
1. Numerical Linear Algebra

1.1. The LU Factorization. Recall from linear algebra that Gaussian elimination is a
method for solving linear systems of the form

Ax = b,

where A ∈ Rm×n and bRan(A). In this method one first forms the augmented system

[A |b]

and then uses the three elementary row operations to put this system into row echelon form
(or upper triangular form). A solution x is then obtained by back substitution, or back
solving, starting with the component xn. We now show how the process of bringing a matrix
to upper triangular form can be performed by left matrix multiplication.

The key step in Gaussian elimination is to transform a vector of the form a
α
b

 ,

where a ∈ Rk, 0 6= α ∈ R, and b ∈ Rn−k−1, into one of the form a
α
0

 .

This can be accomplished by left matrix multiplication as follows: Ik×k 0 0
0 1 0
0 −α−1b I(n−k−1)×(n−k−1)

 a
α
b

 =

 a
α
0

 .

The matrix Ik×k 0 0
0 1 0
0 −α−1b I(n−k−1)×(n−k−1)

is called a Gaussian elimination matrix. This matrix is invertible with inverse Ik×k 0 0

0 1 0
0 α−1b I(n−k−1)×(n−k−1)

 .

We now use this basic idea to show how a matrix can be put into upper triangular form.
Suppose

A =

[
a1 vT

1

u1 Ã1

]
∈ Cn×m,

with 0 6= a1 ∈ C, u1 ∈ Cm−1, v1 ∈ Cn−1, and Ã1 ∈ C(m−1)×(n−1). Then using the first row to
zero out u1 amounts to left multiplication of the matrix A by the matrix[

1 0
−u1

a1
I

]
1

2

to get

(*)

[
1 0
−u1

a1
I

] [
a1 vT

1

u1 Ã1

]
∈ Cn×m =

[
a1 vT

1

0 A1

]
,

where
A1 = Ã1 − u1v

T
1 /a1 .

Define

L1 =

[
1 0
u1

a1
I

]
∈ Cm×m and U1 =

[
a1 vT

1

0 A1

]
∈ Cm×n .

and observe that

L−1
1 =

[
1 0
−u1

a1
I

]
.

Hence (*) becomes
L−1

1 A = U1, or equivalently, A = L1U1 .

Note that L1 is unit lower triangular (ones on the mail diagonal) and U1 is block upper-
triangular with one 1× 1 block and one (m− 1)× (n− 1) block on the block diagonal. The
multipliers are usually denoted

u/a = [µ21, µ31, . . . , µm1]
T .

If the (1, 1) entry of A1 is not 0, we can apply the same procedure to A1: if

A1 =

[
a2 vT

2

u2 Ã2

]
∈ C(m−1)×(n−1)

with a2 6= 0, letting

L̃2 =

[
I 0
u2

a2
I

]
∈ C(m−1)×(m−1),

and forming

L̃−1
2 A1 =

[
1 0
−u1

a2
I

] [
a2 vT

2

u2 Ã1

]
=

[
a2 vT

2

0 A2

]
≡ Ũ2 ∈ C(m−1)×(n−1),

where A2 ∈ C(m−2)×(n−2). This process amounts to using the second row to zero out elements
of the second column below the diagonal. Setting

L2 =

[
1 0

0 L̃2

]
and U2 =

[
a vT

0 Ũ2

]
,

we have

L−1
2 L−1

1 A =

[
1 0

0 L̃−1
2

] [
a vT

0 A1

]
= U2,

or equivalently,
A = L2L1U2.

Here U2 is block upper triangular with two 1× 1 blocks and one (m− 2)× (n− 2) block on
the diagonal, and again L2 is unit lower triangular. We can continue in this fashion at most
m̃− 1 times, where

m̃ = min{m, n}.

3

If we can proceed m̃− 1 times, then

L−1
m̃−1 · · ·L−1

2 L−1
1 A = Um̃−1 = U

is upper triangular provided that along the way that the (1, 1) entries of

A, A1, A2, . . . , Am̃−2

are nonzero so the process can continue. Define

L = (L−1
m̃−1 · · ·L−1

1)−1 = L1L2 · · ·Lm̃−1.

The matrix L is square unit lower triangular, and so is invertable. Moreover, A = LU , where
the matrix U is the so called row echelon form of A. In general, a matrix T ∈ Cm×n is said

to be in row echelon form if for each i = 1, . . . ,m− 1 the first non-zero entry in the (i + 1)st

row lies to the right of the first non-zero row in the ith row.
Let us now suppose that m = n and A ∈ Cn×n is invertible. Writing A = LU as a product

of a unit lower triangular matrix L ∈ Cn×n (necessarily invertible) and an upper triangular
matrix U ∈ Cn×n (also nessecarily invertible in this case) is called the LU factorization of
A.

Remarks

(1) If A ∈ Cn×n is invertible and has an LU factorization, it is unique.
(2) One can show that A ∈ Cn×n has an LU factorization iff for 1 ≤ j ≤ n, the upper

left j × j principal submatrix a11 · · · aij
...

aj1 · · · ajj

is invertible.

(3) Not every invertible A ∈ Cn×n has an LU-factorization.

Example:

[
0 1
1 0

]
Typically, one must permute the rows of A to move nonzero entries to the appropriate
spot for the elimination to proceed. Recall that a permutation matrix P ∈ Cn×n is
the identity I with its rows (or columns) permuted: so

P ∈ Rn×n is orthogonal, and P−1 = P T .

Permuting the rows of A amounts to left multiplication by a permutation matrix P T ;
then P T A has an LU factorization, so A = PLU (called the PLU factorization of A).

(4) Fact: Every invertible A ∈ Cn×n has a (not necessarily unique) PLU factorization.
(5) The LU factorization can be used to solve linear systems Ax = b (where A = LU ∈

Cn×n is invertible). The system Ly = b can be solved by forward substitution (1st

equation gives x1, etc.), and Ux = y can be solved by back-substitution (nth equation
gives xn, etc.), giving the solution to? Ax = LUx = b.

4

Example: We now use the procedure outlined above to compute the LU factorization of
the matrix

A =

 1 1 2
2 4 2

−1 1 3

 .

L−1
1 A =

 1 0 0
−2 1 0

1 0 1

 1 1 2
2 4 2

−1 1 3

=

 1 1 2
0 2 −3
0 2 5

L−1
2 L−1

1 A =

 1 0 0
0 1 0
0 −1 1

 1 1 2
0 2 −3
0 2 5

=

 1 1 2
0 2 −3
0 0 8

We now have

U =

 1 1 2
0 2 −3
0 0 8

 ,

and

L = L1L2 =

 1 0 0
2 1 0

−1 0 1

 1 0 0
0 1 0
0 1 1

 =

 1 0 0
2 1 0

−1 1 1

 .

1.2. The Cholesky Factorization. We now consider the application of the LU factoriza-
tion to a symmetric positive definite matrix, but with a twist. Suppose the n× n matrix H
is symmetric and we have performed the first step in the procedure for computing the LU
factorization of H so that

L−1
1 H = U1 .

Clearly, U1 is no-longer symmetric (assuming L1 is not the identity matrix). To recover
symmetry we could multiply U1 on the right by the upper triangular matrix L−T

1 so that

L−1
1 HL−T

1 = U1L
−T
1 = H1 .

We claim that H1 necessarily has the form

H1 =

[
h(1,1) 0

0 Ĥ1

]
,

5

where h(1,1) is the (1, 1) element of H and Ĥ1 is an (n− 1)× (n− 1) symmetric matrix. For
example, consider the matrix

H =

 1 2 −1
2 5 1

−1 1 3

 .

In this case, we get

L−1
1 HL−T

1 =

 1 0 0
−2 1 0

1 0 1

 1 2 −1
2 5 1

−1 1 3

 1 −2 1
0 1 0
0 0 1

=

 1 0 0
0 1 3
0 3 2

 .

If we now continue this process with the added feature of multiplying on the right by L−T
j

as we proceed, we obtain

L−1HL−T = D,

or equivalently,

H = LDLT ,

where L is a unit lower triangular matrix and D is a diagonal matrix. Note that the entries on
the diagonal of D are not necessarily the eigenvalues of H since the transformation L−1HL−T

is not a similarity transformation.
Observe that if it is further assumed that H is positive definite, then the diagonal entries

of D are necessarity all positive and the factorization H = LDLT can always be obtained,
i.e. no zero pivots can arise in computing the LU factorization (see exercises).

Let us apply this approach by continuing the computation of the LU factorization for the
matrix given above. Thus far we have

L−1
1 HL−T

1 =

 1 0 0
−2 1 0

1 0 1

 1 2 −1
2 5 1

−1 1 3

 1 −2 1
0 1 0
0 0 1

=

 1 0 0
0 1 3
0 3 2

 .

Next

L−1
2 L−1

1 HL−T
1 L−T

2 =

 1 0 0
0 1 0
0 −3 1

 1 0 0
0 1 3
0 3 2

 1 0 0
0 1 −3
0 0 1

=

 1 0 0
0 1 0
0 0 −7

 ,

6

giving the desired factorization

H = LDLT =

 1 0 0
2 1 0

−1 3 1

 1 0 0
0 1 0
0 0 −7

 1 2 −1
0 1 3
0 0 1

 .

Note that this implies that the matrix H is not positive definite.
We make one final comment on the positive definite case. When H is symmetric and

positive definite, an LU factorization always exists and we can use it to obtain a fac-
torization of the form H = LDLT , where L is unit lower triangular and D is diago-
nal with positive diagonal entries. If D = diag(d1, d2, . . . , dn) with each di > 0, the
D1/2 = diag(

√
d1,

√
d2, . . . ,

√
dn). Hence we can write

H = LDLT = LD1/2D1/2LT = L̂L̂T ,

where L̂ = LD1/2 is a non-singular lower triangular matrix. The factorization H = L̂L̂T

where L̂ is a non-singular lower triangula matrix is called the Cholesky factorization of H.
In this regard, the process of computing a Chlesky factorization is an effective means for
determining is a symmetric matrix is positive definite.

1.3. The QR Factorization. Recall the Gram-Schmidt orthogonalization process for a
sequence of linearly independent vectors a1, . . . , an ∈ Rn. Define q1, . . . , qn inductively, as
follows: set

p1 = a1, q1 = p1/‖p1‖,

pj = aj −
j−1∑
i=1

〈aj, qj〉 qi for 2 ≤ j ≤ n, and

qj = pj/‖pj‖ .

For 1 ≤ j ≤ n,

qj ∈ Span{a1, . . . , aj},

so each pj 6= 0 by the lin. indep. of {a1, . . . , an}. Thus each qj is well-defined. We have
{q1, . . . , qn} is an orthonormal basis for Span{a1, . . . , an}. Also

ak ∈ Span{q1, . . . , qk} 1 ≤ k ≤ n,

so {q1, . . . , qk} is an orthonormal basis of Span{a1, . . . , ak}.
Define

rjj = ‖pj‖ and rij = 〈aj, qi〉 for 1 ≤ i < j ≤ n,

7

we have:

a1 = r11 q1,

a2 = r12 q1 + r22 q2,

a3 = r13 q1 + r23 q2 + r33 q3,
...

an =
n∑

i=1

rin qi.

Set

A = [a1 a2 . . . an] , R = [rij], and Q = [q1 q2 . . . qn] ,

where rij = 0, i > j. Then

A = QR ,

where Q is unitary and R is upper triangular.

Remarks

(1) If a1, a2, · · · is a linearly independent sequence, apply Gram-Schmidt to obtain an
orthonormal sequence q1, q2, . . . such that {q1, . . . , qk} is an orthonormal basis for
Span{a1, . . . , ak}, k ≥ 1.

(2) If the aj’s are linearly dependent, for some value(s) of k,

ak ∈ Span{a1, . . . , ak−1}, so pk = 0.

The process can be modified by setting rkk = 0, not defining a new qk for this
iteration and proceeding. We end up with orthogonal qj’s. Then for k ≥ 1, the
vectors {q1, . . . , qk} form an orthonormal basis for Span{a1, . . . , a`+k} where ` is the
number of rjj = 0. Again we obtain A = QR, but now Q may not be square.

(3) The classical Gram-Schmidt algorithm as described does not behave well computa-
tionally. This is due to the accumulation of round-off error. The computed qj’s are
not orthogonal: 〈qj, qk〉 is small for j 6= k with j near k, but not so small for j � k
or j � k.

An alternate version, “Modified Gram-Schmidt,” is equivalent in exact arithmetic,
but behaves better numerically. In the following “pseudo-codes,” p denotes a tempo-
rary storage vector used to accumulate the sums defining the pj’s.

8

Classic Gram-Schmidt Modified Gram-Schmidt
For j = 1, · · · , n do For j = 1, . . . , n do∣∣∣ p := aj

∣∣∣ p := aj∣∣∣ For i = 1, . . . , j − 1 do
∣∣∣ For i = 1, . . . , j − 1 do∣∣∣ ∣∣∣ rij = 〈aj, qi〉
∣∣∣ ∣∣∣ rij = 〈p, qi〉∣∣∣ ⌊

p := p− rijqi

∣∣∣ ⌊
p := p− rijqi∣∣∣ rjj := ‖p‖

∣∣∣ rjj = ‖p‖⌊
qj := p/rjj

⌊
qj := p/rjj

The only difference is in the computation of rij: in Modified Gram-Schmidt, we
orthogonalize the accumulated partial sum for pj against each qi successively.

Theorem 1.1. Suppose A ∈ Rm×n with m ≥ n. Then

∃ unitary Q ∈ Rm×m upper triangular R ∈ Rm×n

for which

A = QR.

If Q̃ ∈ Rm×n denotes the first n columns of Q and R̃ ∈ Rn×n denotes the first n rows of R,
then

A = QR = [Q̃ ∗]
[

R̃
0

]
= Q̃R̃.

Moreover

(a) We may choose an R to have nonnegative diagonal entries.
(b) If A is of full rank, then we can choose R with positive diagonal entries, in which case

the condensed factorization A = Q̃R̃ is unique (and thus if m = n, the factorization

A = QR is unique since then Q = Q̃ and R = R̃).

Proof. If A has full rank, apply the Gram-Schmidt. Define

Q̃ = [q1, . . . , qn] ∈ Rm×n and R̃ = [rij] ∈ Rn×n

as above, so

A = Q̃R̃.

Extend {q1, . . . , qn} to an orthonormal basis {q1, . . . , qm} of Rm, and set

Q = [q1, . . . , qm] and R =

[
R̃
0

]
∈ Cm×n, so A = QR.

As rjj > 0 in the G-S process, we have (b). Uniqueness follows by induction passing through
the G-S process again, noting that at each step we have no choice. �

Remarks

9

(1) In practice, there are more efficient and better computationally behaved ways of
calculating the Q and R factors. The idea is to create zeros below the diagonal
(successively in columns 1, 2, . . .) as in Gaussian Elimination, except we now use
Householder transformations (which are unitary) instead of the unit lower triangular
matrices Lj.

(2) A QR factorization is also possible when m < n.

A = Q[R1 R2] ,

where Q ∈ Cm×m is unitary and R1 ∈ Cm×m is upper triangular.

Every A ∈ Rm×n has a QR-factorization, even when m < n. Indeed, if

rank(A) = k,

there always exist

Q ∈ Rm×k with orthonormal columns,

R ∈ Rk×n full rank upper triangular,

and a permutation matrix P ∈ Rn×n such that

(∗) AP = QR.

Moreover, if A has rank n (so m ≥ n), then R ∈ Rn×n is nonsingular. On the other hand, if
m < n, then

R = [R1 R2],

where R1 ∈ Rk×k is nonsingular. Finally, if A ∈ Rm×n, then the same facts hold, but now
both Q and R can be chosen to be real matrices.

QR-Factorization and Orthogonal Projections
Let A ∈ Rm×n have condensed QR-factorization

A = Q̃R̃ .

Then by construction the columns of Q̃ form an orthonormal basis for the range of A. Hence

P = Q̃Q̃T is the orthogonal projector onto the range of A. Similarly, if the condensed
QR-factorization of AT is

AT = Q̃1R̃1 ,

then

P1 = Q̃1Q̃
T
1

is the orthogonal projector onto Ran(AT) = ker(A)⊥, and so

I − Q̃1Q̃
T
1

is the orthogonal projector onto ker(A).
The QR-factorization can be computed using either Givens rotations or Householder re-

flections. Although, the approach via rotations is arguably more stable numerically, it is
more difficult to describe so we only illustrate the approach using Householder reflections.

QR using Householder Reflections

10

Given w ∈ Rn we can associate the matrix

U = I − 2
wwT

wT w

which reflects Rn across the hyperplane Span{w}⊥. The matrix U is call the Householder
reflection across this hyperplane.

Given a pair of vectors x and y with

‖x‖2 = ‖y‖2, and x 6= y,

there is a Householder reflection such that y = Ux:

U = I − 2
(x− y)(x− y)T

(x− y)T (x− y)
.

Proof.

Ux = x− 2(x− y)
‖x‖2 − yT x

‖x‖2 − 2yT x + ‖y‖2

= x− 2(x− y)
‖x‖2 − yT x

2(‖x‖2 − yT x)

= y

since ‖x‖ = ‖y‖. �

QR using Householder Reflections
We now describe the basic deflation step in the QR-factorization.

A0 =

[
α0 aT

0

b0 A0

]
.

Set

ν0 =

∥∥∥∥(
α0

b0

)∥∥∥∥
2

.

Let H0 be the Householder transformation that maps(
α0

bT
0

)
7→ ν0 e1 :

H0 = I − 2
wwT

wT w
where w =

(
α0

b0

)
− ν0e1 =

(
α0 − ν0

b0

)
.

Thus,

H0A =

[
ν0 aT

1

0 A1

]
.

11

A problem occurs if ν0 = 0 or (
α0

b0

)
= 0 .

In this case, permute the offending column to the right bringing in the column of greatest
magnitude. Now repeat with A1.

If the above method if implemented by always permuting the column of greatest magnitude
into the current pivot column, then

AP = QR

gives a QR-factorization with the diagonal entries of R nonnegative and listed in the order
of descending magnitude.

