is integral for every b ∈ Zn.
(2) A−1 ∈ Zn×n.
(3) A is unimodular.
(4) A−1 is unimodular.

Proof. If every solution to Ax = b are integral for every b ∈ Zn, then, in particular, the
solutions to Ax = ei is integral for each unit coordinate vector ei, i = 1, 2, . . . , n. But these
are just the columns of A−1. Hence A−1 ∈ Zn×n.

If A−1 ∈ Zn×n, then 1 = det(I) = det(AA−1) = det(A) det(A−1). But both det(A) and
det(A−1) are integral from (3) since both are elements of Zn×n. Therefore, both det(A) and
det(A−1) can only take the values ±1. Thus, in particular, both A and A−1 are unimodular.

�
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This result indicates that unimodularity is the perfect tool for analyzing the integrality of
solutions to integral systems of equations. The first step is to appropriately extend the notion
of unimodularity to the context of the integer linear programs IP introduced at the beginning
of this section. Here the underlying matrix A ∈ Zm×n is nolonger square. Nonetheless, recall
that the solutions to IP obtained from the simplex algorithm are necessarily basic feasible
solutions having the form described in (1) with x∗B = A−1B b ≥ 0. That is, the optimal solution
x∗ comes from solving the square system ABxB = b for x∗B using the optimal basis B and
then setting the non-basic entries to zero, x∗N = 0. Hence, to guarentee that every vector
generated in this way is integral, we should assume that AB is unimodular for every possible
choice of basis B. This leads to the following somewhat stronger idea.

Definition 1.3. A matrix A ∈ Zm×n is said to be totally unimodular if every nonsingular
square submatrix of A is unimodular.

Note that an immediate consequence of this definition is that if A is totally unimodular,
then the entries in A can only take values from the set {0,±1}.

Theorem 1.6. Let A ∈ Zm×n with A surjective, i.e. Ran (A) = Rm. For each b ∈ Zm,
define the convex polyhedron Ω(b) = {x ∈ Rn |Ax = b, 0 ≤ x}. If A is totally unimodular,
then, for every b ∈ Zm, all of the vertices of Ω(b) are integral.

Proof. Let b ∈ Zm. Then, for every basis B, A−1B b is integral by Theorem 1.5. In particular,
every basic feasible solution, or equivalently, every vertex of Ω(b) is integral. Since b was
chosen arbitrarily from Zm, we have that every vertex of Ω(b) is integral for every b ∈ Zm.
Note that the proof does not require that Ω(b) 6= ∅, since in this case the result holds
trivially. �

This is a fine result that seems to answer the question we posed at the beginning of this
section. There is only one problem. Are there any totally unimodular matrices of interest
in practice? Just how common and useful are these beasts? Would we recognize one if it
passed us on the street? As a partial answer to these questions, we provide the following
two results.

Theorem 1.7. Let A ∈ Rm×n. Then the following statements are equivalent.

(1) A is totally unimodular.
(2) AT is totally unimodular.
(3) The matrix [A I] is totally unimodular.

Proof. The equivalence follows immediately from the fact that the determinant of a matrix
equals the determinant of its transpose. It remains to establish the equivalence of (a) and
(b).

Clearly, if [A I] is totally unmodular, then A must be totally unimodular since every
nonsingular square submatrix of A is a submatrix of [A I]. Therefore, we need only prove
the reverse implication. Let B be a nonsingular square submatrix of [A I]. Then there is a
permutation of the rows (P1) and columns (P2) of B so that it has the form

P1BP2 =

[
B11 0
B21 I

]
,
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where the B11 and B21 contain distinct entries from A. Therefore, det(B) = ± det(B11).
Since B is nonsingular, so is B11. Hence B11 is a nonsingular square submatrix of A, it is
unimodular. Therefore, det(B) = ±1. �

Theorem 1.8. Let A ∈ Zm×n and let aij denote the ijth entry of A. If A satisfies the
following three conditions, then A is totally unimodular.

(1) aij ∈ {0,±1} for all ij.
(2) Every column of A has at most two non-zero entries.
(3) The rows of A can be partitioned into two index sets I1 and I2 such that

(a) If a column has two entries of different signs, then the indices of the rows cor-
responding to these non-zero entries must be in the same index set.

(b) If a column has two entries of the same sign, then the indices of the rows corre-
sponding to these non-zero entries must be in different index sets.

Proof. Suppose that the result is false, that is, there is a matrix A satisfying these three
conditions that is not totally unimodular. Let B be any nonsingular submatrix of A of
smallest degree that is not unimodular, and let k be this degree. Clearly, k > 1 since if
k = 1, then B = ±1 contradicting our standing hypotheses. Clearly, B can have no zero
column, and due to the smallest degree requirement, B can have no column with a single
non-zero entry (why?). Hence every column of B has precisely two non-zero entries. Define
the vector v ∈ Zk by

vi =

{
1 i ∈ I1
−1 i ∈ I2

.

Then

(vTB)j =
∑
i∈I1

aij −
∑
i∈I2

aij = 0, j = 1, 2, . . . , k ,

that is vTB = 0 which contradicts the assumption that B is nonsingular. Hence no such B
can exist so that A is totally unimodular. �

We will soon see that there are a number of important classes of problems for which the
matrix A satisfies he conditions given in Theorem 1.8. We can also use Theorem 1.7 to
extend Theorem 1.6 beyond integer LPs of the form IP .

Theorem 1.9. If A ∈ Zm×n is totally unimodular, then, for every b ∈ Zm, every vertex of
the polyhedron {x ∈ Rn |Ax ≤ b, 0 ≤ x} is integral. In particular, this implies that for every
b ∈ Zm and c ∈ Rn, the LP

minimize cTx
subject to Ax ≤ b, 0 ≤ x

has an integral solution whenever a solution exists.

Proof. Since A is totally unimodular, Theorem 1.7 tells us that the matrix [A I] is totally
unimodular. It was shown in Math 407 (The Fundamental Representation Theorem for
Vertices) that x is a vertex of {x ∈ Rn |Ax ≤ b, 0 ≤ x} if and only if there is a vector of

slacks s such that (
x
s) is a vertex of the set

{
(
x
s)
∣∣∣[A I](

x
s) ≤ b, 0 ≤ (

x
s)
}

. Since Theorem 1.6
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tells us that all of the vertices of this latter set are integral, the vertices of the former are
integral as well.

The final statement follows from the Fundamental Theorem of Linear Programming which
states that if an LP has a solution, then it must have a vertex solution. �


