
MATH 408 FINAL EXAM SOLUTIONS March 16, 2020
(1) (20 points) Compute and classify all critical points of the function f(x1, x2) := (x1+x2)2−8(x1+x2).

Solution:
(15 points) Compute critical points: ∇f(x) = (2(x1 +x2)−8)

(
1 1

)
. Hence ∇f(x) = 0 if and only

if x1 + x2 = 4, so the set of critical points is given by
C := {(x1, x2) |x1 + x2 = 4} .

(5 points) Classification of critical points: The key is to show that C is the set for global mini-
mizers for f . There are many ways to do this. Here are 5.
(a) f(x) = ((x1 + x2)− 4)2 − 16. Hence the set of global minima of f is C.
(b) g(z) = z2 − 8z has g′(z) = 2z − 8 and g′′(z) = 2 so g is strictly convex with unique global

minimizer z = 4. Consequently, C is the set for global minimizers for f since f(x) = g(x1 +x2).

(c) As above, g(z) = z2 − 8z is a strictly convex function and f(x) = g

(
[1 1]

(
x1

x1

))
, that is, f

is of the form h(Ax + b) where h is convex. Therefore, Part (2) of Theorem 5.16 on page 65
of the course notes, f is convex so that the set of global minimizers coincides with its critical
points C.

(d) ∇2f(x) = 2

[
1 1
1 1

]
with principal minors 1 and 0 so that ∇2f(x) is positive semidefinite. At

this point we can either use our knowledge of quadratic functions or convex functions to assert
that the set of global minimizers coincides with its critical points C.

(e) 1
2
f(x) + 8 = 1

2

∥∥∥∥[1 1]

(
x1

x1

)
− 4

∥∥∥∥2

2

. Hence minimizing f is the same as solving a linear least-

squares problem whose solution set is given by C. Therefore, the set of global minimizers
coincides with its critical points C.

(2) (30 points) Show that the function f : Rn → R given by f(x) = exp(1
2
‖x‖2

2) is convex.

Solution: Again, there are many ways to do this. Here are two.
(a) Let h(z) = exp(z) and g(x) = 1

2
‖x‖2

2. Since h(z) = h′(z) = h′′(z), h is a nondecreasing convex
function of z. We also have ∇2g(x) = I so that g is a strictly convex function that maps into
the domain of g. Hence, by Part (1) of Theorem 5.16 on page 65 of the course notes, f is
convex.

(b) ∇f(x) = xf(x) and ∇2f(x) = f(x)[I + xxT ], and uT∇2f(x)u = f(x)[‖u‖2
2 + (〈x, u〉)2] > 0 for

u 6= 0. Hence f is a strictly convex function.

1



(3) Consider the problem min {x2
1 − x2 |x2

1 + x2 ≤ 0} .
(a) (5 points) Graph the constraint region {(x1, x2) |x2

1 + x2 ≤ 0}.

(b) (20 points) Compute a KKT pair for this problem.

KKT conditions:
(i) x2

1 + x2 ≤ 0
(ii) 0 ≤ λ
(iii) λ(x2

1 + x2) = 0

(iv) 0 = ∇xL(x, λ) =

(
2x1(1 + λ)
−1 + λ

)
, where L(x, λ) = x2

1 − x2 + λ(x2
1 + x2). (10 poiints)

Hence, by (iv), λ = 1 and x1 = 0. By (iii), x2 = 0. Therefore, since (i) and (ii) are also
satisfied, (x1, x2) = (0, 0) and λ = 1 is a KKT pair for this problem. (10 points)

(c) (5 points) Compute the tangent cone to the constraint region at the solution to this problem.

Set c1(x1, x2) = x2
1+x2 and Ω := {x |c(x) ≤ 0}. Since∇2c(x) =

[
2 0
0 0

]
is positive semidefinite,

c is convex. Also, since c(0,−1) = −1 < 0, the Slater constraint qualification is satisfied.
Hence, by the Theorem 5.18 page 66, the MFCQ is satisfied and so Ω is regular at (0, 0) giving

T ((0, 0)|Ω) =
{
d
∣∣∇c(0, 0)Td ≤ 0

}
=

{(
d1

d2

) ∣∣∣∣∣0 ≥
(

0
1

)T (
d1

d2

)
= d2

}
.

Now return to the graph and see that the tangent cone at the origin is everything on or below
the x1 axis.

(d) (10 points) Show that the second-order sufficiency condition for this problem is satisfied at the
KKT pair computed above.

Solution: First observe that ∇2
xxL((0, 0), 1) =

[
4 0
0 0

]
and ∇f(0, 0) =

(
0
−1

)
, where

f(x1, x2) := x2
1 − x2. Hence d ∈ T ((0, 0)|Ω) \ {(0, 0)} satisfies 0 = ∇f(0, 0)Td = −d2

if and only if d2 = 0 (5 points). Consequently, for every such d 6= 0 (i.e. d1 6= 0),
dT∇2L((0, 0), 1)d = 4d2

1 > 0, which shows that the second-order sufficiency condition in The-
orem 4.9 on page 55 of the notes is satisfied (5 points).



(4) (30 points) Let f : Rn → R be continuously differentiable and let e ∈ Rn denote the vector of all
ones. Show that if x̄ is a local solution to the problem min {f(x) |0 ≤ x ≤ e}, then

∂f

∂xi
(x̄) ≥ 0 if x̄i = 0,

∂f

∂xi
(x̄) = 0 if 0 < x̄i < 1,

∂f

∂xi
(x̄) ≤ 0 if x̄i = 1.

Hint: KKT conditions and {x |0 ≤ x ≤ e} = {x |0 ≤ xi ≤ 1, i = 1, 2, . . . , n}.

Solution: Let Ω := {x ∈ Rn |0 ≤ x ≤ e}. Since Ω is convex and the Slater condition is satisfied (0
is in the interior of Ω), the MFCQ is satisfied at every point of Ω (Theorem 5.8 page 66). Therefore
the local solution x̄ is a KKT point by Theorem 4.6 page 53 and Theorem 4.22 page 50 (5 points).
The KKT conditions tell us that that there exist ū, v̄ ∈ Rn such that
(i) 0 ≤ x̄i ≤ 1, i = 1, . . . , n
(ii) 0 ≤ ūi, 0 ≤ v̄i, i = 1, . . . , n
(iii) 0 = ūix̄i, 0 = v̄i(x̄i − 1), i = 1, . . . , n

(iv) 0 = ∇xL(x̄, ū, v̄), or equivalently, ∂f(x̄)
∂xi

= ūi− v̄i, i = 1, . . . , n, since L(x, u, v) = f(x)− uTx+

vT (x− e). (15 points)

Hence, we have the following:

(a) if x̄i = 0, then, by (iii), v̄i = 0, and so by (iv) and (ii), ∂f(x̄)
∂xi

= ūi ≥ 0.

(b) if 0 < x̄i < 1, then by (iii),v̄i = 0 = ūi, and so by (iv), ∂f(x̄)
∂xi

= 0.

(c) if x̄i = 1, then, by (iii), ūi = 0, and so by (iv) and (ii), ∂f(x̄)
∂xi

= −v̄i ≤ 0.

The condition (a)-(c) establish the result. (10 points)

(5) Consider the problem

minimize (x1 + x2)2 − 8(x1 + x2)

subject to x2
1 ≤ 2x2 and 2x1 + 2x2 ≤ 4,

and note that this objective function occurs in problem 1.
(a) (10 points) Graph the constraint region and compare it to the graph of the set of critical points

in problem 1. After thinking about the geometry of the setting, guess that one of the two dual
variables takes the value zero.

Solution:



The graph of the objective is a parabolic valley whose bottom lies along the line x1 + x2 = 4.
The function ascends uniformly away from this line. Hence (an educated guess) the solution
set must be the line segment above the curve x2

1 = 2x2 and on the line x1 + x2 = 2 with
−1−

√
5 ≤ x1 ≤ −1+

√
5 where the endpoints are the intersection points of the line x1 +x2 = 2

and the curve x2
1 = 2x2. For the points with −1−

√
5 < x1 < −1 +

√
5 the constraint x2

1 ≤ 2x2

is inactive, and so we guess that it’s multiplier is zero at these points, i.e. y1 = 0.

(b) (30 points) Describe the set of all KKT pairs for this problem.

Solution: The Lagrangian for this problem is

L((x1, x2), (y1, y2)) = (x1 + x2)2 − 8(x1 + x2) + y1(x2
1 − 2x2) + y2(2x1 + 2x2 − 4),

and the KKT conditions are
(i) x2

1 ≤ 2x2 and 2x1 + 2x2 ≤ 4
(ii) 0 ≤ y1, y2

(iii) y1(x2
1 − 2x2) = 0 and y2(2x1 + 2x2 − 4) = 0

(iv) 0 = ∇xL(x1, x2, y1, y2) =

[
2(x1 + x2)− 8 + 2y1x1 + 2y2

2(x1 + x2)− 8− 2y1 + 2y2

]
.

From part (a), we guess that y1 = 0 and x1 + x2 = 2. Then (iv) tells us that

(
0
0

)
=[

4− 8 + 2y2

4− 8 + 2y2

]
, or y2 = 2. Hence the set of KKT pairs is given by{

((x1, 2− x1), (0, 2)
∣∣∣−1−

√
5 < x1 < −1 +

√
5
}
.

Since the problem is convex, Theorem 5.19 page 66 tells us that the set of optimal solutions is
given by {

(x1, 2− x1)
∣∣∣−1−

√
5 < x1 < −1 +

√
5
}
.



(6) (40 points) Let A ∈ Rm×n, b ∈ Rm, c ∈ Rn \ {0}, and γ ∈ R. Show that the Lagrangian dual for
the problem

minimize
1

2
‖Ax− b‖2

2

subject to cTx = γ and 0 ≤ x,

is the problem

maximize − 1

2
‖y + b‖2

2 − λγ +
1

2
‖b‖2

2

subject to 0 ≤ ATy + λc ,

where the maximization occurs over the dual variables y ∈ Rm and λ ∈ R.
Step 1: Rewrite the problem by introducing a new variable w that simplifies the objective.

Don’t forget to write the definition of the new variable as one of the constraints.
Step 2: Write the Lagrangian.
Step 3: Write the condition 0 = ∇(x,w)L.
Step 4: Use this condition to eliminate the primal variables from L and obtain the dual objective

as a function of the dual variables only.
Step 5: Clean up the dual problem a bit so that it corresponds to the one give above.

Solution: Introduce the new variable w = Ax− b and rewrite the problem as

minimize
1

2
‖Ax− b‖2

2

subject to Ax− b = w, cTx = γ and 0 ≤ x .

(10 points)
The Lagrangian for this problem is

L((w, x), (y, u, v)) =
1

2
‖w‖2

2 + yT (Ax− b− w) + u(cTx− γ)− vTx ,

where v ≥ 0. The dual objective is ψ(y, u, v) := min
(w,x)

L((w, x), (y, u, v)). By convexity, (w, x) attains

the minimum in the definition of ψ if and only if

0 = ∇(w,x)L((w, x), (y, u, v)) =

[
w − y

ATy + uc− v

]
,

or equivalently, w = y and 0 = ATy + uc− v.
(10 points)
Using these identities, we eliminate the primal variables from L:

ψ(y, u, v) = L((w, x), (y, u, v))

=
1

2
‖w‖2

2 − y
Tw + (ATy + uc− v)T − bTy − γu

=
1

2
‖y‖2

2 − y
Ty − bTy − γu (since w = y and 0 = ATy + uc− v)

= −1

2
‖y‖2

2 − b
Ty − γu

= −1

2
‖y + b‖2

2 − γu+
1

2
‖b‖2 .

(10 points)
Hence we may write the dual problem as

maximize − 1

2
‖y + b‖2

2 − γu+
1

2
‖b‖2

subject to ATy + uc = v and 0 ≤ v ,



or alternatively,

maximize − 1

2
‖y + b‖2

2 − γu+
1

2
‖b‖2

subject to ATy + uc ≥ 0 .

(10 points)
Note that the constant term 1

2
‖b‖2 does not change the optimal solution to the dual. For this

reason it is often dropped and the dual is written as

maximize − 1

2
‖y + b‖2

2 − γu

subject to 0 ≤ ATy + uc .


