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Figure 1. A graph with 5 vertices.

1. Graphs, Digraphs, and Networks

1.1. The Basics. A graph is a mathematical structure comprised of two classes of objects:
vertices and edges. If we let G denote the graph, then we write G = (V, E) where V is the
set of vertices and E the set of edges. The edges E are a subset of V × V consisting of
unordered pairs of vertices. If v1, v2 ∈ V and e = {v1, v2} ∈ E, then we say v1 and v2 are
adjacent to each other in G, and that e joins v1 to v2 and e is incident to both v1 and v2.
It is useful to think of networks pictorially as in the figure below where the circles represent
the vertices (v1, v2, v3, v4, v5) and the lines connecting the circles are the edges.

The edges in this graph are

{v1, v2}, {v2, v3}, {v1, v3}, {v2, v5}, {v2, v4}, {v4, v3}, {v5, v3}, {v4, v5}.

A graph is said to be a digraph (or network) if the pairs of vertices that determine the
edges are ordered. In the case we write e = (vi, vj) to emphasize that vi comes first and vj

second. In a digraph the vertices are called nodes and edges arcs. A digraph version of the
graph given above follows.

The edges in this graph are

(v1, v2), (v1, v3), (v3, v2), (v2, v4), (v5, v2), (v4, v5), (v4, v3), (v3, v5).

In a digraph these pairs of vertices are still said to be adjacent, but now we can be more
specific about their adjacency. If (vi, vj) is an edge in a digraph, we say that vi is adjacent
to vj and vj is adjacent from vi. Similarly, we say that the arc (vi, vj) is incident from vi and
incident to vj .

Any pair of edges between the same pair of vertices are said to be parallel edges, and any
edge from a vertex to itself is called a loop. A graph is said to be simple if it has no loops
or parallel edges.

The graph G = (V, E) is said to be bipartite if the vertex set can be partitioned into two
sets X and Y such that {vi, vj} ∈ E if and only if either vi ∈ X and vj ∈ Y , or vj ∈ X and
vi ∈ Y . In this case we write G = (X, Y, E).
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Figure 2. A digraph with 5 nodes.
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Figure 3. Loops and parallel edges.
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Figure 4. A bipartite graph.

The complete graph on n vertices, denoted Kn is the simple graph having all vertices
adjacent to each other. The complete bipartite graph Kr,s = (X, Y, E) is the bipartite graph
where every element of X is adjacent to every element of Y with |X| = r and |Y | = s.

A graph G = (V, E) is said to be cyclic if its distinct vertices have and ordering {v1, v2, . . . , vn}
such that E = {{v1, v2}, {v2, v3}, {v3, v4}, . . . , {v(n−1), vn}, {vn, v1}}, where n = |V | ≥ 3.
We denote the cyclic graph on n vertices by Cn.

The graph H = (W, F ) is said to be a subgraph of the graph G = (V, E) if W ⊂ V and
F ⊂ E. The subgraph is said to be spanning if W = V . The graph R = (U, T ) is said to be
a super-graph of G = (V, E) if V ⊂ U and E ⊂ T .

Consider the graph G = (V, E) and label the vertices by V = {v1, v2, . . . , vn}. The vertex-
edge incidence matrix for G corresponding to this labeling is an n × m matrix A where
n = |V | and m = |E|. The ith row of A corresponds to the vertex vi, and each column
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Figure 5. The compete graph K4.

Figure 6. The cyclic graph C8.

Figure 7. The bold edges give a spanning subgraph.

corresponds to an edge (also ordered in some way).

If









a1

a2
...

an









is the column corresponding to the edge e = {vi, vj}, then

ai = 1 = aj and ak = 0 for all i 6= k 6= j .
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For example, the vertex-edge incidence matrix for the graph in figure (1) is












1 1 0 0 0 0 0 0
1 0 1 1 0 1 0 0
0 1 1 0 1 0 1 0
0 0 0 1 1 0 0 1
0 0 0 0 0 1 1 1













.

If G = (V, E) is a digraph with labeled nodes V = {v1, v2, . . . , vn}, then the node-arc
incidence matrix differs from the vertex − edge incidence matrix by distinguishing whether
the an arc is adjacent from or to a vertex.

If









a1

a2
...

an









is the column corresponding to the edge e = (vi, vj), then

ai = −1, aj = 1 and ak = 0 for all i 6= k 6= j .

For example, the vertex-edge incidence matrix for the graph in figure (2) is












−1 −1 0 0 0 0 0 0
1 0 1 −1 0 1 0 0
0 1 −1 0 1 0 −1 0
0 0 0 1 −1 0 0 −1
0 0 0 0 0 −1 1 1













.

Note that every column of either a vertex-edge or a node-arc incidence matrix contains ex-
actly two nonzero entries, and the sum of the entries in every column of a node-arc incidence
matrix is zero.

The degree of a vertex in a graph is the number of distinct edges incident to it. The
out-degree of a node in a digraph is the number of distinct edges incident from the vertex
and the in-degree is the number of edges incident to the vertex. Note that the row sum of
the entries in a vertex-edge incidence matrix equals the degree of the vertex associated with
that row, where as the row sum of the entries in a node-arc incidence matrix equals the
in-degree minus the out-degree of the vertex associated with that row.

Exercise: What are the degrees of all vertices in the graph (1)?

Exercise: What are the in-degrees and the out-degrees of all notes in the digraph (2)?

Exercise: Show that the sum of all of the degrees of all of the vertices in a graph equals
two times the number of edges.

Exercise: Show that the number of vertices in graph having odd degree is even.

Exercise: Show that the sum of all of the out-degrees of all of the vertices in a graph equals
the sum of in-degrees of all of the vertices in the graph which equals the number of edges in
the graph.
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Figure 8. A walk from v1 to v5.

1.2. Connectivity. Let G = (V, E) be a graph and v, w ∈ V . A walk between v and w is a
finite alternating sequence

v = v0, e1, v1, e2, v2, . . . , ek, vk = w ,

where es = {vs−1, vs}, s = 1, . . . , k. All of the edges and vertices in the sequence other than
v and w are called intermediary. The vertices and edges in a walk need not be distinct. Two
walks are said to be equivalent if they are given by exactly the same alternating sequence of
vertices and edges. The number of edges in a walk is called the length of the walk. A walk
in a digraph is said to be directed if es = (vs−1, vs), s = 1, . . . , k.

A walk is a called a path if all of the edges are distinct. A walk in a digraph is said to be
directed path if it is a directed walk and a path.

Theorem 1.1. Let v and w be two distinct vertices in a graph G. The every walk between
v and w contains a path from v to w where no two vertices are repeated.

Proof. Let

(1) v = v0, e1, v1, e2, v2, . . . , ek, vk = w

be the walk between v and w. If there does not exist a vertex in {v0, v2, . . . , vk} that is
repeated, then the walk (1) must be a path with no repeating vertices since in this case
all of the vertices in the path are distinct. Hence we can assume that there is a smallest
index i1 such that vi1 ∈ {v0, v1, . . . , vi1−1}. Suppose vj = vi1 with j < i1 so that the vertices
v0, v1, . . . , vj are distinct. Cut the vertices and edges ej+1, vj+1, . . . , vi1 from the walk (1) to
create the walk

v = v0, e1, v1, e2, v2, . . . , vj , ei1+1, vi1+1, . . . , vk = w

from v to w where all of the vertices v0, v1, . . . , vj are distinct since all of these indices are
smaller that i1. Repeat this process by letting i2(> i1 > j) be the smallest index such that
vi2 ∈ {v0, v1, . . . , vi2−1} (again, if no such index exists, we are done). Since the walk is of
finite length and vis < vis+1

for all s, this process can only be repeated finitely many times
before the trimmed walk contains no repeated vertices. When this occurs, we have a walk
with no repeated vertices, and hence no repeated edges. That is, the walk is now a path
with no repeated vertices. �

Corollary 1.1.1. Let v and w be two distinct vertices in a digraph G. Then every directed
walk between v and w contains a directed path from v to w where no two vertices are repeated.
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Exercise: Prove Corollary 1.1.1.

The walk (1) is said to be closed if v = w. A circuit is a closed walk with no repeated
edges, and a cycle is a circuit with no repeated intermediary vertices.

Proposition 1.1.1. A subgraph C of a graph G is a cycle in G if and only if C is a cyclic
graph.

Exercise: Give an example of a closed walk that does not contain a circuit.

Theorem 1.2. Every circuit in a graph contains a cycle.

Proof. Suppose (1) is a circuit and let k̂ be the smallest index such that vk̂ 6= vk̂+1 = vk̂+2 =
· · · = vk (note that the edges e

k̂+2, . . . , ek are distinct loops at vk). Then v0 6= v
k̂

and

v = v0, e1, v1, e2, v2, . . . , vk̂

is a walk from v0 to v
k̂
. Then, by Theorem 1.1, this walk contains a path P from v to v

k̂
in

which no vertex is repeated. Since (1) is a circuit, the edge ek̂+1 between vk̂ and v0 cannot
appear in the path from v0 to vk̂, hence the circuit obtained by adjoining the edge ek̂+1 to
the path P is a cycle. �

A cycle is said to be even or odd if its length is even or odd, respectively. A directed
circuit is a directed path that is also a circuit, and a directed cycle is a cycle that is also a
directed path.

Corollary 1.2.1. Every directed circuit contains a directed cycle.

Exercise: Prove Corollary 1.2.1.

Two vertices in a graph are said to be connected if there is a path between them. A graph
is said to be connected if every pair of vertices in it are connected. Two vertices in a digraph
are said to be strongly connected if there is a directed path between them. A digraph is said
to be strongly connected if every pair of vertices in it are strongly connected. If a digraph is
connected, but not strongly connected, we say it is weakly connected.

A subgraph H of the graph G is said to be component of G if H is connected and the only
connected subgraphs of G that contain H are G and H . Obviously, a connected graph has
only one component.

Let G = (V, E) be a graph. A set F ⊂ E is said to a disconnecting set of edges if the
graph (V, E \ F ) has more components than G. If F = {f} is a disconnecting set, we call
the edge f a bridge. A disconnecting set F is called a cut set if it contains no proper subset
of edges that is disconnecting.

Lemma 1.1. If C is a cycle in a connected graph G = (V, E) and e is any edge in the cycle,
then the the graph G′ = (V, E \ {e}) is still connected.

Exercise: Prove Lemma 1.1.
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1.3. Forests and Trees. An acyclic graph is a graph with no cycles. Such a graph is a
called a forest. A tree is a connected acyclic graph. Hence, the connected components of
a forest are trees. An acyclic spanning subgraph is called a spanning forest, and a acyclic
connected spanning subgraph is called a spanning tree. Clearly, if a graph has a spanning
tree, then it must be connected. Soon we will see that the converse is also true, that is, every
connected graph has a spanning tree.

The notions of a tree and a spanning tree will be important to our study. Hence we begin
with a careful study of their properties.

Theorem 1.3. The following are equivalent in a graph G = (V, E) with n vertices.

(1) G is a tree.
(2) There is a unique path between every pair of vertices in G.
(3) G is connected, and every edge in G is a bridge.
(4) G is connected, and it has (n − 1) edges.
(5) G is acyclic, and it has (n − 1) edges.
(6) G is acyclic, and whenever any two vertices in G are joined by an edge, the resulting

enlarged graph has a unique cycle.
(7) G is connected, and whenever any two vertices in G are joined by an edge, the resulting

enlarged graph has a unique cycle.

Proof. (1)⇒(2): Suppose to the contrary that there exist two distinct vertices v and w

having two distinct paths P and Q between them. Let e = {vi, vi+1} be the first distinct
edge between P and Q as the paths progress toward w, and let the vertex vj be the first
common vertex between P and Q after vi. Then the path along P from vi to vj , then back
along Q from vj to vi is a cycle in the acyclic graph G. Hence, there is a unique path between
every pair of distinct vertices.

(2)⇒(3): Since there is a unique path between each pair of vertices, G is connected. Given
any edge e = {vi, vi+1}, the sequence vi, e, vi+1 is the unique path from vi to vi+1, so deleting
this edge destroys the only path from vi to vi+1. Hence e is a bridge.

(3)⇒(4): We need only show that G has (n − 1) edges. We proceed by induction on the
number of vertices. The result is clearly true for |V | = 1. Assume it is true for 1 ≤ |V | ≤ k−1,
and show it is true for |V | = k. Let e be an edge of G. Since it is a bridge, removing it gives
two connected graphs G1 and G2 where each edge is a bridge. Let k1 and k2 be the number
of vertices in G1 and G2, respectively. In particular, k1 < k, k2 < k, and k = k1 + k2. The
induction hypothesis tells us that G1 has k1 − 1 edges and G2 has k2 − 1 edges. Hence the
total number of edges in G must be (k1 − 1) + (k2 − 1) + 1 = k1 + k2 − 1 = k − 1, which
proves the implication.

(4)⇒(1): We need only show that G is acyclic. Assume to the contrary that G contains
a cycle C. Let G′ be the subgraph of G obtained by removing any edge in C. Since C is
a cycle, G is still connected. Continue removing edges in this way, until no cycles remain.
Denote the resulting graph by G′′. Then G′′ is a connected acyclic graph, that is, G′′ is a
tree. This tree has n vertices (since we removed none) and k < (n−1) edges since we started
with (n − 1) and we removed at least one edge from the first cycle. But by what we have
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show thus far, (1)⇒(4), so G′′ must have (n − 1) edges! This contradiction implies that the
cycle C cannot exist. That is, G is a tree as required.

(4)⇒(5): Since (4) implies that G is a tree, G is acyclic.

(1)⇒((6) or (7)): We need only show that whenever any two vertices in G are joined by an
edge, the resulting enlarged graph has a unique cycle. First observe that since (1)⇒(4), G

has (n − 1) vertices. Now, suppose to the contrary that there is a pair of vertices v and w

such that adding the edge e = {v, w} creates two distinct cycles C1 and C2 in the resulting
enlarged graph G′ = (V, E ∪ {e}). Since C1 and C2 are distinct cycles, C1 contains an edge
f1 that is not in C2. Therefore, deleting f1 does not effect the cycle C2 and, since f1 is in a
cycle, the resulting graph G′′ = (V, (E ∪ {e}) \ {f1}) is connected and contains the cycle C2.
Therefore, we can pick any edge f2 in C2 and delete it from G′′ and have the resulting graph
G′′′ = (V, (E ∪ {e}) \ {f1, f2}) remain connected. But G′′ is a connected graph with (n − 1)
edges (since G has (n − 1)). Hence, since (4)⇒(1), G′′ is a tree so that every edge of G′′ is
a bridge. But we removed f2 from G′′ to get the connected graph G′′′. This contradiction
establishes the result.

(6)⇒(1): We need only show that the graph is connected. If it were not connected, then it
must contain at least two components G1 and G2, both of which are necessarily acyclic. Let
v1 be a vertex in G1 and v2 a vertex in G2. If we add now the edge e = {v1, v2}, we must
obtain a cycle, and e must be part of this cycle since no cycle previously existed. Being part
of cycle implies that there is a path from v1 to v2 that does not contain e. But since v1 and
v2 lie in separate components of G, no such path can exist. Hence G must be connected.

(7)⇒(1): We need only show that the graph is acyclic. If G contains only one vertex, the
result is obvious, so assume G contains at least two vertices. Since G is connected, there
exists a pair of adjacent vertices v1 and v2 with connecting edge e. By adding a second edge
f between these vertices, we obtain the unique cycle (v1, e, v2, f, v1). Hence if we delete f

the resulting graph, namely G, must be acyclic. �

Finally, we can show that every connected graph possess a subgraph that is a spanning
tree.

Theorem 1.4. A graph is connected if and only if it contains a spanning tree.

Proof. Obviously, if a graph has a spanning tree, then it must be connected. Hence we
assume that G is connected and show that it has a spanning tree. The strategy is to
remove all cycles in G. If G is already acyclic, then G itself is a tree. So we can assume
that G contains a cycle C1. If we remove any edge e1 from C1, then the resulting graph
G1 = (V, E \ {e1}) is still connected. If G1 is acyclic, then we are done; otherwise, repeat
this process. Obviously, this process can only be repeated finitely many time since there are
only finitely many edges. Hence, the process must eventually terminate with a connected
graph Gk = (V, E \ {e1, e2, . . . , ek}) that is acyclic. Since it is spanning, it is a spanning
tree. �

1.4. Incidence Matrices in a Digraph. We now connect trees in a digraph to node-arc
incidence matrices. Recall that in a simple graph there are no loops or parallel arcs.
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Theorem 1.5. Let G = (V, E) be a (weakly) connected digraph with n = |V |, m = |E|, and
n × m node-arc incidence matrix A. Then the rank of A is (n − 1). That is, every k < n

rows of A are linearly independent.

Proof. Let A = (aij), where Aij denotes the ij entry of A. Since every column of A contains
exactly one 1 and one −1 with all other entries being zero, we have e

T A = 0, where e is the
n-vector of all ones. Hence the rank of A is less than n. If the result were false, there would
exist 1 ≤ k ≤ n−1 rows of A, i1, i2, . . . , ik, that were linearly dependent. Clearly, k > 1 since
the connectivity of G implies that every row of A contains at least one non-zero entry. Let
Ais· denote the isth row of A, s = 1, . . . , k, and let z ∈ R

k be such that 0 =
∑k

s=1 zsAis·, or

equivalently, 0 =
∑k

s=1 zsaisj , j = 1, . . . , m. With no loss in generality, we may assume that
zs 6= 0, s = 1, . . . , k. Since every zs is non-zero, each of the sets {ai1j, ai2j, . . . , aikj} has either
two non-zero elements, or all of the elements are zero. But then the vertices i1, i2, . . . , ik and
the edges associate with the nonzero sets {ai1j, ai2j, . . . , aikj} necessarily form a component
of G. Since G is connected, this implies the contradiction n = k < n. �

Corollary 1.5.1. Let G = (V, E) be a digraph with n = |V | and n − 1 = |E|. Then G is
weakly connected if and only if the rank of its node-arc incidence matrix is n − 1.

Proof. The theorem shows that if G is weakly connected, then the rank of the node-arc
incidence matrix A is n − 1. Let us now suppose that the rank is n − 1 with |E| = n − 1
and show that G is connected. Assume on the contrary that it is not connected, and let
Gs, s = 1, . . . , k be the connected components of A. Permute the vertices and edges of G if
necessary so that A has the form









A1

A2

. . .
Ak









,

where As is the node-arc incidence matrix for Gs, s = 1, . . . , k. Since each Gs is a connected
digraph, the theorem tells us that each As has rank ns−1 where ns is the number of vertices
in Gs, s = 1, . . . , k. Thus, since A is block diagonal, the rank of A is the sum of the ranks
of the As’s, i.e., (n − 1) = rank(A) =

∑k

s=1(ns − 1) = n − k < (n − 1). This contradiction
implies that A is connected. �

Given a node-arc incidence matrix, a reduced incidence matrix is obtained by eliminating
any of its rows.

Theorem 1.6. Let G = (V, E) be a (weakly) connected digraph with n = |V |, m = |E|, and
n×m node-arc incidence matrix A. Let Ar be any reduced incidence matrix for G. Then an
(n− 1)× (n− 1) submatrix B of Ar is nonsingular if and only if the edges corresponding to
the columns of B are the edges of a spanning tree for G.

Proof. Let B be an (n−1)×(n−1) submatrix B of Ar, and let G′ = (V, F ) be the subgraph of
G whose edges F correspond to the columns of B. Then, by Corollary 1.5.1, B is nonsingular
if and only if G′ is a connected graph with (n − 1) edges. By Theorem 1.3 Part (4), this is
equivalent to G′ being a tree, or equivalently, G′ is a spanning tree for G. �
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Theorem 1.7. Let G = (V, E) be a (weakly) connected digraph with n = |V |, m = |E|, and
n × m node-arc incidence matrix A. Then A is totally unimodular.

Exercise: Prove Theorem 1.7.

Theorem 1.8. Let G = (V, E) be a (weakly) connected digraph with n = |V |, m = |E|, and
n × m node-arc incidence matrix A. Let Ar be any reduced incidence matrix for G. Then
the number of spanning trees in G equals det(ArA

T
r ).

1.5. Bipartite Graphs. Recall that a graph G = (V, E) is said to be bipartite if the vertex
set V can be partitioned into two sets X and Y such that given any two adjacent vertices
v and w in V either v ∈ X and w ∈ Y , or v ∈ Y and w ∈ X. In this case we write
G = (X, Y, V ).

Theorem 1.9. A graph is bipartite if and onl if each of its components is bipartite.

Exercise: Prove Theorem 1.9.

Lemma 1.2. If a graph is bipartite, then every cycle in the graph is even.

It is a remarkable fact that for a simple graph every cycle being even implies that a graph
is bipartite.

Theorem 1.10. Let G be a simple graph each of whose components has 3 or more vertices.
Then G is bipartite if an only if it has no odd cycles.

Proof. By Lemma 1.2, we need only show that if a graph each of whose components has 3
or more vertices has no odd cycles, then it is bipartite. To this end, let G = (V, E) be graph
each of whose components has 3 or more vertices and has no odd cycles. If we can show
that each component is bipartite, then, by Theorem 1.9 we will have established the result.
Hence, we may assume with no loss of generality that G is connected. On V × V define the
function

d(v, w) = minimum length of all paths connecting v and w.

We say that a path P from v to w is a shortest path, if its length equals d(v, w). Let u ∈ V

and define

X = {x ∈ V |d(u, x) is even} and

Y = V \ X .

We will show that no two vertices in X (or Y ) can be adjacent which implies that G is
bipartite with G = (X, Y, E). We do this in three steps.

Step (i): Show that u is not adjacent to any vertex in X \ {u}.

If X \ {u} = ∅, we are done; otherwise, let v ∈ X \ {u}. If e ∈ E is an edge that joins u and
v, then, by definition, d(u, v) = 1 which is not odd. Hence, there can be no edge joining u

and v.

Step (ii): Show that no two vertices in X are adjacent.

Suppose there exists two distinct vertices v, w ∈ X and an edge e in E joining them. By
Step (i), neither v nor w can be u. Let P and Q be the shortest paths from u to v and from
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u to w, respectively. Let the lengths of P and Q be 2r and 2s, respectively. Note that e

cannot be in either P or Q. Indeed, if e ∈ P , then a shortest path to v is to first use Q

to get to w, since Q is a shortest path to w, and then go from w to v along e. But then
d(u, v) = d(u, w) + 1 so that one of d(u, w) and d(u, v) is odd, a contradiction. A similar
contradiction occurs if e ∈ Q, so e cannot be in either P or Q. Let u′ be a vertex in both P

and Q that is as far from u as possible so that the remaining portions of the paths P and
Q from u′ to v and u′ to w, respectively, have no vertices in common. If u′ = v, then e ∈ Q,
so u′ 6= v. Similarly, u′ 6= w. If u′ = u, adding e to P and the reverse of Q, both of which
are even paths, gives and odd cycle, a contradiction. Hence u′ 6= u. Now since the path P is
shortest, it must be a shortest path from u at every vertex along the way. Hence the length
of the path k from u to u′ in P must be the same as the length of the path from u to u′

in Q. Therefore, the length of the subpath P ′ from u′ to V in P is (2r − k) and the length
of the subpath Q′ from u′ to w in Q is (2s − k). Hence the cycle obtained by first using
P ′ to get to v, then using e to get to w, then reversing Q′ to go from w to u′ has length
(2r − k) + (2s − k) + 1 which is odd. This contradiction implies that no such edge e can
exist. That is, no two vertices in X are adjacent.

Step (iii): Show that no two vertices in Y are adjacent.

Suppose to the contrary, that there are two distinct vertices v, w ∈ Y that are joined be an
edge e ∈ E. Proceed just as in Step (ii) and let P and Q be the shortest paths from u to v

and from u to w, respectively, and set 2r + 1 and 2s + 1 equal to the lengths of P and Q,
respectively. Again, e cannot be in either P or Q, else an odd cycle exists. Again let u′ be
a vertex in both P and Q that is as far from u as possible so that the remaining portions
of the paths P and Q from u′ to v and u′ to w, respectively, have no vertices in common.
As before, u′ cannot be u, v, or w, else an odd cycle exists. Letting k be as defined in Step
(ii), we find that the cycle obtained by first using P ′ to get to v, then using e to get to w,
then reversing Q′ to go from w to u′ has length (2r + 1− k) + (2s + 1− k) + 1 which is odd.
This contradiction implies that no such edge e can exist. That is, no two vertices in Y are
adjacent. �

This result allows us characterize when an incidence matrix of a simple graph (not a
digraph) is totally unimodular.

Theorem 1.11. A simple graph is bipartite if and only if its incidence matrix is totally
unimodular.

Exercise: Show that the incidence matrix of a bipartite graph is totally unimodular.

Proof. We need only prove that if the simple graph G has an incidence matrix that is totally
unimodular, then G must be bipartite. Let us suppose to the contrary that G is not bipartite.
Then, by Theorem 1.10, G contains an odd cycle v1, e1, v2, e2, . . . , e2k−1, v2k = v0. Let the
incidence matrix of G be arranged so that vi corresponds to the ith row of A i = 1, 2, . . . 2k
with all other vertices following, and ej corresponds the j column of A, j = 1, 2, . . . , 2k − 1,
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with all other edges following. Then the leading (2k)× (2k−1) submatrix of A has the form
















1 0 0 · · · 0 0 1
1 1 0
0 1 1
...

. . .
0 1 1 0
0 · · · 0 1 1

















.

Let B be the (2k−1)× (2k−1) submatrix obtained by deleting the final row of this matrix.
We compute the determinant of B by using Laplace’s formula and expanding on the first
row to get

det(B) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 0
1 1
0 1 1
...

. . .
0 1 0

· · · 0 1 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

+ (−1)2k

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 0
0 1 1
0 0 1
...

. . .
0 1 1
0 · · · 0 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 1 + 1 = 2.

This contradiction implies that no such odd cycle can exist. Hence, G is bipartite. �


