
1

2

3

4

5

6

e1=(1,2)

e1=(1,2)e2=(1,3)

e3=(2,4)

e4=(2,5)

e5=(3,2)

e6=(4,6)

e7=(5,3)

e8=(5,4)

e9=(5,6)

Figure 1. A simple network

1. Network Flows

1.1. Flows. Let G = (V,E) be a network with |V | = n and |E| = m. A flow f on G is any
function of the arcs E of the network, f : E → Rm

+ .
For example, in the network pictured above, we can define

(1.1) f = (5, 6, 3, 4, 3, 7, 2, 4, 5)T

so that f(e3) = f((2, 4)) = 3 and f(e7) = f((5, 3)) = 2. A flow on the arc e5 = (3, 2)
is meant to suggest the movement of some underlying quantity from node v3 to node v2.
Depending on the type of network one is modeling, the flow might represent power, water,
cars, goods, people, cash, etc... . In this spirit, we can think of the total flow into a node
as the sum of the flows on those arcs whose head is incident to the node minus the flows on
those arcs whose tails are incident to the node. Formally, we write

total flow into node v :=
∑

e∈δin(v)

f(e)−
∑

e∈δout(v)

f(e) ,

where

δin(v) := {(w, v) |(w, v) ∈ E } and δout(v) := {(v, w) |(v, w) ∈ E } .

Similarly, we have

total flow out of node v :=
∑

e∈δout(v)

f(e)−
∑

e∈δin(v)

f(e) = −(total flow into node v) .

We say that the flow is conserved at node v if∑
e∈δin(v)

f(e) =
∑

e∈δout(v)

f(e),

1

2

or, equivalently, the net flow into v is zero. To illustrate these ideas, consider the network
given in Figure 1 and the flow on this network given by (1.1). We have that

total flow into v2 = (5 + 3)− (3 + 4) = 1,

with

δin(v2) = {e1, e5} and δout(v2) = {e3, e4} .
The relationship between flows and and nodes is nicely expressed using the node-arc

incidence matrix of a network. For example, consider the node-arc incidence matrix for the
network given in Figure 1,

A =


−1 −1 0 0 0 0 0 0 0
1 0 −1 −1 1 0 0 0 0
0 1 0 0 −1 0 1 0 0
0 0 1 0 0 −1 0 1 0
0 0 0 1 0 0 −1 −1 −1
0 0 0 0 0 1 0 0 1

 .

If we now multiply the flow given in (1.1) by A, we get

Af =


−1 −1 0 0 0 0 0 0 0
1 0 −1 −1 1 0 0 0 0
0 1 0 0 −1 0 1 0 0
0 0 1 0 0 −1 0 1 0
0 0 0 1 0 0 −1 −1 −1
0 0 0 0 0 1 0 0 1





5
6
3
4
3
7
2
4
5


=


−11

1
5
0
−7
12

 .

Note that each component of the vector Af on the right hand-side of this expession equals
the net inflow to the corresponding vertex, i.e.

total flow into v1 = −11

total flow into v2 = 1

total flow into v3 = 5

total flow into v4 = 0

total flow into v5 = −7

total flow into v6 = 12 .

In particular, if for each v ∈ V , we define Av,· to be the row of the node-arc incidence matrix
corresponding to the vertex v, then

total flow into v = Av,·f .

Hence, the flow f is conserved at node v ∈ V if Av,·f = 0. We say that a node v ∈ V is a
source if the total flow into v is negative, and we say that v is a sink if the total flow into v
is positive.

3

Given a subset of nodes S ⊂ V and a flow on f on E, we define the total flow into S to
be the sum of the total flows into each node of S:

total flow into S :=
∑
v∈S

(total flow into v)

=
∑
v∈S

 ∑
e∈δin(v)

f(e)−
∑

e∈δout(v)

f(e)


=

∑
v∈S

Av,·f .

We can further simplify this expression using matrix algebra. Given a node v ∈ V and arc
e ∈ E, recall that Av,· is the row of the node-arc incidence matrix associated with the node
v. Similarly, let A·,e denote the column of A associated with the arc e and let Av,e denote
the element of A associated with node v and arc e so that

Av,e =


−1 if e = (v, w) ∈ E,

1 if e = (w, v) ∈ E, and

0 if neither e = (v, w) or e = (w, v) are in E.

If the nodes and arcs are ordered so that V = {v1, v2, . . . , vn} and E = {e1, e2, . . . , em}, then
we write Aij := Avi,ej , Ai,· := Avi,·, and A·,j := A·,ej for i = 1, 2, . . . , n, j = 1, 2, . . . ,m, and

Ŝ = {i |vi ∈ S }. Define the support for S to be the function of the nodes zS given by

zS(v) :=

{
1 if v ∈ S, and

0 if v /∈ S,

and, again, if the nodes are ordered,

zŜ(i) :=

{
1 if i ∈ Ŝ, and

0 if i /∈ Ŝ.

Then the total flow into S is given by

total flow into S =
∑
v∈S

Av,·f

= zTS


A1,·f
A2,·f

...
An,·f


= zT

Ŝ
Af(1.2)

= (zT
Ŝ
A·,1, z

T
Ŝ
A·,2, . . . , z

T
Ŝ
A·,m)f

= (
∑
i∈Ŝ

Ai,1,
∑
i∈Ŝ

Ai,2, . . . ,
∑
i∈Ŝ

Ai,m)f .

4

Consider the terms
∑

i∈Ŝ Ai,j, j = 1, 2, . . . ,m in the final expression for the total flow. If

ej = (vi, vk) with both i, k ∈ Ŝ, then
∑

i∈Ŝ Ai,j = 0 since the column A·,j contains exactly

one 1 and one −1 with both these indices occurring in the index set Ŝ. Consequently, for
e = (v, w) ∈ E, we must have

zTSA·,e = zTSA·,(v,w) =


0 if v, w ∈ S,

0 if v, w ∈ E \ S,

1 if w ∈ S and v /∈ S, and

−1 if v ∈ S and w /∈ S.

Therefore the expression for the total flow into S can be simplified to

total flow into S =
∑

(v,w)∈E

f((v, w))zTSA·,(v,w)

=
∑

e∈δin(S)

f(e)−
∑

e∈δout(S)

f(e) ,

where

(1.3) δin(S) := {(v, w) ∈ E |w ∈ S, v /∈ S } and δout(S) := {(v, w) ∈ E |v ∈ S, w /∈ S } .

Finally, observe that

total flow out of S = −(total flow into S)

=
∑

e∈δout(S)

f(e)−
∑

e∈δin(S)

f(e).(1.4)

1.2. Capacitated Networks and the Max-Flow Problem. A capacitated network G =
(V,E, u) is a network having node set V and arc set E along with a non-negative function u
of the arcs: u : E → R+. The function u is called a flow capacity on E. A feasible flow on
this capacitated network is a flow on E satisfying

0 ≤ f(e) ≤ u(e) ∀ e ∈ E .

We now describe the max-flow problem for capacitated networks. Let s, t ∈ V with s 6= t
be given. We refer to s as the source and t as the sink. A flow f on G = (V,E, u) is said to
be an s-t flow if f is feasible and is conserved at all nodes other than s and t:

(1.5) 0 ≤ f(e) ≤ u(e) ∀ e ∈ E and Av,·f = 0 ∀ v ∈ V \ {s, t} .

The value of an s-t flow is the total flow out of s:

value(f) := total flow out of s = −As,·f .

Note that for an s-t flow the total flow out of s necessarily equals the total flow into t.
Indeed, since 0 = zTVA, we have from (1.5) that

0 = zTVAf =
∑
v∈V

Av,·f = As,·f + At,·f,

5

so that value(f) = −As,·f = At,·f . The max-flow problem on (V,E, u, s, t) is to maximize
the value of the flow over all s-t flows :

Max-Flow Problem:
maximize −As,·f
subject to Av,·f = 0 ∀ v ∈ V \ {s, t}

0 ≤ f(e) ≤ u(e) ∀ e ∈ E .

Note that the max-flow problem is always feasible since the zero flow is always feasible.
Moreover, the max-flow problem is always bounded by At,·u, where u is the flow capacity.
Finally observe that the max-flow problem is a linear program, and so by the Strong Duality
Theorem of Linear Programming there always exist solutions to both the max-flow problem
and it dual with the optimal values of these problems coinciding.

1.3. Capacitated Networks and the Min-Cut Problem. Let G = (V,E, u) be a ca-
pacitated network and let s, t ∈ V with s 6= t. An s-t cut in G is a set of arcs in E of the
form δout(S) for a subset of nodes S ⊂ V with s ∈ S and t /∈ S. Recall that the set δout(S),
defined in (1.3), is given by

δout(S) := {(v, w) ∈ E |v ∈ S, w /∈ S } .

Note that any set of arcs of the form δout(S) necessarily forms a directed cut in the capacitated
network G = (V,E, u). That is, when the arcs in δout(S) are removed, there is no directed
path from from a node in S to any node not in S. The capacity of an s-t cut is the sum of
the capacities of the arcs in the cut:

C(δout(S)) =
∑

e∈δout(S)

u(e) .

A minimum s-t cut is an s-t cut of minimum capacity. The min-cut problem is the problem
of finding a minimum capacity cut:

Min-Cut Problem:
minimize C(δout(S))
subject to S ⊂ V, s ∈ S, and t /∈ S .

In the next lemma, we establish a relationship between the capacity of an s-t cut and the
value of an s-t flow .

Lemma 1.1 (Max-Flow Min-Cut Inequality). For any node set S ⊂ V such that s ∈ S and
t /∈ S, and any s-t flow f we have

(1.6) value(f) =
∑

e∈δout(S)

f(e)−
∑

e∈δin(S)

f(e) ≤
∑

e∈δout(S)

u(e) = C(δout(S)) .

Proof. The inequality in (1.6) follows immediately from the first equation in (1.6) since
0 ≤ f(e) ≤ u(e) for all e ∈ E. Therefore we need only prove the first equation in (1.6). For

6

this, note that

value(f) =
∑

e∈δout(s)

f(e)−
∑
e∈δins

f(e)

= −As,·f −
∑

v∈S\{s}

Av,·f

= −zTSAf
= total flow out of S

=
∑

e∈δout(S)

f(e)−
∑

e∈δin(S)

f(e),

where the second equality follows by the conservation of flow at each node in S \ {s, t}, the
third and fourth equality follows from (1.2), and the final equality follows from (1.4). �

Lemma 1.1 immediately yields the following corollary.

Corollary 1.2. The optimal value in the max-flow problem is bounded above by the optimal
value in the min-cut problem. Moreover, if f is an s-t flow and δout(S) is an s-t cut for
which

value(f) = C(δout(S)),

then f solves the max-flow problem and δout(S) solves the min-cut problem.

1.4. Flow Augmenting Paths. We now consider an algorithm for solving the max-flow
problem. The key idea is the notion of a flow augmenting path. Consider the following simple
capacitated network where the labels on the arcs are the capacities. We wish to solve the
max-flow problem on this network beginning with the zero flow, i.e. f(e) = 0 ∀ e ∈ V . In
this case we take s = v1 and t = v4. The first step is to find an s-t directed path, or s-t path
, in the network, that is, a directed path from s to t. Once this path is found, we then push
as much flow from s to t along this path subject to the arc capacities.

1

2 3

4

4

5

3

8

Figure 2. First augmenting path example

7

Let’s try this on the network in Figure 2. Set the initial flow on E to be

f0 = (f0((1, 2)), f0((2, 3)), f0((3, 4)), f0((1, 4)) = (0, 0, 0, 0) .

Next, beginning at s = v1, find a directed flow from s to t. Using a greedy approach, we
choose the arc (1, 2) as the first edge in the path since it has the highest flow capacity. The
s-t path is then completely determined and is given by

P0 : s = v1(1, 2)v2(2, 3)v3(3, 4)v4 = t .

This path is called a flow augmenting path for the the flow f0, or equivalently, an f0-
augmenting path. The maximum flow that can be pushed along this path equals the mini-
mum of the flow capacities of the edges in the path:

γ = min{u((1, 2)), u((2, 3)), u((3, 4))} = min{5, 3, 8} = 3 .

Pushing this flow along the path P0 induces a flow on G given by

p0 = (p0((1, 2)), p0((2, 3)), p0((3, 4)), p0((1, 4)) = (3, 3, 3, 0) .

Adding the flow along this path to our initial flow f0, we obtain the s-t flow

f1 = f0 + p0 = (0, 0, 0, 0) + (3, 3, 3, 0) = (3, 3, 3, 0) ,

with a total out flow from s = v1 of

value(f1) = value(f0) + value(p0) = 0 + 3.

Next we find another s-t path along which we can push more flow. While it is possible to
push 2 more units of flow from v1 to v2, we cannot push any more flow from v2 to v3 since
we are already at capacity on the arc (2, 3). On the other hand, we can push 4 units of flow
directly from s = v1 to t = v4 along the arc (1, 4). That is, we can push 4 units of flow along
the s.t. path P1 : s = v1(1, 4)v4 = t. This path is an f1-augmenting path and it yields the
flow

p1 = (p1((1, 2)), p1((2, 3)), p1((3, 4)), p1((1, 4)) = (0, 0, 0, 4) .

Adding the flows f1 and p1 gives the flow

f2 = f1 + p1 = (3, 3, 3, 0) + (0, 0, 0, 4) = (3, 3, 3, 4),

with a total out flow from s = v1 of

value(f2) = value(f1) + value(p1) = 3 + 4 = 7.

Repeating this process, we try to find another s-t path along which we can push more
flow. Starting at s = v1 we can only push more flow as far as v2 at which point we can no
longer push any more flow. That is, there does not exist an f2-augmenting path, and we
cannot push flow beyond the two vertices R = {v1, v2}. Note that

δout(R) = {(2, 3), (1, 4)}, with C(δout(R)) = u((2, 3)) + u((1, 4)) = 3 + 4 = 7 .

That is, we have found an s-t cut , δout(R) such that

value(f2) = 7 = C(δout(R)) !

Therefore, by Corollary 1.2, the flow f2 solves the max-flow problem and the cut δout(R)
solves the min-cut problem for the capacitated network in Figure 2.

8

7

9

4

8

9
4

8

5

8

1

2

3

4

5

6

Figure 3. Second augmenting path example

Clearly, the graph in Figure 2 is exceptionally trivial, and so we could have arrived at the
solution to this max-flow problem as a simple direct observation. However, the manner in
which we laboriously constructed the optimal flow is instructive since it outlines a procedure
that can be followed on a much more general graph. In brief, the procedure is to successively
determine flow augmenting paths that allow us to push more and more flow until no such
path exits. This yields a set of vertices beyond which we can no longer push any flow and
these vertices constitute a an s-t cut whose capacity equals the value of the current flow thus
establishing the optimality of both. The following table recaps all of the information used
to obtain this flow.

e (1, 2) (1, 4) (2, 3) (3, 4) flow
u 5 4 3 8 value
f0 0 0 0 0 0
p0 3 3 3 0 3

f1 = f0 + p0 3 3 3 0 3
p1 0 0 0 4 4

f2 = f1 + p1 3 3 3 4 7

To cement our understanding of this procedure, let us apply it to the somewhat more
complicated capacitated network described in Figure 3 with s = v1 and t = v6. To simplify
the presentation, we index the arcs as follows:

e1 = (1, 2), e2 = (1, 3), e3 = (2, 4), e4 = (2, 5),

e5 = (3, 2), e6 = (4, 5), e7 = (4, 6), e8 = (5, 3), e9 = (5, 6) .

Again we begin with a the zero flow f0 = 0 which is zero on all arcs. Next we find an f0-
augmenting path P0. Following the greedy approach used above, we look for the arc exiting
s = v1 having greatest capacity, and at each successive vertex choosing the arc with greatest
capacity until t = v6 is reached. This gives the path

P0 : v1e1v2e3v4e8v6 ,

with path capacity

γ = min{u(e1), u(e3), u(e8)} = min{8, 9, 8} = 8 .

9

The corresponding f0-augmenting flow is

p0 = (8, 0, 8, 0, 0, 0, 8, 0, 0)T .

Adding p0 to f0 gives the new flow

f1 = f0 + p0 = (8, 0, 8, 0, 0, 0, 8, 0, 0)T .

The value of f1 is value(f1) = 8:

e (1, 2) (1, 3) (2, 4) (2, 5) (3, 2) (4, 5) (4, 6) (5, 3) (5, 6) flow
u 8 7 9 4 9 4 8 8 5 value
f0 0 0 0 0 0 0 0 0 0 0
p0 8 0 8 0 0 0 8 0 0 8

f1 = f0 + p0 8 0 8 0 0 0 8 0 0 8

Repeating this procedure, we choose the f1-augmenting path

P1 : v1e2v3e6v2e4v5e9v6 ,

with path capacity

γ = min{u(e2), u(e6), u(e4), u(e9)} = min{7, 9, 4, 5} = 4 .

The corresponding f1-augmenting flow is

p1 = (0, 4, 0, 4, 4, 0, 0, 0, 4)T .

Adding p1 to f1 gives the new flow

f2 = f1 + p1 =



8
0
8
0
0
0
8
0
0


+



0
4
0
4
4
0
0
0
4


=



8
4
8
4
4
0
8
0
4


.

The value of f2 is value(f2) = value(f1) + value(p1) = 8 + 4 = 12:

e (1, 2) (1, 3) (2, 4) (2, 5) (3, 2) (4, 5) (4, 6) (5, 3) (5, 6) flow
u 8 7 9 4 9 4 8 8 5 value
f0 0 0 0 0 0 0 0 0 0 0
p0 8 0 8 0 0 0 8 0 0 8

f1 = f0 + p0 8 0 8 0 0 0 8 0 0 8
p1 0 4 0 4 4 0 0 0 4 4

f2 = f1 + p1 8 4 8 4 4 0 8 0 4 12

We repeat again, but this time something slightly different occurs. Now we can push more
flow along e2 up to the residual (or remaining) capacity u(e2)− f2(e2) = 7− 4 = 3. Then we
can push it along e3 up to the the residual capacity u(e3)− f2(e3) = 9− 8 = 1. Then along

10

e8 up to the residual capacity u(e8)− f2(e8) = 4− 0 = 4. Finally, we can push it along e9 up
to the the residual capacity u(e9)− f2(e9) = 5− 4 = 1. This gives an f2-augmenting path of

P2 : v1e2v3e6v2e3v4e7v5e9v6 ,

with path capacity

γ = min{u(e2)− f2(e2), u(e3)− f2(e3), u(e8)− f2(e8), u(e9)− f2(e9)} = min{3, 1, 4, 1} = 1 .

The corresponding f2-augmenting flow is

p2 = (0, 1, 1, 0, 1, 1, 0, 0, 1)T .

Adding p2 to f2 gives the new flow

f3 = f2 + p2 =



8
4
8
4
4
0
8
0
4


+



0
1
1
0
1
1
0
0
1


=



8
5
9
4
5
1
8
0
5


.

The value of f3 is value(f3) = value(f2) + value(p2) = 12 + 1 = 13:

e (1, 2) (1, 3) (2, 4) (2, 5) (3, 2) (4, 5) (4, 6) (5, 3) (5, 6) flow
u 8 7 9 4 9 4 8 8 5 value
f0 0 0 0 0 0 0 0 0 0 0
p0 8 0 8 0 0 0 8 0 0 8

f1 = f0 + p0 8 0 8 0 0 0 8 0 0 8
p1 0 4 0 4 4 0 0 0 4 4

f2 = f1 + p1 8 4 8 4 4 0 8 0 4 12
p2 0 1 1 0 1 1 0 0 1 1

f3 = f2 + p2 8 5 9 4 5 1 8 0 5 13

Repeating, we find that due to capacity limits we can only push flow through the nodes
R = {v1, v2, v3} where

δout(R) = {e3, e4} , with C(δout(R)) = u(e3) + u(e4) = 9 + 4 = 13 .

Therefore, value(f3) = 13 = C(δout(R)) so Corollary 1.2 tells us that f3 solves the max-flow
problem and δout(R) solves the max-cut problem.

There are many ways to solve the max-flow problem using this algorithm and not all
ways will provide the same solution. The method differs depending on how one choses the
flow augmenting path at each iteration. Sometimes one must backtrack the flow in order to
make a correction to a flow previously allocated. In order to illustrate how this works, we
again sole the max-flow problem for the capacitated graph in Figure 3, but this time making
different choices in the flow augmenting paths.

11

Again s = v1 and t = v6 and we take the initial flow to be the zero flow f0 = 0. Our first
flow augmenting path is

P0 : v1(1, 3)v3(3, 2)v2(2, 4)v4(4, 5)v5(5, 6)v6,

with γ0 = min{7, 9, 9, 4, 5} = 4. The resulting f0-augmenting flow p0 and f1 are given in the
following table:

e (1, 2) (1, 3) (2, 4) (2, 5) (3, 2) (4, 5) (4, 6) (5, 3) (5, 6) flow
u 8 7 9 4 9 4 8 8 5 value
f0 0 0 0 0 0 0 0 0 0 0
p0 0 4 4 0 4 4 0 0 4 4

f1 = f0 + p0 0 4 4 0 4 4 0 0 4 4

We now choose the flow augmenting path

P1 : v1(1, 3)v3(3, 2)v2(2, 4)v4(4, 6)v6,

with γ1 = min{7 − 4, 9 − 4, 9 − 4, 8} = 3. The resulting f1-augmenting flow p1 and f2 are
given in the following table:

e (1, 2) (1, 3) (2, 4) (2, 5) (3, 2) (4, 5) (4, 6) (5, 3) (5, 6) flow
u 8 7 9 4 9 4 8 8 5 value
f0 0 0 0 0 0 0 0 0 0 0
p0 0 4 4 0 4 4 0 0 4 4

f1 = f0 + p0 0 4 4 0 4 4 0 0 4 4
p1 0 3 3 0 3 0 3 0 0 3

f2 = f1 + p1 0 7 7 0 7 4 3 0 4 7

The next flow augmenting path we choose is

P2 : v1(1, 2)v2(2, 4)v4(4, 6)v6,

with γ2 = min{8, 9− 7, 8− 3} = 2. The resulting f2-augmenting flow p2 and f3 are given in
the following table:

e (1, 2) (1, 3) (2, 4) (2, 5) (3, 2) (4, 5) (4, 6) (5, 3) (5, 6) flow
u 8 7 9 4 9 4 8 8 5 value
f0 0 0 0 0 0 0 0 0 0 0
p0 0 4 4 0 4 4 0 0 4 4

f1 = f0 + p0 0 4 4 0 4 4 0 0 4 4
p1 0 3 3 0 3 0 3 0 0 3

f2 = f1 + p1 0 7 7 0 7 4 3 0 4 7
p2 2 0 2 0 0 0 2 0 0 2

f3 = f2 + p2 2 7 9 0 7 4 5 0 4 9

The f3-augmenting path we choose is

P3 : v1(1, 2)v2(2, 5)v5(5, 6)v6

12

with γ3 = min{8− 2, 4, 5− 4} = 1. The resulting f3-augmenting flow p3 and f4 are given in
the following table:

e (1, 2) (1, 3) (2, 4) (2, 5) (3, 2) (4, 5) (4, 6) (5, 3) (5, 6) flow
u 8 7 9 4 9 4 8 8 5 value
f0 0 0 0 0 0 0 0 0 0 0
p0 0 4 4 0 4 4 0 0 4 4

f1 = f0 + p0 0 4 4 0 4 4 0 0 4 4
p1 0 3 3 0 3 0 3 0 0 3

f2 = f1 + p1 0 7 7 0 7 4 3 0 4 7
p2 2 0 2 0 0 0 2 0 0 2

f3 = f2 + p2 2 7 9 0 7 4 5 0 4 9
p3 1 0 0 1 0 0 0 0 1 1

f4 = f3 + p3 3 7 9 1 7 4 5 0 5 10

Obviously f4 is not yet optimal since we know that the optimal value is 13, so there must
be a way to push more flow along a flow augmenting path. But this time there will be a
difference since we have incorrectly allocated some of the flow in f4 so we must use an f4-
augmenting flow with at least one negative component. In general a flow augmenting path
can push back along an arc only if there is already a positive flow in this arc. Moreover, in
this case, we cannot push back more flow than is already flowing forward in this arc. The
flow augmenting path we choose for f4 is

P4 : v1(1, 2)v2(2, 5)v5(4, 5)v4(4, 6)v6 .

Note that here we move backwards along the arc (4, 5) so we will be pushing flow back along
this arc. Corrently, we are pushing a flow of 4 along this arc so we cannot push more than
a flow of 4 back along this arc. The computation of γ4 is as follows:

γ4 = min{8− 2, 4, 4, 8− 5} = 3.

The resulting f4-augmenting flow p4 and f5 are given in the following table:

e (1, 2) (1, 3) (2, 4) (2, 5) (3, 2) (4, 5) (4, 6) (5, 3) (5, 6) flow
u 8 7 9 4 9 4 8 8 5 value
f0 0 0 0 0 0 0 0 0 0 0
p0 0 4 4 0 4 4 0 0 4 4

f1 = f0 + p0 0 4 4 0 4 4 0 0 4 4
p1 0 3 3 0 3 0 3 0 0 3

f2 = f1 + p1 0 7 7 0 7 4 3 0 4 7
p2 2 0 2 0 0 0 2 0 0 2

f3 = f2 + p2 2 7 9 0 7 4 5 0 4 9
p3 1 0 0 1 0 0 0 0 1 1

f4 = f3 + p3 3 7 9 1 7 4 5 0 5 10
p4 3 0 0 3 0 −3 3 0 0 3

f5 = f4 + p4 6 7 9 8 7 1 8 0 5 13

which is optimal. Notice that this optimal flow is very different from the optimal flow we
computed previously.

13

In the next section we make precise how the algorithm works, especially the procedure for
pushing flow back along some arcs.

1.5. The Ford - Fulkerson Algorithm for Max-Flows. In this section we provide a for-
mal statement of the algorithm introduced in the previous section and show that it solves the
max-flow/min-cut problems. In order to make the presentation precise as well as applicable
to arbitrary capacitated network, we need to introduce a number of additional concepts.

Definition 1.3. Let G = (V,E, u) be a capacitated network. Let s, t ∈ V with s 6= t and f
an s-t flow on G. Set

EF := E, and (forward arcs)

EB := {(w, v) |(v, w) ∈ E } , (backward arcs)

and EA := EF ∪ EB. Define the f residual capacities to be

uf (e) :=

{
u(e)− f(e) e ∈ EF ,

f(e) e ∈ EB .

Then the capacitated network Gf := (V,EA, uf) is called the f -augmenting capacitated net-
work. An s-t path Pf in Gf is said to be an f -augmenting path if

γ(Pf) := min {uf (e) |e ∈ Pf } > 0 .

An f -augmenting path Pf on Gf defines an f -augmenting flow pf on G by

pf ((u, v)) :=


γ(Pf) (u, v) ∈ EF and (u, v) ∈ Pf ,
−γ(Pf) (v, u) ∈ EB and (v, u) ∈ Pf ,
0 (u, v) /∈ Pf and (v, u) /∈ Pf .

[Ford-Fulkerson Max-Flow Algorithm]

Initialization: Let G = (V,E, u) be a capacitated network. Let s, t ∈ V with s 6= t
and f0 an s-t flow on G, e.g. f0 can be taken to be the zero flow. Set v0 := value(f0)
and k = 0.
Step 1: [Find an fk-augmenting path Pk.] Let Pk be an fk-augmenting path in
capacitated network Gfk . That is, Pk is an s-t path in Gfk for which

γk := min {uf (e) |e ∈ Pk } > 0 .

If no such path exists, then STOP.
Step 2: [Define a flow on Pk.] Define a flow pk on G by

pk((u, v)) :=


γk (u, v) ∈ EF and (u, v) ∈ Pk,
−γk (v, u) ∈ EB and (v, u) ∈ Pk,
0 (u, v) /∈ Pk and (v, u) /∈ Pk .

(Note that the flow pk is not necessarily an s-t flow in G since it is not necessarily
non-negative.)
Step 3: [Update the flow.] Set fk+1 := fk + pk, vk+1 := vk + γk, and k := k + 1, and
return to Step 1.

14

The algorithm as described differs from the two examples provided since it allows the
possibility reallocating from one arc to another. That is, we allow the fk-augmenting flows
to take negative values. In many cases this is necessary in order to obtain an optimal flow.
Before showing that this algorithm solves the max-flow problem, let us more closely examine
the algorithm by showing that all of the flows that it construct are indeed s-t flows and that
the value of these flows are given by the vk’s.

Consider the flow pk defined in Step 2 of the algorithm. We first show that pk conserves
flow at all nodes other than s and t. If v 6= Pk, then the flow is conserved at v by definition
since the flow in pk only enters of leaves the nodes in Pk. Let v ∈ Pk with s 6= v 6= t. Then
there exists nodes u,w ∈ V such that ue1ve2w where e1, e2 ∈ EA is the snippet of the path
Pk passing through v. The following 4 scenarios are possible:

Path in G flow out of v
ue1ve2w = u(u, v)v(v, w)w −γk + γk = 0
ue1ve2w = u(v, u)v(v, w)w −γk + γk = 0
ue1ve2w = u(u, v)v(w, v)w −γk − (−γk) = 0
ue1ve2w = u(v, u)v(w, v)w −γk − (−γk) = 0

Hence, pk conserves flow at all nodes other than s and t. We now show that the value of
pk is γk. Suppose sev ∈ Pk for some e ∈ EA and v ∈ V . The following two scenarios are
possible:

Path in G flow out of s
sev = s(s, v)v value(pk) = γk
sev = s(v, s)v value(pk) = −(−γk) = γk .

In particular, this implies that

value(fk+1) = value(fk + pk) = −As·(fk + pk) = −As·fk − As·pk = vk + γk = vk+1 .

Finally, we show that fk+1 = fk + pk is an s-t flow in G whenever fk is an s-t flow in
G. Since pk conserves flow at all nodes other than s and t we need only check that fk+1 is
feasible for G, that is, we need only show that 0 ≤ fk+1(e) ≤ u(e) for all e ∈ E. For each
e ∈ E, the following two scenarios are possible:
For (u, v) ∈ EF :

fk+1((u, v)) = fk((u, v)) + pk((u, v)) ≤ fk((u, v)) + (u((u, v))− fk((u, v))) = u((u, v)) and

fk+1((u, v)) = fk((u, v)) + pk((u, v)) ≥ fk((u, v)) + 0 ≥ 0 ,

For (u, v) ∈ EB:

fk+1((u, v)) = fk((u, v)) + pk((u, v)) ≤ fk((u, v)) + 0 ≤ u((u, v)) and

fk+1((u, v)) = fk((u, v)) + pk((u, v)) ≥ fk((u, v))− fk((u, v)) = 0 .

Hence fk+1 is feasible for G, and so the Ford-Fulkerson Max-Flow Algorithm moves from
one s-t flow to another s-t flow with strictly greater flow value.

We now show that the Ford-Fulkerson Max-Flow Algorithm terminates at an s-t flow f if
and only if f solves the max-flow problem.

Theorem 1.4. Let G = (V,E, u) be a capacitated network and let s, t ∈ V with s 6= t. The
Ford-Fulkerson Max-Flow Algorithm applied to the max-flow problem on (G, s, t) terminates

15

at an s-t flow f if and only if f solves the max-flow problem. Moreover, if the algorithm
terminates at f , then f generates a vertex set R ⊂ V such that the cut δout(R) solves the
min-cut problem with value(f) = C(δout(R)).

Proof. By Step 1 of the algorithm, the Max-Flow Algorithm terminates at an s-t flow f
if and only if Gf contains no f -augmenting path Pf . Clearly, if there is an f -augmenting
path Pf , then f cannot be optimal since its value can be increased by pushing a positive
flow along this path. That is, if f solves the max-flow problem, then there cannot exist an
f -augmenting path.

To prove the theorem it remains to show that if there is no f -augmenting path, then f
must solve the max-flow problem and this f also generates a cut solving the min-cut problem.
We do both of these at the same time by showing that if there is no f -augmenting path,
then f generates an s-t cut δout(R) such value(f) = C(δout(R)). To this end, let f be an s-t
flow in G for which there is no f -augmenting path. Let R ⊂ V be the set of nodes in v ∈ V
for which there is an s-t path , Pv, in Gf such that

min
{
uf (e)

∣∣e ∈ Pv, e ∈ EA
}
> 0 .

By construction uf (e) = 0 for all e = (v, w) ∈ δoutGf
(R) since otherwise w ∈ R. In particular,

t /∈ R (here δoutGf
(R) is the set of arcs leaving R in the capacitated network Gf). Observe

that
δoutGf

(R) =
{
e = (v, w)

∣∣(v, w) ∈ δoutG (R) or (w, v) ∈ δinG (R)
}
.

Hence, if e ∈ δoutG (R), then e ∈ EF in Gf with 0 = uf (e) = u(e) − f(e). Similarly, if
e ∈ δinG (R), then e ∈ EB with 0 = uf (e) = f(e). Therefore, by Lemma 1.1,

value(f) =
∑

e∈δoutG (R)

f(e)−
∑

e∈δinG (R)

f(e)

=
∑

e∈δoutG (R)

u(e)

= C(δoutG (R)) ,

which, by Corollary 1.2, proves the theorem. �

