
1. The Language and Notation of Nonlinear Optimization

In finite dimensional optimization we are interested in locating solutions to the problem

P : minimize
x∈X

f0(x)

subject to x ∈ Ω.

where X is the variable space (or decision space), f0 : X → R∪{±∞} is called the objective
function, and the set Ω ⊂ X is called the constraint region. The techniques that one employs
in the study of P are determined by the nature of the space X, the function f0, and the set
Ω. The basic problem categories are as follows:

(1) Variable Type:
(a) continuous variable: X = R

n

(b) discrete variable: X = Z
n

(c) mixed variable: X = R
s × Z

t

(2) Constraint Type:
(a) unconstrained: Ω = X

(b) constrained: Ω 6= X

(3) Problem Type:
(a) Convex Programming:

f0 is a convex function and Ω is a convex set.

Definition 1.1. The set Ω ⊂ R
n is said to be convex if for every

x, y ∈ Ω one has [x, y] ⊂ Ω where [x, y] denotes the line segment

connecting x and y:

[x, y] = {λx + (1 − λ)y : 0 ≤ λ ≤ 1}.

Definition 1.2. The function f : R
n → R ∪ {±∞} is said to be

convex if the set epi(f) = {(x, µ) : f(x) ≤ µ} is a convex set in R
n+1.

In particular,

f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y)

for all 0 ≤ λ ≤ 1 and points x, y for which not both f(x) and f(y)
are infinite.

(b) Linear Programming:
The minimization or maximization of a linear functional subject to a finite
number of linear inequality and/or equality constraints. f0(x) := cT x for
some c ∈ R

n and

Ω :=

{

x

∣
∣
∣
∣
aT

i
x
≤ bi i = 1, . . . , s
= bi i = s + 1, . . . , m

}

.

Linear programming is a special case of convex programming. In this case
the constraint region Ω is called a polyhedral convex set. Polyhedra have
a very special geometric structure.

1



2

(c) Quadratic Programming:
The minimization or maximization of a quadratic objective functions over
a convex polyhedron:

f0(x) =
1

2
xT Qx + bT x + α

Exercise: Show that ∇f0(x) = 1

2
(Q + QT )x + b and ∇2f0(x) = 1

2
(Q + QT ).

Fact: f0 is convex if and only if Q is positive semi-definite.

(d) Mini-Max:

f0(x) = max{fi(x) : i = 1, . . . , s}.

(e) Nonlinear Programming

Ω := {x ∈ X : fi(x) ≤ 0, i = 1, . . . , s, fi(x) = 0, i = j + 1, . . .m}

(i) Differentiable: fi is smooth i = 0, . . . , m
(ii) Nonsmooth: at least one fi is not smooth
(iii) Semi-Infinite: m = +∞.

(f) Box Constraints:

Ω := {x ∈ R
n : li ≤ xi ≤ ui, i = 1, . . . , n}

li ∈ R ∪ {−∞}, ui ∈ R ∪ {+∞}, li ≤ ui

(g) Parameter Identification:
(i) Data Fitting:

Given data points {(xi, yi)}
m

i=1 ⊂ R
t×R

s, find the function f(x) := m(p, x)
from a parametrized class of functions

M := {m(p, ·) : p ∈ Y ⊂ R
n}

that “best” fits the data.
(A) Polynomial least-squares: t = 1 = s. m(p, x) = p0 + p1x + · · ·+ pnxn.

M = Pn = set of polynomials of degree less than or equal to n.
Minimize the sum of squares

f0(P ) =
n∑

i=1

(m(p, xi) − yi)
2

over all choices of p ∈ R
n+1.

Approach:






p0 + p1x1 + p2x
2
1 + · · ·+ pnx

n

1

p0 + p1x2 + p2x
2
2 + · · ·+ pnx

n

2

p0 + p1xm + p2x
2
m

+ · · ·+ pnx
n

m







= y1

= y2

= ym



3

Vandermonde
Matrix













1 x1 x2
1 · · · xn

1

1 x2 x2
2 · · · xn

2

...
1 xm x2

m
· · · xn

m







︸ ︷︷ ︸







p0

p1

...
pn







=







y1

y2

...
ym







A p = y

f0(p) = ‖Ap − y‖2

2

where ‖z‖2 =

(
m∑

i=1

z2

2

)1

2

Exercise: Show that ∇f0(p) = AT (Ap − y) and ∇2f0(p) = AT A.

The focus of this course is the development of numerical methods for solving the general
nonlinear programming problem under the assumption that all of the underlying functions
are smooth. Nonetheless, on occasion we will also need to consider nondifferentiable func-
tions. Our first objective is to come to some agreement about what we mean by a “solution”
to P.

Definition 1.3.

i. A point x ∈ Ω is said to be a global solution to the problem

min{f0(x) : x ∈ Ω}

if f0(x) ≤ f0(x) for all x ∈ Ω. If f0(x) < f0(x) for all x ∈ Ω, then x is said to be a

strict global solution.

ii A point x ∈ Ω is said to be a local solution to the problem min{f0(x) : x ∈ Ω} if

there is an ǫ > 0 such that

f0(x) ≤ f0(x) for all x ∈ Ω satisfying

‖x − x‖ ≤ ǫ.

If f0(x) < f0(x) for all x ∈ Ω with ‖x − x‖ ≤ ǫ, then x is called a strict local

solution. The solution x is said to be isolated if x is the only local solution in the set

{x ∈ Ω : ‖x − x‖ ≤ ǫ}.

Examples:

(1) Global: (a) f0(x) = x, Ω = [0, 1]
(b) f0(x) = x2, Ω = R

}
strict

(2) local: (a) f0(x) = x(x + 1)(x − 1) (no global)
(b) f0(x) = (x − 1)2(x + 1)2 (not strictly global)

(3) strict global but not isolated
f0(x) = x2, Ω := {x ∈ [−1, 1] : f1(x) = 0}

f1(x) =

{
x2 sin 1

x
, x 6= 0

0, x = 0



4

The above definitions establish what is meant by local and global solutions to P. However,
since the definition requires us to test f0 at potentially infinitely many points in order to
verify optimality, the definition in itself is not a constructive test of optimality. From the
algorithmic point of view we require a constructive test for optimality that can be used
to indicate if a point is either optimal or nearly optimal. Such a test is referred to as an
“optimality condition”. Any point that satisfies an optimality condition is said to be a
critical point, or stationary point, for P.

There are many types of optimality conditions. We will concentrate on those involving
differential information. Recall the following result from the calculus.

Theorem 1.1. If f0 is differentiable at x and x is a local solution to the problem min{f0(x) :
x ∈ R

n}, then ∇f(x) = 0.

We will recall the proof of this result shortly. But for the moment observe that the
condition

∇f0(x) = 0

is an optimality condition for the unconstrained problem min{f0(x) : x ∈ R
n}. This con-

dition is clearly not a sufficient condition for optimality (consider f0(x) = x3), but it is
necessary. For this reason, we refer to it as a first-order necessary condition for optimality.

Note that the condition ∇f0(x) = 0 is testable. Simply evaluate ∇f0 at x. Moreover, it
provides a ready means for testing “near” optimality, by considering the magnitude of the
vector ∇f0(x). Thus, for example, a reasonable stopping criteria for an algorithm would be

‖∇f(x)‖ ≤ ǫ.

Hopefully, this would yield a finitely terminating procedure.
In what follows optimality conditions play a key role in both the design of our algorithms

and our tests for termination. In general, algorithms are designed to locate points that
satisfy some testable, or constructive, optimality condition and then terminate when the
procedure “nearly” satisfies the condition. For this reason, our first-order of business is to
derive workable optimality conditions. Since these conditions will be bult on differential
information, we begin by reviewing some facts from multi-variable calculus.


