

Figure 1. A graph with 5 vertices.

Figure 2. A digraph with 5 nodes.

Problem Set 5: Graphs and Digraphs

(1) What are the degrees of all vertices in the graph in Figure 1?
(2) What are the in-degrees and the out-degrees of all notes in the digraph in Figure 2?
(3) Show that the sum of all of the degrees of all of the vertices in a graph equals two times the number of edges.
(4) Show that the number of vertices of odd degree in a graph is even.
(5) Let v and w be two distinct vertices in a digraph G. Show that every directed walk between v and w contains a directed path from v to w where no two vertices are repeated.
(6) Give an example of a closed walk that does not contain a circuit.
(7) Show that every directed circuit contains a directed cycle.
(8) If C is a cycle in a connected graph $G=(V, E)$ and e is any edge in the cycle, show that the graph $G^{\prime}=(V, E \backslash\{e\})$ is still connected.
(9) Let $G=(V, E)$ be a (weakly) connected digraph with $n=|V|, m=|E|$, and $n \times m$ node-arc incidence matrix A. Show that A is totally unimodular.
(10) Show that a graph is bipartite if and only if each of its components is bipartite.
(11) Show that the incidence matrix of a bipartite graph is totally unimodular.

The proofs of the total unimodularity of the incidence matrices of digraphs and bipartite graphs follows from Theorem 1.8 of the Easy integer LP notes. We restate this theorem below.

Theorem 1.8: Let $A \in \mathbb{Z}^{m \times n}$ and let $a_{i j}$ denote the $i j$ th entry of A. If A satisfies the following three conditions, then A is totally unimodular.
(1) $a_{i j} \in\{0, \pm 1\}$ for all $i j$.
(2) Every column of A has at most two non-zero entries.
(3) The rows of A can be partitioned into two index sets I_{1} and I_{2} such that
(a) If a column has two entries of different signs, then the indices of the rows corresponding to these non-zero entries must be in the same index set.
(b) If a column has two entries of the same sign, then the indices of the rows corresponding to these non-zero entries must be in different index sets.

Vocabulary Words:
(1) Graph, digraph, and bipartite graph.
(2) Simple graphs.
(3) Subgraphs.
(4) Spanning subgraphs
(5) Incidence matrices for graphs and digraphs
(6) degree, in-degree, and out-degree of a vertex.
(7) a walk, a path, a directed path
(8) a closed walk, a circuit, and a cycle
(9) directed paths and cycles
(10) components of a graph
(11) connected graphs
(12) disconnecting sets, cuts, and bridges
(13) an acyclic graph
(14) forests, trees, and spanning trees
(15) path length, odd and even paths and cycles

