Problem Set 4: Totally Unimodular Matrices

Which of the following matrices are totally unimodular. You must justify your answer.

(a)	$\left(\begin{array}{rr}1 & -1\\1 & 1\end{array}\right)$
(b)	$\left(\begin{array}{rrrr} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{array}\right)$
(c)	$\left(\begin{array}{rrrrr} 1 & -1 & -1 & 0 \\ -1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{array}\right)$
(d)	$\left(\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
(e)	$\left(\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
(f)	$ \left(\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
	(0 0 0 1 0 -1 0)

- (2) Suppose $A \in \mathbb{R}^{m \times n}$ satisfies the conditions of Theorem 1.8. At the beginning of the proof of this theorem it is stated that *Clearly, due to the smallest degree requirement, the matrix B can have no column with a single non-zero entry.* Explain why this is true.
- (3) Give an example of a totally unimodular matrix that does not satisfy the (1), (2), and (3) of Theorem 1.8.
- (4) Prove formula (6) in Theorem 1.4 for 2×2 matrices.
- (5) Prove formula (7) in Theorem 1.4 for the integer pairs (n,m) = (1,4), (2,3).
- (6) Prove formula (7) in Theorem 1.4 by induction on m.