
OPTIMALITY CONDITIONS

1. Unconstrained Optimization

1.1. Existence. Consider the problem of minimizing the function f : Rn → R where f is
continuous on all of Rn:

P min
x∈Rn

f(x).

As we have seen, there is no guarantee that f has a minimum value, or if it does, it may
not be attained. To clarify this situation, we examine conditions under which a solution is
guaranteed to exist. Recall that we already have at our disposal a rudimentary existence
result for constrained problems. This is the Weierstrass Extreme Value Theorem.

Theorem 1.1. (Weierstrass Extreme Value Theorem) Every continuous function
on a compact set attains its extreme values on that set.

We now build a basic existence result for unconstrained problems based on this theorem.
For this we make use of the notion of a coercive function.

Definition 1.1. A function f : Rn → R is said to be coercive if for every sequence {xν} ⊂ Rn

for which ‖xν‖ → ∞ it must be the case that f(xν)→ +∞ as well.

Continuous coercive functions can be characterized by an underlying compactness property
on their lower level sets.

Theorem 1.2. (Coercivity and Compactness) Let f : Rn → R be continuous on all of Rn.
The function f is coercive if and only if for every α ∈ R the set {x |f(x) ≤ α} is compact.

Proof. We first show that the coercivity of f implies the compactness of the sets {x |f(x) ≤ α}.
We begin by noting that the continuity of f implies the closedness of the sets {x |f(x) ≤ α}.
Thus, it remains only to show that any set of the form {x |f(x) ≤ α} is bounded. We show
this by contradiction. Suppose to the contrary that there is an α ∈ Rn such that the
set S = {x |f(x) ≤ α} is unbounded. Then there must exist a sequence {xν} ⊂ S with
‖xν‖ → ∞. But then, by the coercivity of f , we must also have f(xν) → ∞. This contra-
dicts the fact that f(xν) ≤ α for all ν = 1, 2, . . . . Therefore the set S must be bounded.

Let us now assume that each of the sets {x |f(x) ≤ α} is bounded and let {xν} ⊂ Rn

be such that ‖xν‖ → ∞. Let us suppose that there exists a subsequence of the integers
J ⊂ N such that the set {f(xν)}J is bounded above. Then there exists α ∈ Rn such that
{xν}J ⊂ {x |f(x) ≤ α}. But this cannot be the case since each of the sets {x |f(x) ≤ α} is
bounded while every subsequence of the sequence {xν} is unbounded by definition. Therefore,
the set {f(xν)}J cannot be bounded, and so the sequence {f(xν)} contains no bounded
subsequence, i.e. f(xν)→∞. �

This result in conjunction with Weierstrass’s Theorem immediately yields the following
existence result for the problem P .

Theorem 1.3. (Coercivity implies existence) Let f : Rn → R be continuous on all of Rn. If
f is coercive, then f has at least one global minimizer.
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Proof. Let α ∈ R be chosen so that the set S = {x |f(x) ≤ α} is non-empty. By coercivity,
this set is compact. By Weierstrass’s Theorem, the problem min {f(x) |x ∈ S } has at least
one global solution. Obviously, the set of global solutions to the problem min {f(x) |x ∈ S }
is a global solution to P which proves the result. �

Remark: It should be noted that we only need to know that the coercivity hypothesis is
stronger than is strictly required in order to establish the existence of a solution. Indeed, a
global minimizer must exist if there exist one non-empty compact lower level set. We do not
need all of them to be compact. However, in practice, coercivity is easy to check.

1.2. First-Order Optimality Conditions. This existence result can be quite useful, but
unfortunately it does not give us a constructive test for optimality. That is, we may know a
solution exists, but we still do not have a method for determining whether any given point
may or may not be a solution. We now present such a test using the derivatives of the
objective function f . For this we will assume that f is twice continuously differentiable on
Rn and develop constructible first- and second-order necessary and sufficient conditions for
optimality.

The optimality conditions we consider are built up from those developed in first term
calculus for functions mapping from R to R. The reduction to the one dimensional case
comes about by considering the functions φ : R→ R given by

φ(t) = f(x+ td)

for some choice of x and d in Rn. The key variational object in this context is the directional
derivative of f at a point x in the direction d given by

f ′(x; d) = lim
t↓0

f(x+ td)− f(x)

t
.

When f is differentiable at the point x ∈ Rn, then

f ′(x; d) = ∇f(x)Td = φ′(0).

Note that if f ′(x; d) < 0, then there must be a t̄ > 0 such that

f(x+ td)− f(x)

t
< 0 whenever 0 < t < t̄ .

In this case, we must have

f(x+ td) < f(x) whenever 0 < t < t̄ .

That is, we can always reduce the function value at x by moving in the direction d an
arbitrarily small amount. In particular, if there is a direction d such that f ′(x; d) exists with
f ′(x; d) < 0, then x cannot be a local solution to the problem minx∈Rn f(x). Or equivalently,
if x is a local to the problem minx∈Rn f(x), then f ′(x; d) ≥ 0 whenever f ′(x; d) exists. We
state this elementary result in the following lemma.

Lemma 1.1 (Basic First-Order Optimality Result). Let f : Rn → R and let x̄ ∈ Rn be a
local solution to the problem minx∈Rn f(x). Then

f ′(x; d) ≥ 0
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for every direction d ∈ Rn for which f ′(x; d) exists.

We now apply this result to the case in which f : Rn → R is differentiable.

Theorem 1.4. Let f : Rn → R be differentiable at a point x ∈ Rn. If x is a local minimum
of f , then ∇f(x) = 0.

Proof. By Lemma 1.1 we have

0 ≤ f ′(x̄; d) = ∇f(x̄)Td for all d ∈ Rn .

Taking d = −∇f(x̄) we get

0 ≤ −∇f(x̄)T∇f(x̄) = −‖∇f(x̄)‖2 ≤ 0.

Therefore, ∇f(x̄) = 0. �

When f : Rn → R is differentiable, any point x ∈ Rn satisfying ∇f(x) = 0 is said to be a
stationary (or, equivalently, a critical) point of f . In our next result we link the notions of
coercivity and stationarity.

Theorem 1.5. Let f : Rn → R be differentiable on all of Rn. If f is coercive, then f has
at least one global minimizer these global minimizers can be found from among the set of
critical points of f .

Proof. Since differentiability implies continuity, we already know that f has at least one
global minimizer. Differentiabilty implies that this global minimizer is critical. �

This result indicates that one way to find a global minimizer of a coercive differentiable
function is to first find all critical points and then from among these determine those yielding
the smallest function value.

1.3. Second-Order Optimality Conditions. To obtain second-order conditions for opti-
mality we must first recall a few properties of the Hessian matrix ∇2f(x). The calculus tells
us that if f is twice continuously differentiable at a point x ∈ Rn, then the hessian ∇2f(x)
is a symmetric matrix. Symmetric matrices are orthogonally diagonalizable. That is, there
exists and orthonormal basis of eigenvectors of ∇2f(x) , v1, v2, . . . , vn ∈ Rn such that

∇2f(x) = V


λ1 0 0 . . . 0
0 λ2 0 . . . 0
...

. . .
...

0 0 . . . . . . λn

V T

where λ1, λ2, . . . , λn are the eigenvalues of ∇2f(x) and V is the matrix whose columns are
given by their corresponding vectors v1, v2, . . . , vn:

V =
[
v1, v2, . . . , vn

]
.

It can be shown that ∇2f(x) is positive semi-definite if and only if λi ≥ 0, i = 1, 2, . . . , n,
and it is positive definite if and only if λi > 0, i = 1, 2, . . . , n. Thus, in particular, if ∇2f(x)
is positive definite, then

dT∇2f(x)d ≥ λmin ‖d‖2 for all d ∈ Rn,
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where λmin is the smallest eigenvalue of ∇2f(x).
We now give our main result on second-order necessary and sufficient conditions for opti-

mality in the problem minx∈Rn f(x). The key tools in the proof are the notions of positive
semi-definiteness and definiteness along with the second-order Taylor series expansion for f
at a given point x ∈ Rn:

(1.1) f(x) = f(x) +∇f(x)T (x− x) +
1

2
(x− x)T∇2f(x)(x− x) + o(‖x− x‖2)

where

lim
x→x

o(‖x− x‖2)
‖x− x‖2

= 0.

Theorem 1.6. Let f : Rn → R be twice continuously differentiable at the point x ∈ Rn.

(1) (Necessity) If x is a local minimum of f , then ∇f(x) = 0 and ∇2f(x) is positive
semi-definite.

(2) (Sufficiency) If ∇f(x) = 0 and ∇2f(x) is positive definite, then there is an α > 0
such that f(x) ≥ f(x) + α‖x− x‖2 for all x near x.

Proof. (1) We make use of the second-order Taylor series expansion (1.1) and the fact
that ∇f(x̄) = 0 by Theorem 1.4. Given d ∈ Rn and t > 0 set x := x + td, plugging
this into (1.1) we find that

0 ≤ f(x̄+ td)− f(x̄)

t2
=

1

2
dT∇2f(x)d+

o(t2)

t2

since ∇f(x) = 0 by Theorem 1.4. Taking the limit as t→ 0 we get that

0 ≤ dT∇2f(x)d.

Since d was chosen arbitrarily, ∇2f(x) is positive semi-definite.
(2) The Taylor expansion (1.1) and the hypothesis that ∇f(x̄) = 0 imply that

(1.2)
f(x)− f(x)

‖x− x‖2
=

1

2

(x− x)T

‖x− x‖
∇2f(x)

(x− x)

‖x− x‖
+
o(‖x− x‖2)
‖x− x‖2

.

If λmin > 0 is the smallest eigenvalue of ∇2f(x), choose ε > 0 so that

(1.3)

∣∣∣∣o(‖x− x‖2)‖x− x‖2

∣∣∣∣ ≤ λmin

4

whenever ‖x− x‖ < ε. Then, for all ‖x− x‖ < ε, we have from (1.2) and (1.3) that

f(x)− f(x)

‖x− x‖2
≥ 1

2
λmin +

o(‖x− x‖2)
‖x− x‖2

≥ 1

4
λmin.

Consequently, if we set α = 1
4
λmin, then

f(x) ≥ f(x) + α‖x− x‖2

whenever ‖x− x‖ < ε.
�
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In order to apply the second-order sufficient condition one must be able to check that
a symmetric matrix is positive definite. As we have seen, this can be done by computing
the eigenvalues of the matrix and checking that they are all positive. But there is another
approach that is often easier to implement using the principal minors of the matrix.

Theorem 1.7. Let H ∈ Rn×n be symmetric. We define the kth principal minor of H,
denoted ∆k(H), to be the determinant of the upper-left k × k submatrix of H. Then

(1) H is positive definite if and only if ∆k(H) > 0, k = 1, 2, . . . , n.
(2) H is negative definite if and only if (−1)k∆k(H) > 0, k = 1, 2, . . . , n.

Definition 1.2. Let f : Rn → R be continuously differentiable at x̄. If ∇f(x̄) = 0, but x̄ is
neither a local maximum or a local minimum, we call x̄ a saddle point for f .

Theorem 1.8. Let f : Rn → R be twice continuously differentiable at x̄. If ∇f(x̄) = 0 and
∇2f(x̄) has both positive and negative eigenvalues, then x̄ is a saddle point of f .

Theorem 1.9. Let H ∈ Rn×n be symmetric. If H is niether positive definite or negative
definite and all of its principal minors are non-zero, then H has both positive and negative
eigenvalues. In this case we say that H is indefinite.

Example: Consider the matrix

H =

 1 1 −1
1 5 1
−1 1 4

 .
We have

∆1(H) = 1, ∆2(H) =

∣∣∣∣ 1 1
1 5

∣∣∣∣ = 4, and ∆3(H) = det(H) = 8.

Therefore, H is positive definite.

1.4. Convexity. In the previous section we established first- and second-order optimality
conditions. These conditions we based on only local information and so only refer to prop-
erties of local extrema. In this section we study the notion of convexity which allows us to
provide optimality conditions for global solutions.

Definition 1.3. (1) A set C ⊂ Rn is said to be convex if for every x, y ∈ C and λ ∈ [0, 1]
one has

(1− λ)x+ λy ∈ C .

(2) A function f : Rn → R is said to be convex if for every two points x1, x2 ∈ Rn and
λ ∈ [0, 1] we have

(1.4) f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2).

The function f is said to be strictly convex if for every two distinct points x1, x2 ∈ Rn

and λ ∈ (0, 1) we have

(1.5) f(λx1 + (1− λ)x2) < λf(x1) + (1− λ)f(x2).
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The inequality (1.4) is equivalent to the statement that the secant line connecting (x1, f(x1))
and (x2, f(x2)) lies above the graph of f on the line segment λx1 + (1− λ)x2, λ ∈ [0, 1].

x  x  + (1 -   )x 2x

2
1(x  , f (x  ))1

2(x  , f (x   ))

λ 1 λ 21

That is, the set
epi (f) = {(x, µ) : f(x) ≤ µ},

called the epi-graph of f is a convex set. Indeed, it can be shown that the convexity of the
set epi (f) is equivalent to the convexity of the function f . This observation allows us to
extend the definition of the convexity of a function to functions taking potentially infinite
values.

Definition 1.4. A function f : Rn → R ∪ {+∞} = R̄ is said to be convex if the set
epi (f) = {(x, µ) : f(x) ≤ µ} is a convex set. We also define the essential domain of f to
be the set

dom (f) = {x : f(x) < +∞} .
We say that f is strictly convex if the strict inequality (1.5) holds whenever x1, x2 ∈ dom (f)
are distinct.

Example: cTx, ‖x‖, ex, x2

The role of convexity in linking the global and the local in optimization theory is illustrated
by the following result.

Theorem 1.10. Let f : Rn → R̄ be convex. If x ∈ Rn is a local minimum for f , then x is
a global minimum for f .

Proof. Suppose to the contrary that there is a x̂ ∈ Rn with f(x̂) < f(x). Since x̄ is a local
solution, there is an ε > 0 such that

f(x) ≤ f(x) whenever ‖x− x‖ ≤ ε .

Taking ε smaller if necessary, we may assume that

ε < 2‖x− x̂‖ .
Set λ := ε(2‖x − x̂‖)−1 < 1 and xλ := x + λ(x̂ − x). Then ‖xλ − x‖ ≤ ε/2 and f(xλ) ≤
(1− λ)f(x) + λf(x̂) < f(x). This contradicts the choice of ε and so no such x̂ exists. �

Strict convexity implies the uniqueness of solutions.

Theorem 1.11. Let f : Rn → R̄ be strictly convex. If f has a global minimizer, then it is
unique.
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Proof. Let x1 and x2 be distinct global minimizers of f . Then, for λ ∈ (0, 1),

f((1− λ)x1 + λx2) < (1− λ)f(x1) + λf(x2) = f(x1) ,

which contradicts the assumption that x1 is a global minimizer. �

If f is a differentiable convex function, much more can be said. We begin with the following
lemma.

Lemma 1.2. Let f : Rn → R̄ be convex (not necessarilty differentiable).

(1) Given x, d ∈ Rn the difference quotient

(1.6)
f(x+ td)− f(x)

t

is a non-decreasing function of t on (0,+∞).
(2) For every x, d ∈ Rn the directional derivative f ′(x; d) always exists and is given by

(1.7) f ′(x; d) := inf
t>0

f(x+ td)− f(x)

t
.

Proof. We first assume (1) is true and show (2). Recall that

(1.8) f ′(x; d) := lim
t↓0

f(x+ td)− f(x)

t
.

Now if the difference quotient (1.6) is non-decreasing in t on (0,+∞), then the limit in (1.8)
is necessarily given by the infimum in (1.7). This infimum always exists and so f ′(x; d)
always exists and is given by (1.7).

We now prove (1). Let x, d ∈ Rn and let 0 < t1 < t2. Then

f(x+ t1d) = f
(
x+

(
t1
t2

)
t2d
)

= f
[(

1−
(
t1
t2

))
x+

(
t1
t2

)
(x+ t2d)

]
≤

(
1− t1

t2

)
f(x) +

(
t1
t2

)
f(x+ t2d).

Hence
f(x+ t1d)− f(x)

t1
≤ f(x+ t2d)− f(x)

t2
.

�

A very important consequence of Lemma 1.2 is the subdifferential inequality. This inequal-
ity is obtained by plugging t = 1 and d = y − x into the right hand side of (1.7) where y is
any other point in Rn. This substitution gives the inequality

(1.9) f(y) ≥ f(x) + f ′(x; y − x) for all y ∈ Rn and x ∈ dom (f) .

The subdifferential inequality immediately yields the following result.

Theorem 1.12 (Convexity and Optimality). Let f : Rn → R̄ be convex (not necessarilty
differentiable) and let x̄ ∈ dom (f). Then the following three statements are equivalent.

(i) x̄ is a local solution to minx∈Rn f(x).
(ii) f ′(x̄; d) ≥ 0 for all d ∈ Rn.
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(iii) x̄ is a global solution to minx∈Rn f(x).

Proof. Lemma 1.1 gives the implication (i)⇒(ii). To see the implication (ii)⇒(iii) we use
the subdifferential inequality and the fact that f ′(x̄; y − x̄) exists for all y ∈ Rn to obtain

f(y) ≥ f(x̄) + f ′(x̄; y − x̄) ≥ f(x̄) for all y ∈ Rn.

The implication (iii)⇒(i) is obvious. �

If it is further assumed that f is differentiable, then we obtain the following elementary
consequence of Theorem 1.12.

Theorem 1.13. Let f : Rn → R be convex and suppose that x ∈ Rn is a point at which f is
differentiable. Then x is a global minimum of f if and only if ∇f(x) = 0.

As Theorems 1.12 and 1.13 demonstrate, convex functions are well suited to optimization
theory. Thus, it is important that we be able to recognize when a function is convex. For
this reason we give the following result.

Theorem 1.14. Let f : Rn → R̄.

(1) If f is differentiable on Rn, then the following statements are equivalent:
(a) f is convex,
(b) f(y) ≥ f(x) +∇f(x)T (y − x) for all x, y ∈ Rn

(c) (∇f(x)−∇f(y))T (x− y) ≥ 0 for all x, y ∈ Rn.
(2) If f is twice differentiable then f is convex if and only if ∇2f(x) is positive semi-

definite for all x ∈ Rn.

Remark: The condition in Part (c) is called monotonicity.

Proof. (a)⇒ (b) If f is convex, then 1.14 holds. By setting t := 1 and d := y−x we obtain
(b).

(b) ⇒ (c) Let x, y ∈ Rn. From (b) we have

f(y) ≥ f(x) +∇f(x)T (y − x)

and

f(x) ≥ f(y) +∇f(y)T (x− y).

By adding these two inequalities we obtain (c).
(c) ⇒ (b) Let x, y ∈ Rn. By the Mean Value Theorem there exists 0 < λ < 1 such
that

f(y)− f(x) = ∇f(xλ)
T (y − x)

where xλ := λy + (1− λ)x. By hypothesis,

0 ≤ [∇f(xλ)−∇f(x)]T (xλ − x)
= λ[∇f(xλ)−∇f(x)]T (y − x)
= λ[f(y)− f(x)−∇f(x)T (y − x)].

Hence f(y) ≥ f(x) +∇f(x)T (y − x).
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(b) ⇒ (a) Let x, y ∈ Rn and set

α := max
λ∈[0,1]

ϕ(λ) := [f(λy + (1− λ)x)− (λf(y) + (1− λ)f(x))].

We need to show that α ≤ 0. Since [0, 1] is compact and ϕ is continuous, there is a
λ ∈ [0, 1] such that ϕ(λ) = α. If λ equals zero or one, we are done. Hence we may as
well assume that 0 < λ < 1 in which case

0 = ϕ′(λ) = ∇f(xλ)
T (y − x) + f(x)− f(y)

where xλ = x+ λ(y − x), or equivalently

λf(y) = λf(x)−∇f(xλ)
T (x− xλ).

But then
α = f(xλ)− (f(x) + λ(f(y)− f(x)))

= f(xλ) +∇f(xλ)
T (x− xλ)− f(x)

≤ 0

by (b).

2) Suppose f is convex and let x, d ∈ Rn, then by (b) of Part (1),

f(x+ td) ≥ f(x) + t∇f(x)Td

for all t ∈ R. Replacing the left hand side of this inequality with its second-order
Taylor expansion yields the inequality

f(x) + t∇f(x)Td+
t2

2
dT∇2f(x)d+ o(t2) ≥ f(x) + t∇f(x)Td,

or equivalently,
1

2
dt∇2f(x)d+

o(t2)

t2
≥ 0.

Letting t→ 0 yields the inequality

dT∇2f(x)d ≥ 0.

Since d was arbitrary, ∇2f(x) is positive semi-definite.
Conversely, if x, y ∈ Rn, then by the Mean Value Theorem there is a λ ∈ (0, 1)

such that

f(y) = f(x) +∇f(x)T (y − x) +
1

2
(y − x)T∇2f(xλ)(y − x)

where xλ = λy + (1− λ)x. Hence

f(y) ≥ f(x) +∇f(x)T (y − x)

since ∇2f(xλ) is positive semi-definite. Therefore, f is convex by (b) of Part (1).

Convexity is also preserved by certain operations on convex functions. A few of these are
given below.

Theorem 1.15. Let fi : Rn → R̄ be convex functions for i = 1, 2, . . . ,m, and let λi ≥ 0, i =
1, . . . ,m. Then the following functions are also convex.

(1) f(x) := φ(f1(x)), where φ : R→ R is any non-decreasing function on R.
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(2) f(x) :=
∑m

i=1 λifi(x) (Non-negative linear combinations)
(3) f(x) := max{f1(x), f2(x), . . . , fm(x)} (pointwise max)
(4) f(x) := sup {

∑m
i=1 fi(x

i) |x =
∑m

i=1 x
i} (infimal convolution)

(5) f ∗1 (y) := supx∈Rn [yTx− f1(x)] (convex conjugation)

1.4.1. More on the Directional Derivative. It is a powerful fact that convex function are
directionally differentiable at every point of their domain in every direction. But this is just
the beginning of the story. The directional derivative of a convex function possess several
other important and surprising properties. We now develop a few of these.

Definition 1.5. Let h : Rn → R ∪ {+∞}. We say that h is positively homogeneous if

h(λx) = λh(x) for all x ∈ R and λ > 0.

We say that h is subadditive if

h(x+ y) ≤ h(x) + h(y) for all x, y ∈ R.

Finally, we say that h is sublinear if it is both positively homogeneous and subadditive.

There are numerous important examples of sublinear functions (as we shall soon see),
but perhaps the most familiar of these is the norm ‖x‖. Positive homogeneity is obvious
and subadditivity is simply the triangle inequality. In a certain sense the class of sublinear
function is a generalization of norms. It is also important to note that sublinear functions
are always convex functions. Indeed, given x, y ∈ dom (h) and 0 ≤ λ ≤ 1,

h(λx+ (1− λ)y) ≤ h(λx) + h(1− λ)y)

= λh(x) + (1− λ)h(y).

Theorem 1.16. Let f : Rn → R ∪ {+∞} be a convex function. Then at every point
x ∈ dom (f) the directional derivative f ′(x; d) is a sublinear function of the d argument, that
is, the function f ′(x; ·) : Rn → R ∪ {+∞} is sublinear. Thus, in particular, the function
f ′(x; ·) is a convex function.

Remark: Since f is convex and x ∈ dom (f), f ′(x; d) exists for all d ∈ Rn.

Proof. Let x ∈ dom (f), d ∈ Rn, and λ > 0. Then

f ′(x;λd) = lim
t↓0

f(x+ tλd)− f(x)

t

= lim
t↓0

λ
f(x+ tλd)− f(x)

λt

= λ lim
(λt)↓0

f(x+ (tλ)d)− f(x)

(λt)

= λf ′(x; d),

showing that f ′(x; ·) is positively homogeneous.
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Next let d1, d2 ∈ Rn, Then

f ′(x; d1 + d2) = lim
t↓0

f(x+ t(d1 + d2))− f(x)

t

= lim
t↓0

f(1
2
(x+ 2td1) + 1

2
(x+ 2td2))− f(x)

t

≤ lim
t↓0

1
2
f(x+ 2td1) + 1

2
f(x+ 2td2)− f(x)

t

≤ lim
t↓0

1
2
(f(x+ 2td1)− f(x)) + 1

2
(f(x+ 2td2)− f(x))

t

= lim
t↓0

f(x+ 2td1)− f(x)

2t
+ lim

t↓0

f(x+ 2td2)− f(x)

2t

= f ′(x; d1) + f ′(x; d2),

showing that f ′(x; ·) is subadditive and completing the proof. �
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Exercises

(1) Show that the functions

f(x1, x2) = x21 + x32, and g(x1, x2) = x21 + x42

both have a critical point at (x1, x2) = (0, 0) and that their associated hessians are
positive semi-definite. Then show that (0, 0) is a local (global) minimizer for g and
not for f .

(2) Find the local minimizers and maximizers for the following functions if they exist:
(a) f(x) = x2 + cosx
(b) f(x1, x2) = x21 − 4x1 + 2x22 + 7

(c) f(x1, x2) = e−(x
2
1+x

2
2)

(d) f(x1, x2, x3) = (2x1 − x2)2 + (x2 − x3)2 + (x3 − 1)2

(3) Which of the functions in problem 2 above are convex and why?
(4) If f : Rn → R̄ = R ∪ {+∞} is convex, show that the sets levf (α) = {x : f(x) ≤ α}

are convex sets for every α ∈ R. Let h(x) = x3. Show that the sets levh(α) are
convex for all α, but the function h is not itself a convex function.

(5) Show that each of the following functions is convex.
(a) f(x) = e−x

(b) f(x1, x2, . . . , xn) = e−(x1+x2+···+xn)

(c) f(x) = ‖x‖
(6) Consider the linear equation

Ax = b,

where A ∈ Rm×n and b ∈ Rm. When n < m it is often the case that this equation
is over-determined in the sense that no solution x exists. In such cases one often
attempts to locate a ‘best’ solution in a least squares sense. That is one solves the
linear least squares problem

(lls) : minimize
1

2
‖Ax− b‖22

for x. Define f : Rn → R by

f(x) :=
1

2
‖Ax− b‖22 .

(a) Show that f can be written as a quadratic function, i.e. a function of the form

f(x) :=
1

2
xTQx− aTx+ α .

(b) What are ∇f(x) and ∇2f(x)?
(c) Show that ∇2f(x) is positive semi-definite.
(d) ∗ Show that a solution to (lls) must always exist.
(e) ∗ Provide a necessary and sufficient condition on the matrix A (not on the

matrix ATA) under which (lls) has a unique solution and then display this
solution in terms of the data A and b.
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(7) Consider the functions

f(x) =
1

2
xTQx− cTx

and

ft(x) =
1

2
xTQx− cTx+ tφ(x),

where t > 0, Q ∈ Rn×n is positive semi-definite, c ∈ Rn, and φ : Rn → R ∪ {+∞} is
given by

φ(x) =

{
−
∑n

i=1 lnxi , if xi > 0, i = 1, 2, . . . , n,
+∞ , otherwise.

(a) Show that φ is a convex function.
(b) Show that both f and ft are convex functions.
(c) Show that the solution to the problem min ft(x) always exists and is unique.

(8) Classify each of the following functions as either coercive or non-coercive showing
why you classification is correct.
(a) f(x, y, z) = x3 + y3 + z3 − xyz
(b) f(x, y, z) = x4 + y4 + z2 − 3xy − z
(c) f(x, y, z) = x4 + y4 + z2 − 7xyz2

(d) f(x, y) = x4 + y4 − 2xy2

(e) f(x, y, z) = log(x2y2z2)− x− y − z
(f) f(x, y, z) = x2 + y2 + z2 − sin(xyz)

(9) Show that each of the following functions is convex or strictly convex.
(a) f(x, y) = 5x2 + 2xy + y2 − x+ 2y + 3

(b) f(x, y) =

{
(x+ 2y + 1)8 − log((xy)2), if 0 < x, 0 < y,
+∞, otherwise.

(c) f(x, y) = 4e3x−y + 5ex
2+y2

(d) f(x, y) =

{
x+ 2

x
+ 2y + 4

y
, if 0 < x, 0 < y,

+∞, otherwise.
(10) Compute the global minimizers of the functions given in the previous problem if they

exist.

�


