Problem Set 4: Totally Unimodular Matrices

(1) Which of the following matrices are totally unimodular. You must justify your answer.
(a)

$$
\left(\begin{array}{rr}
1 & -1 \\
1 & 1
\end{array}\right)
$$

(b)

$$
\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1
\end{array}\right)
$$

(c)

$$
\left(\begin{array}{rrrr}
1 & -1 & -1 & 0 \\
-1 & 0 & 0 & 1 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

(d)

$$
\left(\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 & 0
\end{array}\right)
$$

(e)
(f)

$$
\left(\begin{array}{lllll}
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 & 0
\end{array}\right)
$$

$$
\left(\begin{array}{rrrrrrr}
-1 & 0 & 1 & 0 & -1 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 & 0 & 1 \\
-1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 0 & -1 & 0
\end{array}\right)
$$

(2) Suppose $A \in \mathbb{R}^{m \times n}$ satisfies the conditions of Theorem 1.8. At the beginning of the proof of this theorem it is stated that Clearly, due to the smallest degree requirement, the matrix B can have no column with a single non-zero entry. Explain why this is true.
(3) Give an example of a totally unimodular matrix that does not satisfy the (1), (2), and (3) of Theorem 1.8.
(4) Prove formula (6) in Theorem 1.4 for 2×2 matrices.
(5) Prove formula (7) in Theorem 1.4 for the integer pairs $(n, m)=(1,4),(2,3)$.
(6) Prove formula (7) in Theorem 1.4 by induction on m.

