
1. Search Directions

In this chapter we study the choice of search directions used in our basic updating scheme

xk+1 = xk + tkd
k .

for solving
P min

x∈Rn
f(x).

All of the search directions considered can be classified as Newton-like since they are all of
the form

dk = −Hk∇f(xk),

where Hk is a symmetric n× n matrix. If Hk = µkI for all k, the resulting search directions
a a scaled steepest descent direction with scale factors µk. More generally, we choose Hk

to approximate ∇2f(xk)−1 in order to approximate Newton’s method for optimization. The
Newton is important since it possesses rapid local convergence properties, and can be shown
to be scale independent. We precede our discussion of search directions by making precise a
useful notion of speed or rate of convergence.

1.1. Rate of Convergence. We focus on notions of quotient rates convergence, or Q-
convergence rates. Let {xν} ⊂ Rn and x̄ ∈ Rn be such that x̄ν → x̄. We say that x̄ν → x̄ at
a linear rate if

lim sup
ν→∞

‖xν+1 − x̄‖
‖xν − x̄‖

< 1 .

The convergence is said to be superlinear if this limsup is 0. The convergence is said to be
quadratic if

lim sup
ν→∞

‖xν+1 − x̄‖
‖xν − x̄‖2 < ∞ .

For example, given γ ∈ (0, 1) the sequence {γν} converges linearly to zero, but not su-

perlinearly. The sequence {γν2} converges superlinearly to 0, but not quadratically. Finally,
the sequence {γ2ν} converges quadratically to zero. Superlinear convergence is much faster
than linear convergences, but quadratic convergence is much, much faster than superlinear
convergence.

1.2. Newton’s Method for Solving Equations. Newton’s method is an iterative scheme
designed to solve nonlinear equations of the form

(1.1) g(x) = 0,

where g : Rn → Rn is assumed to be continuously differentiable. Many problems of im-
portance can be posed in this way. In the context of the optimization problem P , we wish
to locate critical points, that is, points at which ∇f(x) = 0. We begin our discussion of
Newton’s method in the usual context of equation solvng.

Assume that the function g in (1.1) is continuously differentiable and that we have an
approximate solution x0 ∈ Rn. We now wish to improve on this approximation. If x is a
solution to (1.1), then

0 = g(x) = g(x0) + g′(x0)(x− x0) + o‖x− x0‖.
1
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Thus, if x0 is “close” to x, it is reasonable to suppose that the solution to the linearized
system

(1.2) 0 = g(x0) + g′(x0)(x− x0)

is even closer. This is Newton’s method for finding the roots of the equation g(x) = 0. It
has one obvious pitfall. Equation (1.2) may not be consistent. That is, there may not exist
a solution to (1.2).

For the sake of the present argument, we assume that (3) holds, i.e. g′(x0)−1 exists. Under
this assumption (1.2) defines the iteration scheme,

(1.3) xk+1 := xk − [g′(xk)]−1g(xk),

called the Newton iteration. The associated direction

(1.4) dk := −[g′(xk)]−1g(xk).

is called the Newton direction. We analyze the convergence behavior of this scheme under
the additional assumption that only an approximation to g′(xk)−1 is available. We denote
this approximation by Jk. The resulting iteration scheme is

(1.5) xk+1 := xk − Jkg(xk).

Methods of this type are called Newton-Like methods.

Theorem 1.1. Let g : Rn → Rn be differentiable, x0 ∈ Rn, and J0 ∈ Rn×n. Suppose that
there exists x̄, x0 ∈ Rn, and ε > 0 with ‖x0 − x̄‖ < ε such that

(1) g(x) = 0,
(2) g′(x)−1 exists for x ∈ B(x; ε) := {x ∈ Rn : ‖x− x‖ < ε} with

sup{‖g′(x)−1‖ : x ∈ B(x; ε)] ≤ M1

(3) g′ is Lipschitz continuous on c`B(x; ε) with Lipschitz constant L, and
(4) θ0 := LM1

2
‖x0 − x‖+ M0K < 1 where K ≥ ‖(g′(x0)−1 − J0)y

0‖, y0 := g(x0)/‖g(x0)‖,
and M0 = max{‖g′(x)‖ : x ∈ B(x; ε)}.

Further suppose that iteration (1.5) is initiated at x0 where the Jk’s are chosen to satisfy one
of the following conditions;

(i) ‖(g′(xk)−1 − Jk)y
k‖ ≤ K,

(ii) ‖(g′(xk)−1 − Jk)y
k‖ ≤ θk

1K for some θ1 ∈ (0, 1),
(iii) ‖(g′(xk)−1 − Jk)y

k‖ ≤ min{M3‖xk − xk−1‖, K}, for some M2 > 0, or
(iv) ‖(g′(xk)−1 − Jk)y

k‖ ≤ min{M2‖g(xk)‖, K}, for some M3 > 0,

where for each k = 1, 2, . . . , yk := g(xk)/
∥∥g(xk)

∥∥.
These hypotheses on the accuracy of the approximations Jk yield the following conclusions

about the rate of convergence of the iterates xk.

(a) If (i) holds, then xk → x linearly.
(b) If (ii) holds, then xk → x superlinearly.
(c) If (iii) holds, then xk → x two step quadratically.
(d) If (iv) holds, then xk → x quadratically.
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Proof. We begin by inductively establishing the basic inequalities

(1.6) ‖xk+1 − x‖ ≤ LM1

2
‖xk − x‖2 + ‖(g′(xk)−1 − Jk)g(xk)‖,

and

(1.7) ‖xk+1 − x‖ ≤ θ0‖xk − x‖

as well as the inclusion

(1.8) xk+1 ∈ B(x̄; ε)

for k = 0, 1, 2, . . . . For k = 0 we have

x1 − x = x0 − x− g′(x0)−1g(x0) +
[
g′(x0)−1 − J0

]
g(x0)

= g′(x0)−1
[
g(x)− (g(x0) + g′(x0)(x− x0))

]
+

[
g′(x0)−1 − J0

]
g(x0),

since g′(x0)−1 exists by the hypotheses. Consequently, the hypothese (1)–(4) plus the qua-
dratic bound lemma imply that∥∥xk+1 − x

∥∥ ≤
∥∥g′(x0)−1

∥∥∥∥g(x)−
(
g(x0) + g′(x0)(x− x0)

)∥∥
+

∥∥(
g′(x0)−1 − J0

)
g(x0)

∥∥
≤ M1L

2

∥∥x0 − x
∥∥2

+ K
∥∥g(x0)− g(x)

∥∥
≤ M1L

2

∥∥x0 − x
∥∥2

+ M0K
∥∥x0 − x

∥∥
≤ θ0

∥∥x0 − x
∥∥ < ε,

whereby (1.6) – (1.8) are established for k = 0.
Next suppose that (1.6) – (1.8) hold for k = 0, 1, . . . , s − 1. We show that (1.6) – (1.8)

hold at k = s. Since xs ∈ B(x, ε), hypotheses (2)–(4) hold at xs, one can proceed exactly as
in the case k = 0 to obtain (1.6). Now if any one of (i)–(iv) holds, then (i) holds. Thus, by
(1.6), we find that

‖xs+1 − x‖ ≤ M1L
2
‖xs − x‖2 + ‖(g′(xs)−1 − Js)g(xs)‖

≤
[

M1L
2

θs
0 ‖x0 − x‖+ M0K

]
‖xs − x‖

≤
[

M1L
2
‖x0 − x‖+ M0K

]
‖xs − x‖

= θ0 ‖xs − x‖ .

Hence ‖xs+1 − x‖ ≤ θ0 ‖xs − x‖ ≤ θ0ε < ε and so xs+1 ∈ B(x, ε). We now proceed to
establish (a)–(d).
(a) This clearly holds since the induction above established that∥∥xk+1 − x

∥∥ ≤ θ0

∥∥xk − x
∥∥ .
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(b) From (1.6), we have∥∥xk+1 − x
∥∥ ≤ LM1

2

∥∥xk − x
∥∥2

+
∥∥(g′(xk)−1 − Jk)g(xk)

∥∥
≤ LM1

2

∥∥xk − x
∥∥2

+ θk
1K

∥∥g(xk)
∥∥

≤
[
LM1

2
θk
0

∥∥x0 − x
∥∥ + θk

1M0K

] ∥∥xk − x̄
∥∥

Hence xk → x superlinearly.
(c) From (1.6) and the fact that xk → x̄, we eventually have∥∥xk+1 − x

∥∥ ≤ LM1

2

∥∥xk − x
∥∥2

+
∥∥(g′(xk)−1 − Jk)g(xk)

∥∥
≤ LM1

2

∥∥xk − x
∥∥2

+ M2

∥∥xk − xk−1
∥∥∥∥g(xk)

∥∥
≤

[
LM1

2

∥∥xk − x
∥∥ + M0M2

[∥∥xk−1 − x̄
∥∥ +

∥∥xk − x̄
∥∥]] ∥∥xk − x̄

∥∥
≤

[
LM1

2
θ0

∥∥xk−1 − x
∥∥ + M0M2(1 + θ0)

∥∥xk−1 − x
∥∥]

×θ0

∥∥xk−1 − x
∥∥

=

[
LM1

2
θ0 + M0M2(1 + θ0)

]
θ0

∥∥xk−1 − x
∥∥2

.

Hence xk → x two step quadratically.
(d) Again by (1.6) and the fact that xk → x̄, we eventually have∥∥xk+1 − x

∥∥ ≤ LM1

2

∥∥xk − x
∥∥2

+
∥∥(g′(xk)−1 − Jk)g(xk)

∥∥
≤ LM1

2

∥∥xk − x
∥∥2

+ M2

∥∥g(xk)
∥∥2

≤
[
LM1

2
+ M2M

2
0

] ∥∥xk − x
∥∥2

.

�

Note that the conditions required for the approximations to the Jacobian matrices g′(xk)−1

given in (i)–(ii) do not imply that Jk → g′(x̄)−1. The stronger conditions

(i)′
∥∥g′(xk)−1 − Jk

∥∥ ≤ ‖g′(x0)−1 − J0‖,
(ii)′

∥∥g′(xk+1)−1 − Jk+1

∥∥ ≤ θ1

∥∥g′(xk)−1 − Jk

∥∥ for some θ1 ∈ (0, 1),

(iii)′
∥∥g′(xk)−1 − Jk

∥∥ ≤ min{M2

∥∥xk+1 − xk
∥∥ , ‖g′(x0)−1 − J0‖} for some M2 > 0, or

(iv)′ g′(xk)−1 = Jk,
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which imply the conditions (i) through (iv) of Theorem 1.1 respectively, all imply the con-
vergence of the inverse Jacobian approximates to g′(x̄)−1. The conditions (i)′–(iv)′ are less
desirable since they require greater expense and care in the construction of the inverse Ja-
cobian approximates.

1.3. Newton’s Method for Minimization. We now translate the results of previous sec-
tion to the optimization setting. The underlying problem is

P min
x∈Rn

f(x) .

The Newton-like iterations take the form

xk+1 = xk −Hk∇f(xk),

where Hk is an approximation to the inverse of the Hessian matrix ∇2f(xk).

Theorem 1.2. Let f : Rn → R be twice continuously differentiable, x0 ∈ Rn, and H0 ∈
Rn×n. Suppose that

(1) there exists x ∈ Rn and ε > ‖x0 − x̄‖ such that f(x) ≤ f(x) whenever ‖x− x̄‖ ≤ ε,
(2) there is a δ > 0 such that δ ‖z‖2

2 ≤ zT∇2f(x)z for all x ∈ B(x, ε),
(3) ∇2f is Lipschitz continuous on clB(x; ε) with Lipschitz constant L, and
(4) θ0 := L

2δ
‖x0 − x‖ + M0K < 1 where M0 > 0 satisfies zT∇2f(x)z ≤ M0 ‖z‖2

2 for all
x ∈ B(x, ε) and K ≥ ‖(∇2f(x0)−1 −H0)y

0‖ with y0 = ∇f(x0)/ ‖∇f(x0)‖.
Further, suppose that the iteration

(1.9) xk+1 := xk −Hk∇f(xk)

is initiated at x0 where the Hk’s are chosen to satisfy one of the following conditions:

(i)
∥∥(∇2f(xk)−1 −Hk)y

k
∥∥ ≤ K,

(ii)
∥∥(∇2f(xk)−1 −Hk)y

k
∥∥ ≤ θk

1K for some θ1 ∈ (0, 1),

(iii)
∥∥(∇2f(xk)−1 −Hk)y

k
∥∥ ≤ min{M2

∥∥xk − xk−1
∥∥ , K}, for some M2 > 0, or

(iv)
∥∥(∇2f(xk)−1 −Hk)y

k
∥∥ ≤ min{M3

∥∥∇f(xk)
∥∥ , K}, for some M3 > 0,

where for each k = 1, 2, . . . yk := ∇f(xk)/
∥∥∇f(xk)

∥∥.
These hypotheses on the accuracy of the approximations Hk yield the following conclusions

about the rate of convergence of the iterates xk.

(a) If (i) holds, then xk → x linearly.
(b) If (ii) holds, then xk → x superlinearly.
(c) If (iii) holds, then xk → x two step quadratically.
(d) If (iv) holds, then xk → x quadradically.

To more fully understand the convergence behavior described in this theorem, let us
examine the nature of the controling parameters L, M0, and M1. Since L is a Lipschitz
constant for∇2f it loosely corresponds to a bound on the third–order behavior of f . Thus the
assumptions for convergence make implicit demands on the third derivative. The constant δ
is a local lower bound on the eigenvalues of∇2f near x̄. That is, f behaves locally as if it were
a strongly convex function (see exercises) with modulus δ. Finally, M0 can be interpreted as
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a local Lipschitz constant for ∇f and only plays a role when ∇2f is approximated inexactly
by Hk’s.

We now illustrate the performance differences between the method of steepest descent and
Newton’s method on a simple one dimensional problem. Let f(x) = x2 + ex. Clearly, f is a
strongly convex function with

f(x) = x2 + ex

f ′(x) = 2x + ex

f ′′(x) = 2 + ex > 2

f ′′′(x) = ex.

If we apply the steepest descent algorithm with backtracking (γ = 1/2, c = 0.01) initiated
at x0 = 1, we get the following table

k xk f(xk) f ′(xk) s
0 1 .37182818 4.7182818 0
1 0 1 1 0
2 −.5 .8565307 −0.3934693 1
3 −.25 .8413008 0.2788008 2
4 −.375 .8279143 −.0627107 3
5 −.34075 .8273473 .0297367 5
6 −.356375 .8272131 −.01254 6
7 −.3485625 .8271976 .0085768 7
8 −.3524688 .8271848 −.001987 8
9 −.3514922 .8271841 .0006528 10
10 −.3517364 .827184 −.0000072 12

If we apply Newton’s method from the same starting point and take a unit step at each
iteration, we obtain a dramatically different table.

x f ′(x)
1 4.7182818
0 1

−1/3 .0498646
−.3516893 .00012
−.3517337 .00000000064

In addition, one more iteration gives |f ′(x5)| ≤ 10−20. This is a stunning improvement in
performance and shows why one always uses Newton’s method (or an approximation to it)
whenever possible.

Our next objective is to develop numerically viable methods for approximating Jacobians
and Hessians in Newton-like methods.

1.4. Matrix Secant Methods. Let us return to the problem of finding x ∈ Rn such that
g(x) = 0 where g : Rn → Rn is continuously differentiable. In this section we consider
Newton-Like methods of a special type. Recall that in a Newton-Like method the iteration
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scheme takes the form

(1.10) xk+1 := xk − Jkg(xk),

where Jk is meant to approximate the inverse of g′(xk). In the one dimensional case, a
method proposed by the Babylonians 3700 years ago is of particular significance. Today we
call it the secant method:

(1.11) Jk =
xk − xk−1

g(xk)− g(xk−1)
.

With this approximation one has

g′(xk)−1 − Jk =
g(xk−1)− [g(xk) + g′(xk)(xk−1 − xk)]

g′(xk)[g(xk−1)− g(xk)]
.

Near a point x∗ at which g′(x∗) 6= 0 one can use the MVT to show there exists an α > 0
such that

α ‖x− y‖ ≤ ‖g(x)− g(y)‖ .

Consequently, by the Quadratic Bound Lemma,∥∥g′(xk)−1 − Jk

∥∥ ≤ L
2

∥∥xk−1 − xk
∥∥2

α ‖g′(xk)‖ ‖xk−1 − xk‖
≤ K

∥∥xk−1 − xk
∥∥

for some constant K > 0 whenever xk and xk−1 are sufficiently close to x∗. Therefore, by
our convergence Theorem for Newton Like methods, the secant method is locally two step
quadratically convergent to a non–singular solution of the equation g(x) = 0. An additional
advantage of this approach is that no extra function evaluations are required to obtain the
approximation Jk.

1.4.1. Matrix Secant Methods for Equations. Unfortunately, the secant approximation (1.11)
is meaningless if the dimension n is greater than 1 since division by vectors is undefined.
But this can be rectified by multiplying (1.11) on the right by (g(xk−1)− g(xk)) and writing

(1.12) Jk(g(xk)− g(xk−1)) = xk − xk−1.

Equation (1.12) is called the Quasi-Newton equation (QNE), or matrix secant equation
(MSE), at xk. Here the matrix Jk is unknown, but is required to satisfy the n linear equa-
tions of the MSE. These equations determine an n dimensional affine manifold in Rn×n.
Since Jk contains n2 unknowns, the n linear equations in (1.12) are not sufficient to uniquely
determine Jk. To nail down a specific Jk further conditions on the update Jk must be given.
What conditions should these be?

To develop sensible conditions on Jk, let us consider an overall iteration scheme based on
(1.10). For convenience, let us denote J−1

k by Bk (i.e. Bk = J−1
k ). Using the Bk’s, the MSE

(1.12) becomes

(1.13) Bk(x
k − xk−1) = g(xk)− g(xk−1).

At every iteration we have (xk, Bk) and compute xk+1 by (1.10). Then Bk+1 is constructed
to satisfy (1.13). If Bk is close to g′(xk) and xk+1 is close to xk, then Bk+1 should be chosen
not only to satisfy (1.13) but also to be as “close” to Bk as possible. With this in mind, we
must now decide what we mean by “close”. From a computational perspective, we prefer



8

“close” to mean easy to compute. That is, Bk+1 should be algebraically close to Bk in the
sense that Bk+1 is only a rank 1 modification of Bk. Since we are assuming that Bk+1 is a
rank 1 modification to Bk, there are vectors u, v ∈ Rn such that

(1.14) Bk+1 = Bk + uvT .

We now use the matrix secant equation (1.13) to derive conditions on the choice of u and v.
In this setting, the MSE becomes

Bk+1s
k = yk,

where

sk := xk+1 − xk and yk := g(xk+1)− g(xk) .

Multiplying (1.14) by sk gives

yk = Bk+1s
k = Bks

k + uvTsk .

Hence, if vTsk 6= 0, we obtain

u =
yk −Bks

k

vTsk

and

(1.15) Bk+1 = Bk +

(
yk −Bks

k
)
vT

vTsk
.

Equation (1.15) determines a whole class of rank one updates that satisfy the MSE where
one is allowed to choose v ∈ Rn as long as vTsk 6= 0. If sk 6= 0, then an obvious choice for v
is sk yielding the update

(1.16) Bk+1 = Bk =

(
yk −Bks

k
)
skT

skTsk
.

This is known as Broyden’s update. It turns out that the Broyden update is also analytically
close.

Theorem 1.3. Let A ∈ Rn×n, s, y ∈ Rn, s 6= 0. Then for any matrix norms ‖·‖ and ‖|·|‖
such that

‖AB‖ ≤ ‖A‖ ‖|B|‖
and ∥∥∥∥∣∣∣∣vvT

vTv

∣∣∣∣∥∥∥∥ ≤ 1,

the solution to

(1.17) min{‖B − A‖ : Bs = y}
is

(1.18) A+ = A +
(y − As)sT

sTs
.

In particular, (1.18) solves (1.17) when ‖·‖ is the `2 matrix norm, and (1.18) solves (1.17)
uniquely when ‖·‖ is the Frobenius norm.
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Proof. Let B ∈ {B ∈ Rn×n : Bs = y}, then

‖A+ − A‖ =

∥∥∥∥(y − As)sT

sTs

∥∥∥∥ =

∥∥∥∥(B − A)
ssT

sTs

∥∥∥∥
≤ ‖B − A‖

∥∥∥∥∣∣∣∣ssT

sTs

∣∣∣∣∥∥∥∥ ≤ ‖B − A‖ .

Note that if ‖|·|‖ = ‖·‖2, then∥∥∥∥vvT

vTv

∥∥∥∥
2

= sup

{∥∥∥∥vvT

vTv
x

∥∥∥∥
2

∣∣∣∣ ‖x‖2 = 1

}
= sup

{√
(vTx)2

‖v‖2

∣∣∣∣∣ ‖x‖2 = 1

}
= 1,

so that the conclusion of the result is not vacuous. For uniqueness observe that the Frobenius
norm is strictly convex and ‖A ·B‖F ≤ ‖A‖F ‖B‖2. �

Therefore, the Broyden update (1.16) is both algebraically and analytically close to Bk.
These properties indicate that it should perform well in practice and indeed it does.

Algorithm: Broyden’s Method

Initialization: x0 ∈ Rn, B0 ∈ Rn×n

Having (xk, Bk) compute (xk+1, Bx+1) as follows:

Solve Bks
k = −g(xk) for sk and set

xk+1 : = xk + sk

yk : = g(xk+1)− g(xk)

Bk+1 : = Bk +
(yk −Bks

k)skT

skTsk
.

We would prefer to write the Broyden update in terms of the matrices Jk = B−1
k so that

we can write the step computation as sk = −Jkg(xk) avoiding the need to solve an equation.
To obtain the formula for Jk we use the the following important lemma for matrix inversion.

Lemma 1.1. (Sherman-Morrison-Woodbury) Suppose A ∈ Rn×n, U ∈ Rn×k, V ∈ Rn×k are
such that both A−1 and (I + V TA−1U)−1 exist, then

(A + UV T )−1 = A−1 − A−1U(I + V TA−1U)−1V TA−1

The above lemma verifies that if B−1
k = Jk exists and skT

Jky
k = skT

B−1
k yk 6= 0, then

(1.19)

Jk+1 =

[
Bk +

(yk −Bks
k)skT

skTsk

]−1

= B−1
k +

(sk −B−1
k yk)skT

B−1
k

skTB−1
k y

= Jk +
(sk − Jky

k)skT
Jk

skTJky
.
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In this case, it is possible to directly update the inverses Jk. It should be cautioned though
that this process can become numerically unstable if |skT

Jky
k| is small. Therefore, in practise,

the value |skT
Jky

k| must be monitored to avoid numerical instability.
Although we do not pause to establish the convergence rates here, we do give the following

result due to Dennis and Moré (1974).

Theorem 1.4. Let g : Rn → Rn be continuously differentiable in an open convex set D ⊂
Rn. Assume that there exists x∗ ∈ Rn and r, β > 0 such that x∗ + rB ⊂ D, g(x∗) = 0,
g′(x∗)−1 exists with ‖g′(x∗)−1‖ ≤ β, and g′ is Lipschitz continuous on x∗+ rB with Lipschitz
constant γ > 0. Then there exist positive constants ε and δ such that if ‖x0 − x∗‖2 ≤ ε and
‖B0 − g′(x0)‖ ≤ δ, then the sequence {xk} generated by the iteration[

xk+1 := xk + sk where sk solves 0 = g(xk) + Bks

Bk+1 := Bk +
(yk−Bksk)sT

k

sT
k sk where yk = g(xk+1)− g(xk)

is well-defined with xk → x∗ superlinearly.

1.4.2. Matrix Secant Methods for Minimization. We now extend these matrix secant ideas
to optimization, specifically minimization. The underlying problem we consider is

P : minimize
x∈Rn

f(x) ,

where f : Rn → R is assumed to be twice continuously differentiable. In this setting, we
wish to solve the equation ∇f(x) = 0 and the MSE (1.13) becomes

(1.20) Hk+1y
k = sk ,

where sk := xk+1 − xk and

yk := ∇f(xk+1)−∇f(xk).

Here the matrix Hk is intended to be an approximation to the inverse of the hessian matrix
∇2f(xk). Writing Mk = H−1

k , a straightforward application of Broyden’s method gives the
update

Mk+1 = Mk +
(yk −Mks

k)skT

skTsk
.

However, this is unsatisfactory for two reasons:

(1) Since Mk approximates ∇2f(xk) it must be symmetric.
(2) Since we are minimizing, then Mk must be positive definite to insure that sk =

−M−1
k ∇f(xk) is a direction of descent for f at xk.

To address problem 1 above, one could return to equation (1.15) an find an update that
preserves symmetry. Such an update is uniquely obtained by setting

v = (yk −Mks
k).

This is called the symmetric rank 1 update or SR1. Although this update can on occasion
exhibit problems with numerical stability, it has recently received a great deal of renewed
interest. The stability problems occur whenever

(1.21) vTsk = (yk −Mks
k)T ss



11

has small magnitude. The inverse SR1 update is given by

Hk+1 = Hk +
(sk −Hky

k)(sk −Hky
k)T

(sk −Hkyk)T yk

which exists whenever (sk −Hky
k)T yk 6= 0.

We now approach the question of how to update Mk in a way that addresses both the
issue of symmetry and positive definiteness while still using the Broyden updating ideas.
Given a symmetric positive definite matrix M and two vectors s and y, our goal is to find a
symmetric positive definite matrix M̄ such that M̄s = y. Since M is symmertic and positive
definite, there is a non-singular n×n matrix L such that M = LLT . Indeed, L can be chosen
to be the lower triangular Cholesky factor of M . If M is also symmetric and positive definite
then there is a matrix J ∈ Rn×n such that M = JJT . The MSE (??) implies that if

(1.22) JTs = v

then

(1.23) Jv = y.

Let us apply the Broyden update technique to (1.23), J , and L. That is, suppose that

(1.24) J = L +
(y − Lv)vT

vTv
.

Then by (1.22)

(1.25) v = JTs = LTs +
v(y − Lv)Ts

vTv
.

This expression implies that v must have the form

v = αLTs

for some α ∈ R. Substituting this back into (1.25) we get

αLTs = LTs +
αLTs(y − αLLTs)Ts

α2sTLLTs
.

Hence

(1.26) α2 =

[
sTy

sTMs

]
.

Consequently, such a matrix J satisfying (1.25) exists only if sTy > 0 in which case

J = L +
(y − αMs)sTL

αsTMs
,

with

α =

[
sTy

sTMs

]1/2

,

yielding

(1.27) M = M +
yyT

yTs
− MssTM

sTMs
.
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Moreover, the Cholesky factorization for M can be obtained directly from the matrices J .
Specifically, if the QR factorization of JT is JT = QR, we can set L = R yielding

M = JJT = RTQTQR = LL
T
.

The formula for updating the inverses is again given by applying the Sherman-Morrison-
Woodbury formula to obtain

(1.28) H = H +
(s + Hy)T yssT

(sT y)2
− HysT + syT H

sT y
,

where H = M−1. The update (1.27) is called the BFGS update and (1.28) the inverse BFGS
update. The letter BFGS stand for Broyden, Flethcher, Goldfarb, and Shanno.

We have shown that beginning with a symmetric positive definite matrix Mk we can
obtain a symmetric and positive definite update Mk+1 that satisfies the MSE Mk+1sk = yk

by applying the formula (1.27) whenever skT
yk > 0. We must now address the question of

how to choose xk+1 so that skT
yk > 0. Recall that

y = yk = ∇f(xk+1)−∇f(xk)

and
sk = xk+1 − xk = tkd

k ,

where
dk = −tkHk∇f(xk)

is the matrix secant search direction and tk is the stepsize. Hence

ykT
sk = ∇f(xk+1)Tsk −∇f(xk)Tsk

= tk(∇f(xk + tkdk)
Tdk −∇f(xk)Tdk) ,

where dk := −Hk∇f(xk). Since Hk is positive definite the direction dk is a descent direction
for f at xk and so tk > 0. Therefore, to insure that skT

yk > 0 we need only show that tk > 0
can be choosen so that

(1.29) ∇f(xk + tkd
k)Tdk ≥ β∇f(xk)Tdk

for some β ∈ (0, 1) since in this case

∇f(xk + tkdk)
Tdk −∇f(xk)Tdk ≥ (β − 1)∇f(xk)Tdk > 0.

But this precisely the second condition in the weak Wolfe conditions with β = c2. Hence
a successful BFGS update can always be obtained. The BFGS update and is currently
considered the best matrix secant update for minimization.

BFGS Updating

σ :=

√
skT yk

ŝk := sk/σ

ŷk := yk/σ

Hk+1 := Hk + (ŝk −Hkŷ
k)(ŝk)T + ŝk(ŝk −Hkŷ

k)T − (ŝk −Hkŷ
k)T ŷkŝk(ŝk)T


