
1. Introduction to Discrete Optimization

In finite dimensional optimization we are interested in locating solutions to the problem

P : minimize
x∈X

f0(x)

subject to x ∈ Ω.

where X is the variable space (or decision space), f0 : X → R∪{±∞} is called the objective
function, and the set Ω ⊂ X is called the constraint region. The techniques that one employs
in the study of P are determined by the nature of the space X, the function f0, and the set
Ω. Some of the basic problem categories are as follows:

(1) Variable Type:
(a) continuous variable: X = Rn

(b) discrete variable: X = Zn

(c) zero-one variables: X = {0, 1}n

(d) mixed variable: X = Rr × Zs × {0, 1}t
(2) Constraint Type:

(a) unconstrained: Ω = X
(b) constrained: Ω 6= X

(3) Problem Type:
(a) Convex Programming:

f0 is a convex function and Ω is a convex set.

Definition 1.1. The set Ω ⊂ Rn is said to be convex if for every
x, y ∈ Ω one has [x, y] ⊂ Ω where [x, y] denotes the line segment
connecting x and y:

[x, y] = {λx+ (1− λ)y : 0 ≤ λ ≤ 1}.

Definition 1.2. The function f : Rn → R ∪ {±∞} is said to be
convex if the set epi(f) = {(x, µ) : f(x) ≤ µ} is a convex set in Rn+1.
In particular,

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

for all 0 ≤ λ ≤ 1 and points x, y for which not both f(x) and f(y)
are infinite.

(b) Linear Programming:
The minimization or maximization of a linear functional subject to a finite
number of linear inequality and/or equality constraints. f0(x) := cTx for
some c ∈ Rn and

Ω :=

{
x

∣∣∣∣aT
i x
≤ bi i = 1, . . . , s
= bi i = s+ 1, . . . ,m

}
.

1



2

Linear programming is a special case of convex programming. In this case
the constraint region Ω is called a polyhedral convex set. Polyhedra have
a very special geometric structure.

(c) Quadratic Programming:
The minimization or maximization of a quadratic objective functions over
a convex polyhedron:

f0(x) =
1

2
xTQx+ bTx+ α

Exercise: Show that ∇f0(x) = 1
2
(Q+QT )x+ b and ∇2f0(x) = 1

2
(Q+QT ).

Fact: f0 is convex if and only if Q is positive semi-definite.

(d) Mini-Max:

f0(x) = max{fi(x) : i = 1, . . . , s}.

(e) Nonlinear Programming

Ω := {x ∈ X : fi(x) ≤ 0, i = 1, . . . , s, fi(x) = 0, i = j + 1, . . .m}

(i) Differentiable: fi is smooth i = 0, . . . ,m
(ii) Nonsmooth: at least one fi is not smooth
(iii) Semi-Infinite: m = +∞.

(f) Box Constraints:

Ω := {x ∈ Rn : li ≤ xi ≤ ui, i = 1, . . . , n}
li ∈ R ∪ {−∞}, ui ∈ R ∪ {+∞}, li ≤ ui

This course is devoted to discrete optimization and so our focus is on the development
of numerical methods for solving the general nonlinear programming problem under the
assumption that all of the underlying functions are smooth and the variables are either
integer or zero-one. After developing a few ideas associated with the general case, we refine
our study to linear programming over the integers.

1.1. A Sampling of Problems.

1.1.1. Train and Bus Scheduling. Bus and train schedules repeat on a 24 hour basis. For
each route the travel times between stops is known, and time spent at each stop must lie in a
given time interval. It is preferred that two trains and/or busses traveling the same route be
separated by a fixed time interval. To make connections between bus/train A and bus/train
B at a given station, the arrival time of A must precede the departure time of B by a fixed
amount. The problem is to find a feasible schedule for the system that minimizes the travel
times between all stations in the system.



3

1.1.2. Work Crew Scheduling. Given a schedule of tasks and a list of employees with a range
of expertise and wages, the problem is to design the weekly schedules of the work crews.
Each day a crew must be assigned a duty period consisting of a set of one or more linked
tasks satisfying numerous constraints on time to completion, qualifications and training of
the crew, breaks and rest periods, ... The duty periods, weekly schedules or crew pairings
must satisfy further constraints on task completion times and sequential work flow. The
task is to minimize the total wage costs required while maintaining adequate work flow and
contract specifications.

1.1.3. Layout and Cutting Problems. Whether placing circuits of a chip or cutting manufac-
turing patterns/templates from sheet metal, plastic, or fabric, the problem in each case is to
follow precisely determined layout and cutting rules to satisfy demand and minimize waste.

1.1.4. Pizza Delivery. With multiple delivery vehicles, the problem is to determine the as-
signment of deliveries and the delivery routes to minimize the maximum customer wait-time.

1.2. Some Classical Binary Integer LPs (BIP).

1.2.1. The Assignment Problem. There are n people to carry out n jobs. Each person is
assigned to carry out exactly one job. Some individuals are better suited to some jobs than
others, so there is an estimated cost cij if person i is assigned to job j. The problem is to
find a minimum cost assignment.

Let xij = 1 if person i is assigned to job j; otherwise, set xij = 0. Since each person can
do only one job, we have

n∑
j=1

xij = 1 i = 1, 2, . . . , n .

Since each job must be assigned,

n∑
i=1

xij = 1 j = 1, 2, . . . , n .

The cost of an assignment is
n∑

j=1

n∑
i=1

cijxij.

Hence the problem can be stated as the BIP

minimize
∑n

j=1

∑n
i=1 cijxij

subject to
∑n

j=1 xij = 1, i = 1, 2, . . . , n∑n
i=1 xij = 1 j = 1, 2, . . . , n

xij ∈ {0, 1}, i, j = 1, 2, . . . , n .



4

1.2.2. The 0-1 Knapsack Problem. There is a budget b available for investment in n projects
during the coming year.Project j requires an investment of aj to participate with an expected
return of cj dollars. The goal is to choose a set of projects to participate in so that the budget
is not exceeded and the expected return is maximized.

Let xj = 1 if project j is selected for participation; otherwise, xj = 0. Since the budget
cannot be exceeded, we require that

n∑
j=1

ajxj ≤ b ,

with an expected return of
n∑

j=1

cjxj

Hence this problem can be stated as the BIP

maximize
∑n

j=1 cjxj

subject to
∑n

j=1 ajxij ≤ b

xj ∈ {0, 1}, j = 1, 2, . . . , n .

1.2.3. The Set Covering Problem. Given a m regions, the problem is to decide where to
place n < m service facilities. For each region, the cost of installation and the other regions
that a facility in this region can cover are known. For example, the facilities may be a fire
stations (or cell towers, satellites, ice-cream stores, ...), and each station can service those
regions for which a fire engine is guaranteed to arrive on the scene within 8 minutes. The
goal is to choose a minimum cost set of service facilities so that all regions are covered.

Let xj = 1 if a facility is placed in region j; otherwise, xj = 0. Set aij = 1 if a facility in
region j can service region i, and let cj be the cost of placing a facility in region j. Then the
set covering problem can be stated as the following BIP:

minimize
∑n

j=1 cjxj

subject to
∑n

j=1 aijxj ≥ 1, i = 1, 2, . . . , n

xj ∈ {0, 1}, j = 1, 2, . . . , n .

1.2.4. The Traveling Salesperson Problem (TSP). This is perhaps the most well-known BIP.
A salesperson must visit each of n cities exactly once and then return to their starting point.
The time taken to travel from city i to city j is cij. Find the order in which the salesperson
should make their tour in the least amount of time.

Let xij = 1 if the salesperson travels directly from city i to city j; otherwise, xij = 0 and
xii is not defined. Since a tour leaves each city only once∑

j:j 6=i

xij = 1, i = 1, 2, . . . , n .



5

Since a tour arrives in each city only once∑
i:i 6=j

xij = 1, j = 1, 2, . . . , n .

The constraints so far only require that each city is visited only once. But they do not
guarantee that for each pair of cities there is a portion of the tour that takes the sales person
from one of these cities to the other. To guarantee that this occurs, a tour must pass from
every subset of cities to the remaining cities at least once. Let S denote all possible non-
empty subsets of the integers {1, 2, . . . , n}. It is well-known that S contains 2n−1 elements.
To guarantee that for each pair of cities there is a portion of the tour that takes the sales
person from one of these cities to the other, we must add the constraints∑

i∈S

∑
j 6∈S

xij ≥ 1, ∀S ∈ S.

The TSP can now be stated as the BIP

minimize
∑n

i=1

∑
j:j 6=i cijxij

subject to
∑

j:j 6=i xij = 1, i = 1, 2, . . . , n∑
i:i 6=j xij = 1, j = 1, 2, . . . , n∑
i∈S

∑
j 6∈S xij ≥ 1, ∀S ∈ S

xij ∈ {0, 1}, i, j = 1, 2, . . . , n, i 6= j .

1.3. A Mixed Integer Program. Mixed integer programs often arise in the context of
modeling fixed costs. In a typical scenario a fixed charge cost function takes the form

h(x) =

{
f + c(x) if 0 ≤ x ≤ C, and

0 otherwise,

where the fixed charge f > 0 and the running cost is c(x) ≥ 0 with c(0) = 0. To accommodate
this jump discontinuity in the objective function h we introduce a new variable y satisfying

y =

{
1 if x > 0, and

0 otherwise.

We then replace h(x) by

h(x, y) = yf + c(x),

and add the constraints

0 ≤ x ≤ Cy, y ∈ {0, 1}.



6

1.3.1. The Uncapacitated Facility Location Problem (UFLP). In this problem we are given a
set of potential depots N = {1, 2, . . . , n} and a set M = {1, 2, . . . ,m} of clients. We suppose
that there is a fixed cost fj associated with the use of the depot j, and a transportation cost
cij if all of client i’s order is delivered from depot j. The problem is to decide which depots
to open, and which depot serves which client in order to minimize the total sum of the fixed
costs and the transportation costs.

As described above, for each j = 1, 2, . . . , n, we introduce a fixed cost (or depot opening
cost) yj, with yj = 1 if depot j is used and yj = 0, otherwise. Let xij be the fraction of
client i demand met from depot j so that

∑n
j=1 xij = 1, i = 1, 2, . . . ,m. To represent the

constraint that nothing is shipped from depot j if it is not opened we write
m∑

i=1

xij ≤ myj, yj ∈ {0, 1}, j = 1, 2, . . . , n.

The problem can now be written as the mixed integer LP

minimize
∑m

i=1

∑n
j=1 cijxij +

∑n
j=1 fjyj

subject to
∑n

j=1 xij = 1, i = 1, 2, . . . ,m∑m
i=1 xij ≤ myj, j = 1, 2, . . . , n

0 ≤ xij, yj ∈ {0, 1}, i = 1, 2, . . . ,m, j = 1, 2, . . . , n.


