Computing Dual LPs without Conversion to Standard Form

- 1. Compute the dual LP to each of the following LPs without first converting to standard form.
 - (a)

maximize
$$2x_1 - 3x_2 + 10x_3$$

subject to $x_1 + x_2 - x_3 = 12$
 $x_1 - x_2 + x_3 \le 8$
 $0 \le x_2 \le 10$

(b)

2. Consider the mini-max problem

$$\min_{x \in \mathbb{R}^n} \max_{i=1,2,\dots,m} \{a_i^T x - b_i\}$$

where $a_i \in \mathbb{R}^n$ and $b_i \in \mathbb{R}$ for i = 1, 2, ..., m.

(a) Show that this mini-max problem is in some sense equivalent to the LP

$$\begin{array}{ll}
\text{maximize} & -x_0 \\
\text{subject to} & Ax - b < x_0 e,
\end{array} \tag{1}$$

where $A = (a_{ij})_{m \times n}$, $b = [b_1, b_2, \dots, b_m]^T$, and $e \in \mathbb{R}^m$ is the vector of all ones.

(b) Show that the dual of the LP (1) is

3. Consider the system of linear inequalities and equations

$$Ax \le b, \qquad Bx = d, \tag{2}$$

where $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{s \times t}$, $d \in \mathbb{R}^s$, and $b \in \mathbb{R}^n$. We are interested in studying the consistency of this system, that is, we are interested in determining conditions under which the solution set $S = \{x : Ax \leq b, Bx = d\}$ is non-empty. For this purpose, we make use of the following linear program:

$$\mathcal{P}$$
: maximize $-e^T z$

$$Ax - z \leq b$$

$$Bx = d$$

$$0 \leq z$$

where $e \in \mathbb{R}^m$ is the vector of all ones $(e = (1, 1, 1, \dots, 1)^T)$.

- (a) Show that the system (2) is consistent (i.e. $S \neq \emptyset$) if and only if the optimal value in \mathcal{P} is zero.
- (b) Show that the dual to the LP \mathcal{P} is the LP

$$\mathcal{D}: \ \text{minimize} \ \ b^T u + d^T v \\ A^T u + B^T v = 0 \\ 0 \leq u \leq e.$$

(c) Show that the system $Ax \leq b$ is inconsistent (i.e. $S = \emptyset$) if and only if there are vectors $u \in \mathbb{R}^m$ and $v \in \mathbb{R}^s$ such that $0 \leq u$, $A^Tu + B^Tv = 0$, and $b^Tu + d^Tv < 0$.