
Linear Programming Review

1 Introduction

1.1 What is Linear Programming?

A mathematical optimization problem is one in which some function is either maximized or
minimized relative to a given set of alternatives. The function to be minimized or maximized
is called the objective function and the set of alternatives is called the feasible region (or
constraint region). In this course, the feasible region is always taken to be a subset of R

n

(real n-dimensional space) and the objective function is a function from R
n to R.

We further restrict the class of optimization problems that we consider to linear program-
ming problems (or LPs). An LP is an optimization problem over R

n wherein the objective
function is a linear function, that is, the objective has the form

c1x1 + c2x2 + · · ·+ cnxn

for some ci ∈ R i = 1, . . . , n, and the feasible region is the set of solutions to a finite number
of linear inequality and equality constraints, of the form

ai1xi + ai2x2 + · · ·+ ainxn ≤ bi i = 1, . . . , s

and
ai1xi + ai2x2 + · · ·+ ainxn = bi i = s + 1, . . . , m.

Linear programming is an extremely powerful tool for addressing a wide range of applied
optimization problems. A short list of application areas is resource allocation, produc-
tion scheduling, warehousing, layout, transportation scheduling, facility location, flight crew
scheduling, parameter estimation, . . . .

1.2 An Example

To illustrate some of the basic features of LP, we begin with a simple two-dimensional
example. In modeling this example, we will review the four basic steps in the development
of an LP model:

1. Determine and label the decision variables.

2. Determine the objective and use the decision variables to write an expression for the
objective function.

3. Determine the explicit constraints and write a functional expression for each of them.

4. Determine the implicit constraints.
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PLASTIC CUP FACTORY

A local family-owned plastic cup manufacturer wants to optimize their production
mix in order to maximize their profit. They produce personalized beer mugs and
champaign glasses. The profit on a case of beer mugs is $25 while the profit on
a case of champaign glasses is $20. The cups are manufactured with a machine
called a plastic extruder which feeds on plastic resins. Each case of beer mugs
requires 20 lbs. of plastic resins to produce while champaign glasses require 12
lbs. per case. The daily supply of plastic resins is limited to at most 1800 pounds.
About 15 cases of either product can be produced per hour. At the moment the
family wants to limit their work day to 8 hours.

We will model the problem of maximizing the profit for this company as an LP. The
first step in our modeling process is to determine the decision variables. These are the
variables that represent the quantifiable decisions that must be made in order to determine
the daily production schedule. That is, we need to specify those quantities whose values
completely determine a production schedule and its associated profit. In order to determine
these quantities, one can ask the question “If I were the plant manager for this factory, what
must I know in order to implement a production schedule?” The best way to determine
the decision variables is to put oneself in the shoes of the decision maker and then ask the
question “What do I need to know in order to make this thing work?” In the case of the
plastic cup factory, everything is determined once it is known how many cases of beer mugs
and champaign glasses are to be produced each day.

Decision Variables:

B = # of cases of beer mugs to be produced daily.

C = # of cases of champaign glasses to be produced daily.

You will soon discover that the most difficult part of any modeling problem is the de-
termination of decision variables. Once these variables are correctly determined then the
remainder of the modeling process usually goes smoothly.

After specifying the decision variables, one can now specify the problem objective. That
is, one can write an expression for the objective function.

Objective Function:

Maximize profit where profit = 25B + 20C

The next step in the modeling process is to express the feasible region as the solution set
of a finite collection of linear inequality and equality constraints. We separate this process
into two steps:

1. determine the explicit constraints, and

2. determine the implicit constraints.
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The explicit constraints are those that are explicitly given in the problem statement. In the
problem under consideration, there are explicit constraints on the amount of resin and the
number of work hours that are available on a daily basis.

Explicit Constraints:

resin constraint: 20B + 12C ≤ 1800

work hours constraint: 1
15

B + 1
15

C ≤ 8.

This problem also has other constraints called implicit constraints. These are constraints
that are not explicitly given in the problem statement but are present nonetheless. Typically
these constraints are associated with “natural” or “common sense” restrictions on the deci-
sion variable. In the cup factory problem it is clear that one cannot have negative cases of
beer mugs and champaign glasses. That is, both B and C must be non-negative quantities.

Implicit Constraints:
0 ≤ B, 0 ≤ C.

The entire model for the cup factory problem can now be succinctly stated as

P : max 25B + 20C

subject to 20B + 12C ≤ 1800

1
15

B + 1
15

C ≤ 8

0 ≤ B, C

Since this problem is two dimensional it is possible to provide a graphical solution. The
first step toward a graphical solution is to graph the feasible region. To do this, first graph
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the line associated with each of the linear inequality constraints. Then determine on which
side of each of these lines the feasible region must lie (don’t forget the implicit constraints!).
Once the correct side is determined it is helpful to put little arrows on the line to remind
yourself of the correct side. Then shade in the resulting feasible region.

The next step is to draw in the vector representing the gradient of the objective function
at the origin. Since the objective function has the form

f(x1, x2) = c1x1 + c2x2,

the gradient of f is the same at every point in R
2;

∇f(x1, x2) =

(
c1

c2

)
.

Recall from calculus that the gradient always points in the direction of increasing function
values. Moreover, since the gradient is constant on the whole space, the level sets of f
associated with different function values are given by the lines perpendicular to the gradient.
Consequently, to obtain the location of the point at which the objective is maximized we
simply set a ruler perpendicular to the gradient and then move the ruler in the direction of
the gradient until we reach the last point (or points) at which the line determined by the
ruler intersects the feasible region. In the case of the cup factory problem this gives the
solution to the LP as

(
B

C

)
=

(
45
75

)
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We now recap the steps followed in the solution procedure given above:

Step 1: Graph each of the linear constraints indication on which side of the constraint the
feasible region must lie. Don’t forget the implicit constraints!

Step 2: Shade in the feasible region.

Step 3: Draw the gradient vector of the objective function.

Step 4: Place a straightedge perpendicular to the gradient vector and move the straightedge
either in the direction of the gradient vector for maximization, or in the opposite direc-
tion of the gradient vector for minimization to the last point for which the straightedge
intersects the feasible region. The set of points of intersection between the straightedge
and the feasible region is the set of solutions to the LP.

The solution procedure described above for two dimensional problems reveals a great deal
about the geometric structure of LPs that remains true in n dimensions. We will explore
this geometric structure more fully as the course evolves. But for the moment, we continue
to study this 2 dimensional LP to see what else can be revealed about the structure of this
problem.

Before leaving this section, we make a final comment on the modeling process described
above. We emphasize that there is not one and only one way to model the Cup Factory
problem, or any problem for that matter. In particular, there are many ways to choose the
decision variables for this problem. Clearly, it is sufficient for the shop manager to know
how many hours each days should be devoted to the manufacture of beer mugs and how
many hours to champaign glasses. From this information everything else can be determined.
For example, the number of cases of beer mugs that get produced is 15 times the number
of hours devoted to the production of beer mugs. Therefore, as you can see there are many
ways to model a given problem. But in the end, they should all point to the same optimal
process.

1.3 Duality Theory

We now briefly discuss how the “hidden hand of the market place” gives rise to a theory of
dual linear programs. Think of the cup factory production process as a black box through
which the resources flow. Raw resources go in one end and exit the other. When they
come out the resources have a different form, but whatever comes out is still comprised of
the entering resources. However, something has happened to the value of the resources by
passing through the black box. The resources have been purchased for one price as they
enter the box and are sold in their new form as they leave. The difference between the
entering and exiting prices is called the profit. Assuming that there is a positive profit the
resources have increased in value as they pass through the production process. The marginal
value of a resource is precisely the increase in the per unit value of the resource due to the
production process.
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Let us now consider how the market introduces pressures on the profitability and the
value of the resources available to the market place. We take the perspective of the cup
factory vs the market place. The market place does not want the cup factory to go out of
business. On the other hand, it does not want the cup factory to see a profit. It wants to
keep all the profit for itself and only let the cup factory just break even. It does this by
setting the price of the resources available in the market place. That is, the market sets
the price for plastic resin and labor and it tries to do so in such a way that the cup factory
sees no profit and just breaks even. Since the cup factory is now seeing a profit, the market
must figure out by how much the sale price of resin and labor must be raised to reduce this
profit to zero. This is done by minimizing the value of the available resources over all price
increments that guarantee that the cup factory either loses money or sees no profit from
both of its products. If we denote the per unit price increment for resin by R and that for
labor by L, then the profit for beer mugs is eliminated as long as

20R +
1

15
L ≥ 25

since the left hand side represents the increased value of the resources consumed in the
production of one case of beer mugs and the right hand side is the current profit on a case
of beer mugs. Similarly, for champaign glasses, the market wants to choose R and L so that

12R +
1

15
L ≥ 20.

Now in order to maintain equilibrium in the market place, that is, not drive the cup factory
out of business (since then the market realizes no profit at all), the market chooses R and L
so as to minimize the increased value of the available resources. That is, the market chooses
R and L to solve the problem

D : minimize 1800R + 8L

subject to 20R + 1
15

L ≥ 25

12R + 1
15

L ≥ 20

0 ≤ R, L

This is just another LP. It is called the “dual” to the LP P in which the cup factory tries to
maximize profit. Observe that if

(
B

C

)
is feasible for P and

(
R

L

)
is feasible for D, then

25B + 20C ≤ [20R + 1
15

L]B + [12R + 1
15

L]C

= R[20B + 12C] + L[ 1
15

B + 1
15

C]

≤ 1800R + 8L.

Thus, the value of the objective in P at a feasible point in P is bounded above by the
objective in D at any feasible point for D. In particular, the optimal value in P is bounded
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above by the optimal value in D. The “strong duality theorem” states that if either of these
problems has a finite optimal value, then so does the other and these values coincide. In
addition, we claim that the solution to D is given by the marginal values for P. That is,
(

R

L

)
=

[
5/8

375/2

]
is the optimal solution for D. In order to show this we need only show that

(
R

L

)
=

[
5/8

375/2

]
is feasible for D and that the value of the objective in D at

(
R

L

)
=

[
5/8

375/2

]

coincides with the value of the objective in P at
(

B

C

)
=

(
45
75

)
. First we check feasibility:

0 ≤
5

8
, 0 ≤

375

2

20 ·
5

8
+

1

15
·
375

2
≥ 25

12 ·
5

8
+

1

15
·
375

2
≥ 20.

Next we check optimality

25 · 45 + 20 · 75 = 2625 = 1800 ·
5

8
+ 8 ·

375

2
.

1.4 LPs in Standard Form and Their Duals

Recall that a linear program is a problem of maximization or minimization of a linear func-
tion subject to a finite number of linear inequality and equality constraints. This general
definition leads to an enormous variety of possible formulations. In this section we propose
one fixed formulation for the purposes of developing an algorithmic solution procedure. We
then show that every LP can be recast in this form. We say that an LP is in standard form
if it has the form

P : maximize c1x1 + c2x2 + · · ·+ cnxn

subject to ai1x1 + ai2x2 + · · ·+ ainxn ≤ bi for i = 1, 2, . . . , m
0 ≤ xj for j = 1, 2, . . . , n .

Using matrix notation, we can rewrite this LP as

P : maximize cT x
subject to Ax ≤ b

0 ≤ x ,

where the inequalities Ax ≤ b and 0 ≤ x are to be interpreted componentwise.
Following the results of the previous section on LP duality, we claim that the dual LP to

P is the LP

D : minimize b1y1 + b2y2 + · · ·+ bnym

subject to a1jy1 + a2jy2 + · · ·+ amjym ≥ cj for j = 1, 2, . . . , n
0 ≤ yi for i = 1, 2, . . . , m .
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Again, the statement of this D can be simplified by the use of matrix notation to give the
problem

D : minimize bT y
subject to AT y ≥ c

0 ≤ y .

Just as for the cup factory problem, the LPs P and D are related via the Weak Duality
Theorem.

Theorem: [Weak Duality] If x ∈ R
n is feasible for P and y ∈ R

m is feasible for D, then

cT x ≤ yTAx ≤ bT y.

Thus, if P is unbounded, then D is infeasible, and if D is unbounded, then P is infeasible.

Proof: Let x ∈ R
n be feasible for P and y ∈ R

m be feasible for D. Then

cT x =
n∑

j=1

cjxj

≤
n∑

j=1

(
m∑

i=1

aijyi)xj [since xj ≥ 0 and
m∑

i=1

aijyi ≥ cj]

= yTAx

=
m∑

i=1

(
n∑

j=1

aijxj)yi

≤
m∑

i=1

biyi [since yi ≥ 0 and
n∑

j=1

aijxj ≤ bi]

= bT y

�

We caution that the infeasibility of either P or D does not imply the unboundedness of
the other. Indeed, it is possible for both P and D to be infeasible as is illustrated by the
following example.

Example:
maximize 2x1 − x2

x1 − x2 ≤ 1
−x1 + x2 ≤ −2

0 ≤ x1, x2

The Weak Duality Theorem yields the following elementary corollary.

Corollary 1.1 Let x̄ be feasible for P and ȳ feasible for D if cT x̄ = bT ȳ, then x̄ solves P
and ȳ solves D.
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Proof: Let x be any other vector feasible for P. Then, by the WDT,

cT x ≤ bT ȳ = cT x̄.

Therefore,
maximize cT x ≤ cT x̄
subject to Ax ≤ b, 0 ≤ x

But Ax̄ ≤ b, 0 ≤ x̄, so x̄ solves P. Similarly, if y is any other vector feasible for D, then

bT ȳ = cT x̄ ≤ bT y.

Therefore
bT ȳ ≤ minimize bT y

subject to AT y ≥ c, 0 ≤ y,

so that ȳ solves D. �

Theorem 1.1 (The Strong Duality Theorem) If either P or D has a finite optimal
value, then so does the other and these optimal values coincide, and, in addition, optimal
solutions to both P and D exist.

Observe that this result states that the finiteness of the optimal value implies the existence
of a solution. This is not always the case for nonlinear optimization problems. Indeed,
consider the problem

min
x∈R

ex.

This problem has a finite optimal value, namely zero; however, this value is not attained by
any point x ∈ R. That is, it has a finite optimal value, but a solution does not exist. The
existence of solutions when the optimal value is finite is one of the many special properties
of linear programs.
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2 Solving LPs: The Simplex Algorithm of George Dantzig

2.1 Simplex Pivoting: Dictionary Format

We illustrate a general solution procedure, called the simplex algorithm, by implementing it
on a very simple example. Consider the LP

max 5x1 + 4x2 + 3x3(2.1)

s.t. 2x1 + 3x2 + x3 ≤ 5

4x1 + x2 + 2x3 ≤ 11

3x1 + 4x2 + 2x3 ≤ 8

0 ≤ x1, x2, x3

In devising our solution procedure we take a standard mathematical approach; reduce the
problem to one that we already know how to solve. Since the structure of this problem is
essentially linear, we will try to reduce it to a problem of solving a system of linear equations,
or perhaps a series of such systems. By encoding the problem as a system of linear equations
we bring into play our knowledge and experience with such systems in the new context of
linear programming.

In order to encode the LP (2.1) as a system of linear equations we must first transform
linear inequalities into linear equation. This is done by introducing a new non-negative
variable, called a slack variable, for each inequality:

x4 = 5 − [2x1 + 3x2 + x3] ≥ 0,
x5 = 11 − [4x1 + x2 + 2x3] ≥ 0,
x6 = 8 − [3x1 + 4x2 + 2x3] ≥ 0.

To handle the objective, we introduce a new variable z:

z = 5x1 + 4x2 + 3x3.

Then all of the information associated with the LP (2.1) can be coded as follows:

(2.2)

2x1 + 3x2 + x3 + x4 = 5
4x1 + x2 + 2x3 + x5 = 11

3x2 + 4x2 + 2x3 + x6 = 8
−z + 5x1 + 4x2 + 3x3 = 0

0 ≤ x1, x2, x3, x4, x5, x6.

The new variables x4, x5, and x6 are called slack variables since they take up the slack in the
linear inequalities. This system can also be written using block structured matrix notation
as [

0 A I
−1 cT 0

] [
z
x

]
=

[
b
0

]
,
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where

A =




2 3 1
4 1 2
3 4 2



 , I =




1 0 0
0 1 0
0 0 1



 , b =




5
11
8



 , and c =




5
4
3



 .

The augmented matrix associated with the system (2.2) is

(2.3)

[
0 A I
−1 c 0

∣∣∣∣
b
0

]

and is referred to as the initial simplex tableau for the LP (2.1).
Again consider the system

x4 = 5− 2x1 − 3x2 − x3(2.4)

x5 = 11− 4x1 − x2 − 2x3

x6 = 8− 3x1 − 4x2 − 2x3

z = 5x1 + 4x2 + 3x3.

This system defines the variables x4, x5, x6 and z as linear combinations of the variables x1,
x2, and x3. We call this system a dictionary for the LP (2.1). More specifically, it is the
initial dictionary for the the LP (2.1). This initial dictionary defines the objective value z
and the slack variables as a linear combination of the initial decision variables. The variables
that are “defined” in this way are called the basic variables, while the remaining variables
are called nonbasic. The set of all basic variables is called the basis. A particular solution to
this system is easily obtained by setting the non-basic variables equal to zero. In this case,
we get

x4 = 5

x5 = 11

x6 = 8

z = 0.

Note that the solution

(2.5)





x1

x2

x3

x4

x5

x6




=





0
0
0
5
11
8





is feasible for the extended system (2.2) since all components are non-negative. For this
reason, we call the dictionary (2.4) a feasible dictionary for the LP (2.1), and we say that
this LP has feasible origin.
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In general, a dictionary for the LP (2.1) is any system of 4 linear equations that defines
three of the variables x1, . . . , x6 and z in terms of the remaining 3 variables and has the same
solution set as the initial dictionary. The variables other than z that are being defined in
the dictionary are called the basis for the dictionary, and the remaining variables are said to
be non-basic in the dictionary. Every dictionary identifies a particular solution to the linear
system obtained by setting the non-basic variables equal to zero. Such a solution is said to
be a basic feasible solution (BFS) for the LP (2.1) if it componentwise non-negative, that is,
all of the numbers in the vector are non-negative so that the point lies in the feasible region
for the LP.

The grand strategy of the simplex algorithm is to move from one feasible dictionary
representation of the system (2.2) to another (and hence from one BFS to another) while
simultaneously increasing the value of the objective variable z. In the current setting, be-
ginning with the dictionary (2.4), what strategy might one employ in order to determine a
new dictionary whose associated BFS gives a greater value for the objective variable z?

Each feasible dictionary is associated with one and only one feasible point. This is the
associated BFS obtained by setting all of the non-basic variables equal to zero. This is how
we obtain (2.5). To change the feasible point identified in this way, we need to increase the
value of one of the non-basic variables from its current value of zero. Note that we cannot
decrease the value of a non-basic variable since we wish to remain feasible, that is, we wish
to keep all variables non-negative.

Note that the coefficient of each of the non-basic variables in the representation of the
objective value z in (2.4) is positive. Hence, if we pick any one of these variables and increase
its value from zero while leaving remaining two at zero, we automatically increase the value
of the objective variable z. Since the coefficient on x1 in the representation of z is the
greatest, we can increase z the fastest by increasing x1.

By how much can we increase x1 and still remain feasible? For example, if we increase x1

to 3 then (2.4) says that x4 = −1, x5 = −1, x6 = −1 which is not feasible. Let us consider
this question by examining the equations in (2.4) one by one. Note that the first equation
in the dictionary (2.4),

x4 = 5− 2x1 − 3x2 − x3,

shows that x4 remains non-negative as long as we do not increase the value of x1 beyond 5/2
(remember, x2 and x3 remain at the value zero). Similarly, using the second equation in the
dictionary (2.4),

x5 = 11− 4x1 − x2 − 2x3,

x5 remains non-negative if x1 ≤ 11/4. Finally, the third equation in (2.4),

x6 = 8− 3x1 − 4x2 − 2x3,

implies that x6 remains non-negative if x1 ≤ 8/3. Therefore, we remain feasible, i.e. keep
all variables non-negative, if our increase to the variable x1 remains less than

5

2
= min

{
5

2
,
11

4
,
8

3

}
.
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If we now increase the value of x1 to 5
2
, then the value of x4 is driven to zero. One way

to think of this is that x1 enters the basis while x4 leaves the basis. Mechanically, we obtain
the new dictionary having x1 basic and x4 non-basic by using the defining equation for x4

in the current dictionary:
x4 = 5− 2x1 − 3x2 − x3.

By moving x1 to the left hand side of this equation and x4 to the right, we get the new
equation

2x1 = 5− x4 − 3x2 − x3

or equivalently

x1 =
5

2
−

1

2
x4 −

3

2
x2 −

1

2
x3.

The variable x1 can now be eliminated from the remaining two equations in the dictionary
by substituting in this equation for x1 where it appears in these equations:

x1 =
5

2
−

1

2
x4 −

3

2
x2 −

1

2
x3

x5 = 11− 4

(
5

2
−

1

2
x4 −

3

2
x2 −

1

2
x3

)
− x2 − 2x3

= 1 + 2x4 + 5x2

x6 = 8− 3

(
5

2
−

1

2
x4 −

3

2
x2 −

1

2
x3

)
− 4x2 − 2x3

=
1

2
+

3

2
x4 +

1

2
x2 −

1

2
x3

z = 5

(
5

2
−

1

2
x4 −

3

2
x2 −

1

2
x3

)
+ 4x2 + 3x3

=
25

2
−

5

2
x4 −

7

2
x2 +

1

2
x3.

When this substitution is complete, we have the new dictionary and the new BFS:

x1 =
5

2
−

1

2
x4 −

3

2
x2 −

1

2
x3(2.6)

x5 = 1 + 2x4 + 5x2

x6 =
1

2
+

3

2
x4 +

1

2
x2 −

1

2
x3

z =
25

2
−

5

2
x4 −

7

2
x2 +

1

2
x3,

and the associated BFS is

(2.7)





x1

x2

x3

x4

x5

x6




=





5/2
0
0
0
1

1/2




with z =

25

2
.
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This process might seem very familiar to you. It is simply Gaussian elimination. As
we know from our knowledge of linear systems of equations, Gaussian elimination can be
performed in a matrix context with the aid of the augmented matrix (or, simplex tableau)
(2.3). We return to this observation later to obtain a more efficient computational technique.

We now have a new dictionary (2.6) which identifies the basic feasible solution (BFS)
(2.7) with associated objective value z = 25

2
. Can we improve on this BFS and obtain a

higher objective value? Let’s try the same trick again, and repeat the process we followed in
going from the initial dictionary (2.4) to the new dictionary (2.6). Note that the coefficient
of x3 in the representation of z in the new dictionary (2.6) is positive. Hence if we increase
the value of x3 from zero, we will increase the value of z. By how much can we increase the
value of x3 and yet keep all the remaining variables non-negative? As before, we see that the
first equation in the dictionary (2.6) combined with the need to keep x1 non-negative implies
that we cannot increase x3 by more than (5/2)/(1/2) = 5. However, the second equation
in (2.6) places no restriction on increasing x3 since x3 does not appear in this equation.
Finally, the third equation in (2.6) combined with the need to keep x6 non-negative implies
that we cannot increase x3 by more than (1/2)/(1/2) = 1. Therefore, in order to preserve
the non-negativity of all variables, we can increase x3 by at most

1 = min{5, 1}.

When we do this x6 is driven to zero, so x3 enters the basis and x6 leaves. More precisely,
first move x3 to the left hand side of the defining equation for x6 in (2.6),

1

2
x3 =

1

2
+

3

2
x4 +

1

2
x2 − x6,

or, equivalently,
x3 = 1 + 3x4 + x2 − 2x6,

then substitute this expression for x3 into the remaining equations,

x1 =
5

2
−

1

2
x4 −

3

2
x2 −

1

2
[1 + 3x4 + x2 − 2x6]

= 2− 2x4 − 2x2 + x6

x5 = 1 + 2x4 + 5x2

z =
25

2
−

5

2
x4 −

7

2
x2 +

1

2
[1 + 3x4 + x2 − 2x6]

= 13− x4 − 3x2 − x6 ,

yielding the dictionary

x3 = 1 + 3x4 + x2 − 2x6

x1 = 2− 2x4 + 2x2 + x6

x5 = 1 + 2x4 + 2x2

z = 13− x4 − 3x2 − x6

14



which identifies the feasible solution




x1

x2

x3

x4

x5

x6




=





2
0
1
0
1
0





having objective value z = 13.
Can we do better? NO! This solution is optimal! The coefficient on the variables in the

cost row of the dictionary,
z = 13− x4 − 3x2 − x6,

are all non-positive, so increasing any one of their values will not increase the value of
the objective. (Why does this prove optimality?) The process of moving from one feasible
dictionary to the next is called a simplex pivot. The overall process of stringing a sequence of
simplex pivots together in order to locate an optimal solution is called the Simplex Algorithm.
The simplex algorithm is consistently ranked as one of the ten most important algorithmic
discoveries of the 20th century (http://www.uta.edu/faculty/rcli/TopTen/topten.pdf). The
algorithm is generally attributed to George Dantzig (1914-2005)who is known as the father
of linear programming. In 1984 Narendra Karmarkar published a paper describing a new
approach to solving linear programs that was both numerically efficient and had polynomial
complexity. This new class of methods are called interior point methods. These new methods
have revolutionized the optimization field over the last 30 years, and they have led to efficient
numerical methods for a wide variety of optimization problems well beyond the confines of
linear programming. However, the simplex algorithm continues as an important numerical
method for solving LPs, and for many specially structured LPs it is still the most efficient
algorithm.

2.2 Simplex Pivoting: Tableau Format (Augmented Matrix For-
mat)

We now review the implementation of the simplex algorithm by applying Gaussian elimina-
tion to the augmented matrix (2.3), also known as the simplex tableau. For this problem,
the initial simplex tableau is given by

(2.8)

[
0 A I
−1 c 0

∣∣∣∣
b
0

]
=





0 2 3 1 1 0 0
0 4 1 2 0 1 0
0 3 4 2 0 0 1
−1 5 4 3 0 0 0

∣∣∣∣∣∣∣∣

5
11
8
0



 .

Each simplex pivot on a dictionary corresponds to one step of Gaussian elimination on the
augmented matrix associated with the dictionary. For example, in the first simplex pivot, x1
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enters the basis and x4 leaves the basis. That is, we use the first equation of the dictionary
to rewrite x1 as a function of the remaining variables, and then use this representation to
eliminate x1 form the remaining equations. In terms of the augmented matrix (2.8), this
corresponds to first making the coefficient for x1 in the first equation the number 1 by
dividing this first equation through by 2. Then use this entry to eliminate the column under
x1, that is, make all other entries in this column zero (Gaussian elimination):

Pivot
column ratios
↓ ↓

0 2© 3 1 1 0 0 5 5/2© ← Pivot row
0 4 1 2 0 1 0 11 11/4
0 3 4 2 0 0 1 8 8/3
-1 5© 4 3 0 0 0 0

0 1 3/2 1/2 1/2 0 0 5/2
0 0 −5 0 −2 1 0 1
0 0 −1/2 1/2 −3/2 0 1 1/2

−1 0 −7/2 1/2 −5/2 0 0 −25/2

In this illustration, we have placed a line above the cost row to delineate its special roll
in the pivoting process. In addition, we have also added a column on the right hand side
which contains the ratios that we computed in order to determine the pivot row. Recall
that we must use the smallest ratio in order to keep all variables in the associated BFS
non-negative. Note that we performed the exact same arithmetic operations but in the more
efficient matrix format. The new augmented matrix,

(2.9)





0 1 3/2 1/2 1/2 0 0
0 0 −5 0 −2 1 0
0 0 −1/2 1/2 −3/2 0 1
−1 0 −7/2 1/2 −5/2 0 0

∣∣∣∣∣∣∣∣

5/2
1

1/2
−25/2



 ,

is the augmented matrix for the dictionary (2.6).
The initial augmented matrix (2.8) has basis x4, x5, and x6. The columns associated

with these variables in the initial tableau (2.8) are distinct columns of the identity matrix.
Correspondingly, the basis for the second tableau is x1, x5, and x6, and again this implies that
the columns for these variables in the tableau (2.9) are the corresponding distinct columns
of the identity matrix. In tableau format, this will always be true of the basic variables,
i.e., their associated columns are distinct columns of the identity matrix. To recover the
BFS (basic feasible solution) associated with this tableau we first set the non-basic variables
equal to zero (i.e. the variables not associated with columns of the identity matrix (except
in very unusual circumstances)): x2 = 0, x3 = 0, and x4 = 0. To find the value of the basic
variables go to the column associated with that variable (for example, x1 is in the second
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column), in that column find the row with the number 1 in it, then in that row go to the
number to the right of the vertical bar (for x1 this is the first row with the number to the
right of the bar being 5/2). Then set this basic variable equal to that number (x1 = 5/2).
Repeating this for x5 and x6 we get x5 = 1 and x6 = 1/2. To get the corresponding value
for z, look at the z row and observe that the corresponding linear equation is

−z −
7

2
x2 +

1

2
x3 −

5

2
x4 = −

25

2
,

but x2, x3, and x4 are non-basic and so take the value zero giving −z = −25/2, or z = 25/2.
Of course this is all exactly the same information we obtained from the dictionary ap-

proach. The simplex, or augmented matrix approach is simply a more efficient computational
procedure. We will use the simplex procedure in class to solve LPs. In addition, on quizzes
and exams you will be required to understand how to go back and forth between these two
representations, i.e the dictionary representation and its corresponding simplex tableau (or,
augmented matrix). Let us now continue with the second simplex pivot.

In every tableau we always reserve the bottom row for encoding the linear relationship
between the objective variable z and the currently non-basic variables. For this reason we
call this row the cost row, and to distiguish its special role, we place a line above it in the
tableau (this is reminiscent of the way we place a vertical bar in an augmented matrix to
distinguish the right hand side of a linear equation). In the cost row of the tableau (2.9),

[−1, 0, −7/2, 1/2, −5/2, 0, 0, | − 25/2],

we see a positive coefficient, 1/2, in the 4th column. Hence the cost row coefficient for the
non-basic variable x3 in this tableau is 1/2. This indicates that if we increase the the value
of x3, we also increase the value of the objective z. This is not true for any of the other
currently non-basic variables since their cost row coefficients are all non-positive. Thus, the
only way we can increase the value of z is to bring x3 into the basis, or equivalently, pivot
on the x3 column which is the 4th column of the tableau. For this reason, we call the x3

column the pivot column. Now if x3 is to enter the basis, then which variable leaves? Just as
with the dictionary representation, the variable that leaves the basis is that currently basic
variable whose non-negativity places the greatest restriction on increasing the value of x3.
This restriction is computed as the smallest ratio of the right hand sides and the positive
coefficients in the x3 column:

1 = min{(5/2)/(1/2), (1/2)/(1/2)}.

The ratios are only computed with the positive coefficients since a non-positive coefficient
means that by increasing this variable we do not decrease the valued of the corresponding
basic variable and so it is not a restricting equation. Since the minimum ratio in this instance
is 1 and it comes from the third row, we find that the pivot row is the third row. Looking
across the third row, we see that this row identifies x6 as a basic variable since the x6 column
is a column of the identity with a 1 in the third row. Hence x6 is the variable leaving the
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basis when x3 enters. The intersection of the pivot column and the pivot row is called the
pivot. In this instance it is the number 1/2 which is the (3, 4) entry of the simplex tableau.
Pivoting on this entry requires us to first make it 1 by multiplying this row through by 2,
and then to apply Gaussian elimination to force all other entries in this column to zero:

Pivot
column r
↓

0 1 3/2 1/2 1/2 0 0 5/2 5
0 0 −5 0 −2 1 0 1
0 0 −1/2 1/2© −3/2 0 1 1/2 1© ← pivot row
−1 0 −7/2 1/2© −5/2 0 0 −25/2

0 1 2 0 2 0 −1 2
0 0 −5 0 −2 1 0 1
0 0 −1 1 −3 0 2 1
−1 0 −3 0 −1 0 −1 −13

This simplex tableau is said to be optimal since it is feasible (the associated BFS is non-
negative) and the cost row coefficients for the variables are all non-positive. A BFS that is
optimal is called and optimal basic feasible solution. The optimal BFS is obtained by setting
the non-basic variables equal to zero and setting the basic variables equal to the value on
the right hand side corresponding to the one in its column: x1 = 2, x2 = 0, x3 = 1, x4 =
0, x5 = 1, x6 = 0. The optimal objective value is obtained by taking the negative of the
number in the lower right hand corner of the optimal tableau: z = 13.

We now recap the complete sequence of pivots in order to make a final observation that
will help streamline the pivoting process: pivots are circled,

0 2© 3 1 1 0 0 5
0 4 1 2 0 1 0 11
0 3 4 2 0 0 1 8
-1 5 4 3 0 0 0 0

0 1 3/2 1/2 1/2 0 0 5/2
0 0 −5 0 −2 1 0 1
0 0 −1/2 1/2© −3/2 0 1 1/2
−1 0 −7/2 1/2 −5/2 0 0 −25/2

0 1 2 0 2 0 −1 2
0 0 −5 0 −2 1 0 1
0 0 −1 1 −3 0 2 1
−1 0 −3 0 −1 0 −1 −13
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Observe from this sequence of pivots that the z column is never touched, that is, it
remains the same in all tableaus. Essentially, it just serves as a place holder reminding
us that in the linear equation for the cost row the coefficient of z is −1. Therefore, for
the sake of expediency we will drop this column from our simplex computations in most
settings, and simply re-insert it whenever instructive or convenient. However, it is very
important to always remember that it is there! Indeed, we will make explicit and essential
use of this column in order to arrive at a full understanding of the duality theory for linear
programming. After removing this column, the above pivots take the following form:

2© 3 1 1 0 0 5
4 1 2 0 1 0 11
3 4 2 0 0 1 8
5 4 3 0 0 0 0

1 3/2 1/2 1/2 0 0 5/2
0 −5 0 −2 1 0 1
0 −1/2 1/2© −3/2 0 1 1/2
0 −7/2 1/2 −5/2 0 0 −25/2

1 2 0 2 0 −1 2
0 −5 0 −2 1 0 1
0 −1 1 −3 0 2 1
0 −3 0 −1 0 −1 −13

We close this section with a final example of simplex pivoting on a tableau giving only
the essential details.

The LP
maximize 3x + 2y − 4z

subject to x + 4y ≤ 5
2x + 4y − 2z ≤ 6
x + y − 2z ≤ 2
0 ≤ x, y, z

Simplex Iterations
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ratios
1 4 0 1 0 0 5 5
2 4 -2 0 1 0 6 3
1© 1 -2 0 0 1 2 2
3 2 -4 0 0 0 0

0 3 2 1 0 -1 3 3/2
0 2 2© 0 1 -2 2 1
1 1 −2 0 0 1 2
0 −1 2 0 0 −3 −6

0 1 0 1 −1 1 1
0 1 1 0 1/2 −1 1
1 3 0 0 1 −1 4
0 −3 0 0 −1 −1 −8

Optimal Solution




x
y
z



 =




4
0
1



 optimal value = 8

A final word of advise, when doing simplex pivoting by hand, it is helpful to keep the tableaus
vertically aligned in order to keep track of the arithmetic operations. Lined paper helps to
keep the rows straight. But the columns need to be straight as well. Many students find
that it is easy to keep both the rows and columns straight if they do pivoting on graph paper
having large boxes for the numbers.

2.3 Dictionaries: The General Case for LPs in Standard Form

Recall the following standard form for LPs:

P : maximize cT x
subject to Ax ≤ b

0 ≤ x ,

where c ∈ R
n, b ∈ R

m, A ∈ R
m×n and the inequalities Ax ≤ b and 0 ≤ x are to be

interpreted componentwise. We now provide a formal definition for a dictionary associated
with an LP in standard form. Let

xn+i = bi−
n∑

j=1

aijxj(DI)

z =
n∑

j=1

cjxj
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be the defining system for the slack variables xn+i, i = 1, · · · , n and the objective variable
z. A dictionary for P is any system of the form

xi = b̂i −
∑

j∈N

âijxj i ∈ B(DB)

z = ẑ +
∑

j∈N

ĉjxj

where B and N are index sets contained in the set of integers {1, . . . , n + m} satisfying

(1) B contains m elements,

(2) B ∩N = ∅

(3) B ∪N = {1, 2, . . . , n + m},

and such that the systems (DI) and (DB) have identical solution sets. The set {xj : j ∈ B}
is said to be the basis associated with the dictionary (DB) (sometimes we will refer to the
index set B as the basis for the sake of simplicity), and the variables xi, i ∈ N are said
to be the non-basic variables associated with this dictionary. The point identified by this
dictionary is

xi = b̂i i ∈ B(2.10)

xj = 0 j ∈ N.

The dictionary is said to be feasible if 0 ≤ b̂i for i ∈ N . If the dictionary DB is feasible, then
the point identified by the dictionary (2.10) is said to be a basic feasible solution (BFS) for
the LP. A feasible dictionary and its associated BFS are said to be optimal if ĉj ≤ 0 j ∈ N .

Simplex Pivoting by Matrix Multiplication
As we have seen simplex pivoting can either be performed on dictionaries or on the

augmented matrices that encode the linear equations of a dictionary in matrix form. In
matrix form, simplex pivoting reduces to our old friend, Gaussian elimination. In this section,
we show that Gaussian elimination can be represented as a consequence of left multiplication
by a specially designed matrix called a Gaussian pivot matrix.

Consider the vector v ∈ R
m block decomposed as

v =




a
α
b





where a ∈ R
s, α ∈ R, and b ∈ R

t with m = s + 1 + t. Assume that α 6= 0. We wish to
determine a matrix G such that

Gv = es+1
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where for j = 1, . . . , n, ej is the unit coordinate vector having a one in the jth position and
zeros elsewhere. We claim that the matrix

G =




Is×s −α−1a 0
0 α−1 0
0 −α−1b It×t





does the trick. Indeed,

Gv =




Is×s −α−1a 0
0 α−1 0
0 −α−1b It×t








a
α
b



 =




a− a
α−1α
−b + b



 =




0
1
0



 = es+1.

The matrix G is called a Gaussian Pivot Matrix. Note that G is invertible since

G−1 =




I a 0
0 α 0
0 b I



 ,

and that for any vector of the form w =




x
0
y



 where x ∈ R
s y ∈ R

t, we have

Gw = w.

The Gaussian pivot matrices perform precisely the operations required in order to execute
a simplex pivot. That is, each simplex pivot can be realized as left multiplication of the
simplex tableau by the appropriate Gaussian pivot matrix.

For example, consider the following initial feasible tableau:




1 4 2 1 0 0 11
3 2© 1 0 1 0 5
4 2 2 0 0 1 8
4 5 3 0 0 0 0





where the (2, 2) element is chosen as the pivot element. In this case,

s = 1, t = 2, a = 4, α = 2, and b =

[
2
5

]
,

and so the corresponding Gaussian pivot matrix is

G1 =




I1×1 −α−1a 0

0 α−1 0

0 −α−1b I2×2



 =





1 −2 0 0

0 1
2

0 0

0 −1 1 0

0 −5
2

0 1




.
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Multiplying the simplex on the left by G1 gives





1 −2 0 0

0 1
2

0 0

0 −1 1 0

0 −5
2

0 1









1 4 2 1 0 0 11

3 2 1 0 1 0 5

4 2 2 0 0 1 8

4 5 3 0 0 0 0




=





−5 0 0 1 −2 0 1
3
2

1 1
2

0 1
2

0 5
2

1 0 1© 0 −1 1 3

−7
2

0 1
2

0 −5
2

0 −25
2




.

Repeating this process with the new pivot element in the (3, 3) position yields the Gaussian
pivot matrix

G2 =





1 0 0 0

0 1 −1
2

0

0 0 1 0

0 0 −1
2

1




,

and left multiplication by G2 gives





1 0 0 0

0 1 −1
2

0

0 0 1 0

0 0 −1
2

1









−5 0 0 1 −2 0 1
3
2

1 1
2

0 1
2

0 5
2

1 0 1 0 −1 1 3
−7
2

0 1
2

0 −5
2

0 −25
2




=





−5 0 0 1 −2 0 1

1 1 0 0 1 −1
2

1

1 0 1 0 −1 1 3

−4 0 0 0 −3
2

−1
2
−14





yielding the optimal tableau.
If

(2.4)

[
A I b
cT 0 0

]

is the initial tableau, then

G2G1

[
A I b
cT 0 0

]
=





−5 0 0 1 −2 0 1
1 1 0 0 1 −1

2
1

1 0 1 0 −1 1 3
−4 0 0 0 −2 −1

2
−14





That is, we would be able to go directly from the initial tableau to the optimal tableau if we
knew the matrix

G = G2G1 =





1 0 0 0
0 1 −1

2
0

0 0 1 0
0 0 −1

2
1









1 −2 0 0
0 1

2
0 0

0 −1 1 0
0 −5

2
0 1



 =





1 −2 0 0
0 1 −1

2
0

0 −1 1 0
0 −2 −1

2
1




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beforehand. Moreover, the matrix G is invertible since both G1 and G2 are invertible:

G−1 = G−1
1 G−1

2 =





1 4 0 0
0 2 0 0
0 2 1 0
0 5 0 1









1 0 0 0
0 1 1

2
0

0 0 1 0
0 0 1

2
1



 =





1 4 2 0
0 2 1 0
0 2 3 0
0 5 3 1





(you should check that GG−1 = I by doing the multiplication by hand). In general, every
sequence of simplex pivots has a representation as left multiplication by some invertible
matrix since pivoting corresponds to left multiplication of the tableau by a Gaussian pivot
matrix, and Gaussian pivot matrices are always invertible. We now examine the consequence
of this observation more closely in the general case. In this discussion, it is essential that we
include the column associated with the objective variable z which we have largely ignored
up to this point.

Recall the initial simplex tableau, or augmented matrix associated with the system (DI):

T0 =

[
0 A I b
−1 cT 0 0

]
.

In this discussion, it is essential that we include the first column, i.e. the column associated
with the objective variable z in the augmented matrix. Let the matrix

Tk =

[
0 Â R b̂
−1 ĉT −yT ẑ

]

be another simplex tableau obtained from the initial tableau after a series of k simplex
pivots. Note that the first column remains unchanged. Indeed, the fact that simplex pivots
do not alter the first column is the reason why we drop it in our hand computations. But in
the discussion that follows its presence and the fact that it remains unchanged by simplex
pivoting is very important. Since Tk is another simplex tableau the m × (n + m) matrix

[Â R] must posses among its columns the m columns of the m×m identity matrix. These
columns of the identity matrix correspond precisely to the basic variables associated with
this tableau.

Our prior discussion on Gaussian pivot matrices tells us that Tk can be obtained from T0

by multiplying T0 on the left by some nonsingular (m+1)× (m+1) matrix G where G is the
product of a sequence of Gaussian pivot matrices. In order to better understand the action
of G on T0 we need to decompose G into a block structure that is conformal with that of T0:

G =

[
M u
vT β

]
,
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where M ∈ R
m×m, u, v ∈ R

m, and β ∈ R. Then

[
0 Â R b̂
−1 ĉT −yT ẑ

]
= Tk

= GT0

=

[
M u
vT β

] [
0 A I b
−1 cT 0 0

]

=

[
−u MA + ucT M Mb
−β vT A + βcT vT vT b

]
.

By equating the blocks in the matrices on the far left and far right hand sides of this equation,
we find from the first column that

u = 0 and β = 1 .

Here we see the key role played by our knowledge of the structure of the objective variable
column (the first column). From the (1, 3) and the (2, 3) terms on the far left and right hand
sides of (2.5), we also find that

M = R, and v = −y .

Putting all of this together gives the following representation of the kth tableau Tk:

(2.5) Tk =

[
R 0
−yT 1

] [
0 A I b
−1 cT 0 0

]
=

[
0 RA R Rb
−1 cT − yTA −yT −yT b

]
,

where the matrix R is necessarily invertible since the matrix

G =

[
R 0
−yT 1

]

is invertible (prove this!):

G−1 =

[
R−1 0

yTR−1 1

]
. (check by multiplying out GG−1)

The matrix R is called the record matrix for the tableau as it keeps track of all of the
transformations required to obtain the new tableau. Again, the variables associated with
the columns of the identity correspond to the basic variables. The tableau Tk is said to be
primal feasible, or just feasible, if b̂ = Rb ≥ 0.
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3 Initialization and the Two Phase Simplex Algorithm

We now turn to the problem of finding an initial basic feasible solution. Again consider an
LP in standard form,

P
maximize cT x
subject tp Ax ≤ b, 0 ≤ x.

We associate with this LP an auxiliary LP of the form

Q
minimize x0

subject to Ax− x0e ≤ b, 0 ≤ x0, x .

where e ∈ R
m is the vector of all ones. The ith row of the system of inequalities Ax−x0e ≤ b

takes the form
ai1x1 + ai2x2 + . . . + ainxn − x0 ≤ bi .

The system of inequalities can also be written in block matrix form as

[
e A

](
x0

x

)
≤ b .

Note that if the optimal value in the auxiliary problem is zero, then at the optimal solution
(x̃0, x̃) we have x̃0 = 0. If we plug this into the inequality Ax − x0e ≤ b, we get Ax̃ ≤ b.
That is, x̃ is feasible for the original LP P. Corresponding, if x̂ is feasible for P, then (x̂0, x̂)
with x̂0 = 0 is feasible for A, in which case (x̂0, x̂) must be optimal for A. Therefore, P is
feasible if and only if the optimal value in A is zero. In particular the feasibility of P can
be determined by solving the LP A.

The auxiliary problem A is also called the Phase I problem since solving it is the first
phase of a two phase process of solving general LPs. In Phase I we solve the auxiliary
problem to obtain an initial feasible tableau for the original problem, and in Phase II we
solve the original LP starting with the feasible tableau provided in Phase I.

Solving Q by the simplex algorithm yields an initial feasible dictionary for P. However,
to solve Q we need an initial feasible dictionary for Q. But if P does not have feasible
origin neither does Q! Fortunately, an initial feasible dictionary for Q is easily constructed.
Observe that if we set x0 = −min{bi : i = 0, . . . , n} with b0 = 0, then b + x0e ≥ 0 since

min{bi + x0 : i = 1, . . . , m}

= min{bi : i = 1, . . . , m} −min{bi : i = 0, . . . , m} ≥ 0.

Hence, by setting x0 = −min{bi : i = 0, . . . , m} and x = 0 we obtain a feasible solution for
Q. It is also a basic feasible solution. To see this, consider the initial dictionary for Q

xn+i = bi + x0 −
m∑

j=1

aijxj

z = −x0.
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Let i0 be any index such that

bi0 = min{bi : i = 0, 1, . . . , m).

If i0 = 0, then this LP has feasible origin and so the initial dictionary is optimal. If i0 > 0,
then pivot on this row bringing x0 into the basis. This yields the dictionary

x0 = −bi0 + xn+i0 +
m∑

j=1

ai0jxj

xn+i = bi − bi0 + xn+i0 −
m∑

j=1

(aij − ai0j)xj , i 6= i0

z = bi0 − xn+i0 −
m∑

j=1

ai0jxj .

But bi0 ≤ bi for all i = 1, . . . , m, so

0 ≤ bi − bi0 for all i = 1, . . . , m.

Therefore this dictionary is feasible. We illustrate this initialization procedure by example.
Consider the LP

max x1 − x2 + x3

s.t. 2x1 − x2 + 2x3 ≤ 4

2x1 − 3x2 + x3 ≤ −5

−x1 + x2 − 2x3 ≤ −1

0 =≤ x1, x2, x3 .

This LP does not have feasible origin since the right hand side vector b = (4,−5,−1)T is
not componentwise non-negative. Hence the initial dictionary DI is not feasible. Therefore,
we must first solve the auxiliary problem Q to obtain a feasible dictionary. The auxiliary
problem has the form

max −x0

s.t. −x0 + 2x1 − x2 + 2x3 ≤ 4

−x0 + 2x1 − 3x2 + x3 ≤ −5

−x0 − x1 + x2 − 2x3 ≤ −1

0 ≤ x0, x1, x2, x3 .

The initial tableau for this LP has the following form:

−1 2 −1 2 1 0 0 4
−1 2 −3 1 0 1 0 −5
−1 −1 1 −2 0 0 1 −1
−1 0 0 0 0 0 0 0
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However, instead of pivoting on this tableau we will pivot on a somewhat different tableau
which differs in one respect. In the Phase I tableau we also include the objective row for
the original LP. This is done to save the effort of having to compute the proper coefficients
for this row after solving the auxiliary problem. Having these coefficients in hand at the
end of Phase I allows one to immediately begin Phase II. This is illustrated in the following
example. Here we denote the objective variable for the Phase I problem Q as w.
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x0

↓

−1 2 −1 2 1 0 0 4

−1© 2 −3 1 0 1 0 -5 ← most negative

−1 −1 1 −2 0 0 1 −1

z 0 1 −1 1 0 0 0 0

w −1 0 0 0 0 0 0 0

0 0 2 1 1 −1 0 9

1 −2 3 −1 0 −1 0 5

0 −3 4© −3 0 −1 1 4

z 0 1 −1 1 0 0 0 0

w 0 −2 3 −1 0 −1 0 5

0 3
2

0 5
2

1 −1
2

−1
2

7

1 1
4

0 5
4© 0 −1

4
−3

4
2

0 −3
4

1 −3
4

0 −1
4

1
4

1

z 0 1
4

0 1
4

0 −1
4

1
4

1

w 0 1
4

0 5
4

0 −1
4

−3
4

2

−2 1 0 0 1 0 1 3 Auxiliary problem
4
5

1
5

0 1 0 −1
5

−3
5

8
5

solved.
3
5

−3
5

1 0 0 −2
5

−1
5

11
5

Extract an initial

z −1
5

4
20

0 0 0 − 4
20

8
20

3
5

feasible tableau.

w −1 0 0 0 0 0 0 0

We have solved the Phase I problem. The optimal value in the Phase I problem is zero.
Hence the original problem is feasible. In addition, we can extract from the tableau above
an initial feasible tableau for the the original LP.

29



1 0 0 1 0 1© 3
1
5

0 1 0 −1
5

−3
5

8
5

−3
5

1 0 0 −2
5

−1
5

11
5

1
5

0 0 0 −1
5

2
5

3
5

1 0 0 1 0 1 3
4
5

0 1 3
5

−1
5

0 17
5

−2
5

1 0 1
5

0 0 14
5

−1
5

0 0 −2
5

−1
5

0 −3
5

Hence the optimal solution is 


x1

x2

x3



 =




0

2.8
3.4





with optimal value z = .6.
Recapping, we have

The Two Phase Simplex Algorithm

Phase I Formulate and solve the auxiliary problem. Two outcomes are possible:

(i) The optimal value in the auxiliary problem is positive. In this case the original
problem is infeasible.

(ii) The optimal value is zero and an initial feasible tableau for the original problem
is obtained.

Phase II If the original problem is feasible, apply the simplex algorithm to the initial
feasible tableau obtained from Phase I above. Again, two outcomes are possible:

(i) The LP is determined to be unbounded.

(ii) An optimal basic feasible solution is obtained.

Clearly the two phase simplex algorithms can be applied to solve any LP. This yields the
following theorem.

Theorem: [The Fundamental Theorem of Linear Programming] Every LP has
the following three properties:

(i) If it has no optimal solution, then it is either infeasible or unbounded.

(ii) If it has a feasible solution, then it has a basic feasible solution.

(iii) If it is bounded, then it has an optimal basic feasible solution.
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Proof: The first phase of the two-phase simplex algorithm either discovers that the problem
is infeasible or produces a basic feasible solution. The second phase of the two-phase simplex
algorithm either discovers that the problem is unbounded or produces an optimal basic
feasible solution. �
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4 Duality Theory

Recall from Section 1 that the dual to an LP in standard form

(P)
maximize cT x
subject to Ax ≤ b, 0 ≤ x

is the LP

(D)
minimize bT y
subject to AT y ≥ c, 0 ≤ y.

Since the problem D is a linear program, it too has a dual. The duality terminology
suggests that the problems P and D come as a pair implying that the dual to D should be
P. This is indeed the case as we now show:

minimize bT y
subject to AT y ≥ c,

0 ≤ y
=

−maximize (−b)T y
subject to (−AT )y ≤ (−c),

0 ≤ y.

The problem on the right is in standard form so we can take its dual to get the LP

minimize (−c)T x
subject to (−AT )T x ≥ (−b), 0 ≤ x

=
maximize cT x
subject to Ax ≤ b, 0 ≤ x .

The primal-dual pair of LPs P −D are related via the Weak Duality Theorem.

Theorem 4.1 (Weak Duality Theorem) If x ∈ R
n is feasible for P and y ∈ R

m is
feasible for D, then

cT x ≤ yTAx ≤ bT y.

Thus, if P is unbounded, then D is necessarily infeasible, and if D is unbounded, then P is
necessarily infeasible. Moreover, if cT x̄ = bT ȳ with x̄ feasible for P and ȳ feasible for D,
then x̄ must solve P and ȳ must solve D.

We now use The Weak Duality Theorem in conjunction with The Fundamental Theorem
of Linear Programming to prove the Strong Duality Theorem. The key ingredient in this
proof is the general form for simplex tableaus derived at the end of Section 2 in (2.5).

Theorem 4.2 (The Strong Duality Theorem) If either P or D has a finite optimal
value, then so does the other, the optimal values coincide, and optimal solutions to both P
and D exist.

Remark: This result states that the finiteness of the optimal value implies the existence of
a solution. This is not always the case for nonlinear optimization problems. Indeed, consider
the problem

min
x∈R

ex.
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This problem has a finite optimal value, namely zero; however, this value is not attained by
any point x ∈ R. That is, it has a finite optimal value, but a solution does not exist. The
existence of solutions when the optimal value is finite is one of the many special properties
of linear programs.

Proof: Since the dual of the dual is the primal, we may as well assume that the primal
has a finite optimal value. In this case, the Fundamental Theorem of Linear Programming
says that an optimal basic feasible solution exists. By our formula for the general form of
simplex tableaus (2.5), we know that there exists a nonsingular record matrix R ∈ R

n×n and
a vector y ∈ R

m such that the optimal tableau has the form
[

R 0
−yT 1

] [
A I b
cT 0 0

]
=

[
RA R Rb

cT − yTA −yT −yT b

]
.

Since this is an optimal tableau we know that

c− AT y ≤ 0, −yT ≤ 0

with yT b equal to optimal value in the primal problem. But then AT y ≥ c and 0 ≤ y so that
y is feasible for the dual problem D. In addition, the Weak Duality Theorem implies that

bT y = maximize cT x ≤ bT ŷ
subject to Ax ≤ b, 0 ≤ x

for every vector ŷ that is feasible for D. Therefore, y solves D!!!! �

This is an amazing fact! Our method for solving the primal problem P, the simplex
algorithm, simultaneously solves the dual problem D! This fact will be of enormous practical
value when we study sensitivity analysis.

4.1 General Duality Theory

Thus far we have discussed duality theory as it pertains to LPs in standard form. Of course,
one can always transform any LP into one in standard form and then apply the duality
theory. However, from the perspective of applications, this is cumbersome since it obscures
the meaning of the dual variables. It is very useful to be able to compute the dual of an LP
without first converting to standard form. In this section we show how this can easily be
done. For this, we still make use of a standard form, but now we choose one that is much
more flexible:

P max
∑n

j=1 cjxj

subject to
∑n

j=1 aijxj ≤ bi i ∈ I∑n

j=1 aijxj = bi i ∈ E

0 ≤ xj j ∈ R .

Here the index sets I, E, and R are such that

I ∩ E = ∅, I ∪ E = {1, 2, . . . , m}, and R ⊂ {1, 2, . . . , n}.

We use the following primal-dual correspondences to compute the dual of an LP.
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In the Dual In the Primal
Restricted Variables Inequality Constraints

Free Variables Equality Constraints
Inequality Constraints Restricted Variables
Equality Constraints Free Variables

Using these rules we obtain the dual to P.

D min
∑m

i=1 biyi

subject to
∑m

i=1 aijyi ≥ cj j ∈ R∑m

i=1 aijyi = cj j ∈ F
0 ≤ yi i ∈ I ,

where F = {1, 2, . . . , n} \R.
For example, the LP

maximize x1 − 2x2 + 3x3

subject to 5x1 + x2 − 2x3 ≤ 8
−x1 + 5x2 + 8x3 = 10
x1 ≤ 10, 0 ≤ x3

has dual
minimize 8y1 + 10y2 + 10y3

subject to 5y1 − y2 + y3 = 1
y1 + 5y2 = −2
−2y1 + 8y2 ≥ 3
0 ≤ y1, 0 ≤ y3 .

The primal-dual pair P and D above are related by the following weak duality theorem.

Theorem 4.3 [General Weak Duality Theorem]
Let A ∈ R

m×n, b ∈ R
m, and c ∈ R

n. If x ∈ R
n is feasible for P and y ∈ R

m is feasible for D,
then

cT x ≤ yTAx ≤ bT y.

Moreover, the following statements hold.

(i) If P is unbounded, then D is infeasible.

(ii) If D is unbounded, then P is infeasible.

(iii) If x̄ is feasible for P and ȳ is feasibe for D with cT x̄ = bT ȳ, then x̄ is and optimal
solution to P and ȳ is an optimal solution to D.
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Proof: Suppose x ∈ R
n is feasible for P and y ∈ R

m is feasible for D. Then

cT x =
∑

j∈R

cjxj +
∑

j∈F

cjxj

≤
∑

j∈R

(
m∑

i=1

aijyi)xj +
∑

j∈F

(
m∑

i=1

aijyi)xj

(Since cj ≤
∑n

i=1 aijyi and xj ≥ 0 for j ∈ R

and cj =
∑n

i=1 aijyi for j ∈ F .)

=

m∑

i=1

n∑

j=1

aijyixj

= yTAx

=
∑

i∈I

(
n∑

j=1

aijxj)yi +
∑

i∈E

(
n∑

j=1

aijxj)yi

≤
∑

i∈I

biyi +
∑

i∈E

biyi

(Since
∑n

j=1 aijxj ≤ bi and 0 ≤ yi for i ∈ I

and
∑n

j=1 aijxj = bi for i ∈ E.

=
m∑

i=1

biyi

= bT y .

�

4.2 The Dual Simplex Algorithm

Consider the linear program

P maximize −4x1 − 2x2 − x3

subject to −x1 − x2 + 2x3 ≤ −3
−4x1 − 2x2 + x3 ≤ −4
x1 + x2 − 4x3 ≤ 2
0 ≤ x1, x2, x3 .

The dual to this LP is

D minimize −3y1 − 4y2 + 2y3

subject to −y1 − 4y2 + y3 ≥ −4
−y1 − 2y2 + y3 ≥ −2
2y1 + y2 − 4y3 ≥ −1

0 ≤ y1, y2, y3 .
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The problem P does not have feasible origin, and so it appears that one must apply phase
I of the two phase simplex algorithm to obtain an initial basic feasible solution. On the
other hand, the dual problem D does have feasible origin, so why not just apply the simplex
algorithm to D and avoid phase I altogether? This is exactly what we will do. However,
we do it in a way that may at first seem odd. We reverse the usual simplex procedure by
choosing a pivot row first, and then choosing the pivot column. The initial tableau for the
problem P is

-1 -1 2 1 0 0 -3
-4 -2 1 0 1 0 -4
1 1 -4 0 0 1 2
-4 -2 -1 0 0 0 0

A striking and important feature of this tableau is that every entry in the cost row is
nonpositive! This is exactly what we are trying to achieve by our pivots in the simplex
algorithm. This is a consequence of the fact that the dual problem D has feasible origin.
Any tableau having this property we will call dual feasible. Unfortunately, the tableau is not
feasible since some of the right hand sides are negative. Henceforth, we will say that such
a tableau is not primal feasible. That is, instead of saying that a tableau (or dictionary) is
feasible or infeasible in the usual sense, we wil now say that the tableau is primal feasible,
respectively, primal infeasible.

Observe that if a tableau is both primal and dual feasible, then it must be optimal,
i.e. the basic feasible solution that it identifies is an optimal solution. We now describe
an implementation of the simplex algorithm, called the dual simplex algorithm, that can
be applied to tableaus that are dual feasible but not primal feasible. Essentially it is the
simplex algorithm applied to the dual problem but using the tableau structure associated
with the primal problem. The goal is to use simplex pivots to attain primal feasibility while
maintaining dual feasibility.

Consider the tableau above. The right hand side coefficients are −3, −4, and 2. These
correspond to the cost coefficients of the dual objective. Not that this tableau also identifies a
basic feasible solution for the dual problem by setting the dual variable equal to the negative
of the cost row coefficients associated with the slack variables:




y1

y2

y3



 =




0
0
0



 .

The dual variables are currently nonbasic and so their values are zero. Next note that by
increasing the value of either y1 or y2 we decrease the value of the dual objective since the
coefficients of these variables are −3 and −4. In the simplex algorithm terminology, we can
pivot on either the first or second row to decrease the value of the dual objective. Let’s
choose the first row as our pivot row. How do we choose the pivot column? Similar to the
primal simplex algorithm, we choose the pivot column to maintain dual feasibility. For this
we again must compute ratios, but this time it is the ratios of the negative entries in the
pivot row with the corresponding cost row entries:
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ratios for the first two columns are 4 and 2

-1 -1 2 1 0 0 -3 ← pivot row
-4 -2 1 0 1 0 -4
1 1 -4 0 0 1 2
-4 -2 -1 0 0 0 0

The smallest ratio is 2 so the pivot column is column 2 in the tableau, and the pivot element
is therefore the (1,2) entry of the tableau. Note that this process of choosing the pivot is
the reverse of how the pivot is chosen in the primal simplex algorithm. In the dual simplex
algorithm we fist choose a pivot row, then compute ratios to determine the pivot column
which identifies the pivot. We now successive apply this process to the above tableau until
optimality is achieved.

-1 -1 2 1 0 0 -3 ← pivot row
-4 -2 1 0 1 0 -4
1 1 -4 0 0 1 2

-4 -2 -1 0 0 0 0

1 1 -2 -1 0 0 3
-2 0 -3 -2 1 0 2

0 0 -2 1 0 1 -1 ← pivot row
-2 0 -5 -2 0 0 6
1 1 0 -2 0 -1 4

-2 0 0 -7/2 1 -3/2 7/2
0 0 1 -1/2 0 -1/2 1/2

-2 0 0 -9/2 0 -5/2 17/2 optimal

Therefore, the optimal solutions to P and D are



x1

x2

x3



 =




0
4

1/2



 and




y1

y2

y3



 =




9/2
0

5/2



 ,

respectively, with optimal value −17/2.
Next consider the LP

P maximize −4x1 − 2x2 − x3

subject to −x1 − x2 + 2x3 ≤ −3
−4x1 − 2x2 + x3 ≤ −4
x1 + x2 − x3 ≤ 2
0 ≤ x1, x2, x3 .

This LP differs from the previous LP only in the x3 coefficient of the third linear inequal-
ity. Let’s apply the dual simplex algorithm to this LP.
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-1 -1 2 1 0 0 -3 ← pivot row
-4 -2 1 0 1 0 -4
1 1 -1 0 0 1 2

-4 -2 -1 0 0 0 0

1 1 -2 -1 0 0 3
-2 0 -3 -2 1 0 2
0 0 1 1 0 1 -1 ← pivot row

-2 0 -5 -2 0 0 6

The first dual simplex pivot is given above. Repeating this process again, we see that
there is only one candidate for the pivot row in our dual simplex pivoting strategy. What
do we do now? It seems as though we are stuck since there are no negative entries in the
third row with which to compute ratios to determine the pivot column. What does this
mean? Recall that we chose the pivot row because the negative entry in the right hand side
implies that we can decrease the value of the dual objective by bring the dual variable y3

into the dual basis. The ratios are computed to preserve dual feasibility. In this problem,
the fact that there are no negative entries in the pivot row implies that we can increase
the value of y3 as much as we want without violating dual feasibility. That is, the dual
problem is unbounded below, and so by the weak duality theorem the primal problem must
be infeasible!

We will make extensive use of the dual simplex algorithm in our discussion of sensitivity
analysis in linear programming.
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