Computing Dual LPs without Conversion to Standard Form - 1. Compute the dual LP to each of the following LPs without first converting to standard form. - (a) maximize $$2x_1 - 3x_2 + 10x_3$$ subject to $x_1 + x_2 - x_3 = 12$ $x_1 - x_2 + x_3 \le 8$ $0 \le x_2 \le 10$ (b) 2. Consider the mini-max problem $$\min_{x \in \mathbb{R}^n} \max_{i=1,2,\dots,m} \{a_i^T x - b_i\}$$ where $a_i \in \mathbb{R}^n$ and $b_i \in \mathbb{R}$ for i = 1, 2, ..., m. (a) Show that this mini-max problem is in some sense equivalent to the LP $$\begin{array}{ll} \text{maximize} & -x_0 \\ \text{subject to} & Ax - b < x_0 e, \end{array} \tag{1}$$ where $A = (a_{ij})_{m \times n}$, $b = [b_1, b_2, \dots, b_m]^T$, and $e \in \mathbb{R}^m$ is the vector of all ones. (b) Show that the dual of the LP (1) is 3. Consider the system of linear inequalities and equations $$Ax \le b, \qquad Bx = d, \tag{2}$$ where $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{s \times t}$, $d \in \mathbb{R}^s$, and $b \in \mathbb{R}^n$. We are interested in studying the consistency of this system, that is, we are interested in determining conditions under which the solution set $S = \{x : Ax \leq b, Bx = d\}$ is non-empty. For this purpose, we make use of the following linear program: $$\mathcal{P}$$: maximize $-e^T z$ $$Ax - z \leq b$$ $$Bx = d$$ $$0 \leq z$$ where $e \in \mathbb{R}^m$ is the vector of all ones $(e = (1, 1, 1, \dots, 1)^T)$. - (a) Show that the system (2) is consistent (i.e. $S \neq \emptyset$) if and only if the optimal value in \mathcal{P} is zero. - (b) Show that the dual to the LP \mathcal{P} is the LP $$\mathcal{D}: \ \text{minimize} \ \ b^T u + d^T v \\ A^T u + B^T v = 0 \\ 0 \leq u \leq e.$$ (c) Show that the system $Ax \leq b$ is inconsistent (i.e. $S = \emptyset$) if and only if there are vectors $u \in \mathbb{R}^m$ and $v \in \mathbb{R}^s$ such that $0 \leq u$, $A^Tu + B^Tv = 0$, and $b^Tu + d^Tv < 0$.