Math 408
Cash Flow Streams, Present Value, and Internal Rate of Return

1. CAsH FLOW STREAMS

In investment science, notions of investment are based on the concept
of flows of expenditures and receipts over time. The goal is to tailor
the pattern of these flows over time so that they satisfy some underly-
ing well defined objective such as the maximization of the returns on
investment. In this course we will think of the undelying expenditures
and receipts as denominated in cash (currency). In this case, the net of
expenditures and receipts in a given time period is called the cash flow
in that period. The series of cash flows over a chosen number of time
periods (or time horizon) is called the cash flow stream for that series
of time periods. The units of time used will vary with the problem
under consideration. In some instances it will be months, others quar-
ters, and others years. In each setting the time period and the time
horizon to be considered must be precisely specified. We will describe
cash flow streams as vectors of real numbers. Abstractly, such a vector
can be written as

x = (Zo, T1, T2, -, Tn),

where n is the number of time periods. If the time period is months
and the stream horizon is 10 years, then n =12 x 10 = 120.

Knowing the basic properties of geometric series is extremely helpful
in the analysis of cash flow streams. We now take a moment to review
these properties.

Geometric Series:
Consider a series of the form

where p is any real number. Such a series is called a geometric series.
It is said to be an infinite geometric series if we take n = oo, in which
case the collection of symbols Y32 ; p* is to interpreted as the limit
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To sum this series simply observe that
Sp = l4p+p+p++p"
= 1+p[ltptp +p + - +p"7"]
= l+p[l+p+p+p +-+p"] = p""
= 14+ pS,—p"L.
Therefore,
(1=p)Sp=1—p"*,
or equivalently
1_pn+1
L—p
If |p| < 1, then lim, ,, p" = 0, and so
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It is also usefull to consider the related series

gnzipk:Sn—l.
k=1

The formulas for S, given above imply that

5 _1—p“+1_1:p—p”+1:p1—p”
1—0p 1—0p 1—p

=
1.1. Compound interest. Consider a simple savings account with
initial investment P dollars invested at an annual interest rate of r
compounded monthly and closed after n years. After the first month
the account will contain the original principal P plus the interest earned
on that principal over the month {5 P dollars. That is, the account will
contain (1+ ;)P dollars. At the end of the second month the account
will earn interest on (1+ {5)P dollars since this is the principal for that
month. Hence, as before, the content of the account at the end of the
second month is the sum of the principal at the begining of the month
and the interest earned on this principal during the month which is

r r r T 9

12(1 + 12)P—i— (1+ 12)P =1+ 12) P.
Continuing in this way we see that the content of the account after n
years is (1 + )20 P,

We now describe a cash flow stream associated with this investment.
The time period for the stream is one month, and the horizon for the
stream is N years or 12N periods. In the first period we make an
investment of P dollars which is the initial principal. Hence we set
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xg = —P. Of the remaining periods, the only period during which
money is received from the account is in the last period when the
account is closed. Hence z1oy = (1 + %)Y P. Hence the cash flow
stream for this investment is a vector of length 12N 41 with o = —P,
2y =0, k=1,2,...,12N — 1 and 210y = (1 + 5)32¥) P,

There is another equally valuable way to view this cash flow stream.
In this view we consider the initial principal P as the purchase price for
the stream and so do not included it in the stream itself. In this view
the cash flow stream is again of length 12N + 1 but now all entries in
the stream are zero except for the last which is z1on = (14 5)2N) P,
In general, there are many ways to model the cash flow stream for
the same investment opportunity. The choice of model depends on the
questions being asked.

Example 1.1. (Home Mortgages)

A home mortgage is a loan from a bank or broker to facilitate the
purchase of a home. Some of the key features of a standard home
mortgage are (a) the principal borrowed, Py, (b) the annual interest
rate at which it is borrowed, r, (c) and the monthly payment, y, and
(d) the number of years to pay off the loan, N. We assume that the
payment and compounding periods coincide (this is almost always the
case). Clearly, the values of the variables Py, r,y, and N are related
in a special way so that the loan can be payed off in n years. If we
denots Py as the principal remaining after k periods, then we must
have Piony = 0. This equation can be used to determine the relationship
between the variables Py, r,y, and N if we can write Pion as a function
of Py,r,y, and N. To begin with note that for each period k we have

Pk—(1+ )Pk 1~ Y.
This recursion gives
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The penultimate equality in this derivation makes use of the fundamen-
tal identity for geometric series:

n
1 — n+1
PP
11—z
k=0
Therefore, if Piay = 0, we obtain the identity
T 12 T
1 14+ Tyenp 220 o Tyieny gy
1) (14 13) VB =y (14 1) — 1)
In particular, given Py and r, the monthly payments y are
(14 17_2)121\1
121+ L)V —1
Similarly, if you know the prevailing interest rate r for home mortgages
and you are willing to pay up to y dollars a month on you mortgage,

then you can determine how much you are willing to borrow from the
formula

12 T
Py = —(1—1 ——12N).
0=y (+12)

The cash flow stream for this investment is

(POa =Y, =Y. _y)a
‘—y” term appears each period for 12N periods.

where the *

1.2. Continuous Compounding. One can think of compounding the
interest on a savings account more frequently than just monthly. For
example, it might be compounded daily, or even more frequently. What
happens as the number of times the rate is compounded goes to infin-
ity? To answer this we must reach into our deep dark calculus past.
Suppose we compound m times a year at an annual rate of . The after
t years such an account with an initial principal of P dollars will hold

1+ —)™P dollars.
m



Calculus tells us that
lim (1 + L)m =e".

m—oo m

If we let m — oo we say that the account is compounding contiuously.
Such an account yields Pe™ from an initial investment of P dollars
invested at an annual rate r after ¢ years (here ¢ need not be given in
whole years, e.g. t = /2 works just fine). Continuous compounding is
often used to simplify the analysis in very complicated settings.

Interest rates are typically quoted at an annual rate regardless on the
compounding schedule. This interest rate is called the nominal interest
rate. The effective interest rate is the equivalent annually compounded
rate. That is, it is the rate of return of the investment after one year.
If an investment returns () dollars after one year from an initial in-
vestment of P dollars, then the effective interest rate of the investment

is
Q-P
i
Therefore, an investment at an annual interest rate of 4 percent com-
pounded continuously has an effective interest rate of approximately
4.081077419239 percent since

e — 1~ .04081077419239

Te

1.3. Present Value. There are a wide variety of investment oppor-
tunities available in the market place. All of these can be modeled as
having an associated cash flow stream (perhaps unknowable), but the
period and time to maturity of each such stream can vary considerably.
In order to compare any two investment opportunities, or equivalently,
their cash flow streams, we need a measure that is independent of the
period and time to maturity of the stream. One such measure is present
value. In effect the present value of a cash flow stream is its total value
in todays dollars. One way to compute present value is to assume a
constant prevailing rate of return r. This prevailing rate of return is
sometimes taken to be a riskless rate of return (for example a suitable
treasury bill rate), or it can be a historical average rate of return. The
choice can depend on the time to maturity of the underlying invest-
ments to be compared. Once a rate r has been established, one can
then derive the corresponding per period rate of return of a given cash
flow stream r,. For example, if the rate is .04 (or 4 percent) and the
period is months, then the per period rate is r, = (.04)/12.

Let us now suppose we are given a cash flow stream = = (¢, 21, s, . . .
with a prevailing per period rate of return r,. The present value of this
stream can be computed by considering each flow element separately.
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Consider flow element xy. This is the initial cash flow element today,
so its present value today is xo. Next consider z;. This is the cash flow
one period from now. Take the present value of x; to be the value of
the principal after one period if it were invested at a per period rate of
rp. That is, we need to solve the equation

z1=(14+rp)P
for P, where P is the principal at the end of the first period. Obviously

this yields a present value for z; equal to (11—1«,,) In general, the present
value of the cash flow element z; equals the principal required to obtain
xy after k periods if it were invested at a per period rate of r,. That
is, the present value of xj, is the value of P, the value of the principal

at the end of the kth period, that satisfies the equation
zr = (1+71,) Py,
which is (1::%
Definition 1.2. (Present Value) Given a cash flow stream x =
(o, T1,-..,xn) and a per period interest rate r,, the present value of
this stream relative to this rate s
PV = Xy +

z1 4 T2 i 4 T
(1+ 7’,,) (1+ Tp)Q (1+ rp)n'
1

The factor d, = @) 1s called the discount factor for this stream.

Another way to describe present value is in terms of discount fac-
tors. In the definition given above, the factor d, = {7, is called the
discount factor for this stream. Thus, we compute present value of a
cash flow stream relative to a given per period discount factor.

Example 1.3. (Savings Accounts)

In the discussion of compound interest given above, we described two
different cash cash flow streams for a savings account with initial prin-
cipal invested at annual rate r compounded monthly and closed after N
years. These are

z = (=P0,...,0,(1+7,)?"P), and
y = (0,...,0,(1+17,)*P),

where 1, = r/12 and the second stream has the underlying assumption
that the initial principal is to be interpreted as the purchase price of
the stream. The present value of these streams relative to r, is 0 and
P, respectively. Thus, present value can be used to value the purchase

price of a cash flow stream today. Why is the purchase price of x zero
while that of y is P?



Example 1.4. (Home Mortgages)

Recall that the cash flow stream for a home mortgage with initial prin-
cipal Py, annual interest rate v, monthly payments y, and a term of N
years is

(PO: =Y, =Y, _y):
where the “—y’ term appears 12N times. As usual it is assumed that
the interest on the loan is compounded monthly in conjunction with the
payments. The present value of this cash flow stream relative to the
interest rate T 18
12N

1
PV = Po—yg —
j:1(1+ﬁ)1

12N -1

T ro_.
— Pi— oyl 4+ 12N 14 1y
0 — y( +12) JEZO( +12)
r 1—(1+ )N
— Po—u(l+ 12N 12
b=yl +35) 1—(1+%)
12 T
=P——(1—1 —*UN)
(e ( —|—12) )

=0,
where the final equality follows from our mortgage identity (1).

1.4. Internal Rate of Return. The notion of present value as the
value of a cash flow stream is somewhat flawed in the sense that it
requires knowledge of a prevailing interest rate r, that is valid for the
entire time horizon of the cash flow stream. One way around this
difficulty is the notion of an internal rate of return. Note that in the
example of the home mortgage we determined that the present value
of the cash flow stream

(POa_y, _yaa_y)

was zero when the mortgage interest rate r was used as the prevailing
rate of return. We could turn this on its head and ask the following
question. If this is the cash flow stream of a mortgage, then what is the
interest rate being paid? This would allow us to solve for the interest
rate knowing only the initial principal Py, the monthly payments vy,
and the term of the loan N years. Similarly, given a cash flow stream

(.Z'(),.Tl, s 7$n)

one can ask what us the interest rate that gives this stream a present
value of zero? Of course, in this context, the cash flow stream should
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include all expenditures as well as receipts so that things can be bal-
anced out in the end. The interest rate obtained in this way is called
the internal rate of return of the cash flow stream.

Definition 1.5. (Internal Rate of Return) Let (zo,x1,--.,Z,) be
a cash flow stream. Then the internal rate of return of this stream is
the interest rate r satisfying the equation

X1 T2 Tn

0=m+ + o
RGPS N TR P 1 +7)"

Equivalently, it is the number r satisfying 1/(1+7r) = ¢ where ¢ satisfies
the polynomaial equation

(2) 0=120+T10+ D96 + -+ + 1" .

Note that this definition is ambiguous since we know that the polyno-
mial equation (2) has in general n roots. This fact can be a significant
obstacle to using this notion for general cash flow streams. However,
as the following result illustrates, the notion is well defined for certain
types of cash flow streams.

Theorem 1.6. (Existence of an Internal Rate of Return)
Suppose the cash flow stream (xg, 1, %o, ...,%,) has zg < 0 (xg > 0)
and x> 0 (xx < 0) fork =1,...,n with at least one xx > 0 (xx < 0).
Then there is a unique positive root to the equation (2). Furthermore,
if Yop_oxk > 0, then the corresponding internal rate of return r =
(1/¢) — 1 is positive.

Proof. Consider the polynomial
p(c) = 20 + T1C+ To® + - - + TpC" .

We have p(0) = zo < 0 while p(c) T +oc as ¢ 1 400 since z, > 0 k =
1,...,n with zx > 0 for at least one k. Hence the intermediate value
theorem says that p must have at least one positive zero. Also, p'(c) =
T, + 2x9¢ + - -+ + N, L s strictly posiitve for ¢ > 0, again since all
the x;’s are non-negative with at least one stricly positive. Therefore,
p is strictly increasing on the interval [0, +000. Consequently, p can
have at most one positive root.

Next, note that if we assume that )_,_, zx = p(1) is positive, then
the unique root must lie between zero and 1 in which case r = (1/¢) —1
is positive.

Finally, note that the case with xq > 0 follows by the same argument
with the polynomial p replaced by —p. O
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If an internal rate of return can be determined, then it can be used
as a measure of valuation for a cash flow stream with higher rates of
return indicating a more desirable cash flow stream.

We now give an example were we compare two cash flow streams
using both present value and internal rate of return. In this example we
consider a scenario where we can plant cone flowers that can be later
harvested and their roots, echinacea sold as a tea or herbal remedy.
Cone flowers are perennials and thier root mass continues to grow each
year. They also self seed very successfully. We need to make a decision
as to whether the flowers should be harvested after one year or two
years. For an outlay of one dollar we can expect to receive two dollars
back if we harvest in one year whereas we would receive 3 dollars if we
harvested after two years. With prevailing interest rate of 10% what is
the most profitable harvesting strategy?

The cash flow streams associated with each of these two possible
investment strategies are

. (-1,2) (harvest in one year)
2. (-1,0,3) (harvest in two years).

Using the present value technique of valuation we get

2
PV = -1+ 11 0.8182

3
PV, = 1+(1'1)2—1.47.
Therefore, it seems that we should go with the three year plan as it
has a greater present value.
Let us now check the internal rate of return method for valuating
an investment strategy. For this we must solve the two polynomial
equations

1. —=142¢=0 (harvest in one years)
2. —1+3c2=0 (harvest in two years).

The solutions are ¢ = 1/2 and ¢ = 1/+/3, respectively. These roots
correspond to the internal rates of return » = (1/¢c) — 1 = 1 and
r=(1/c)—1=+3—1=0.7321. Since 1 > 0.7321, the first alternative
of harvesting every year gives a better internal rate of return. This
seems to contradict the present values assessment above.

Indeed, these two methods of evaluating investment opportunities
can give differing and even contadictory conclusions since they are mea-
suring two different objectives: present values versus internal rate of
return. We should not be surprized by this. Nonetheless, it would be
very useful if there were some way to compare them. B
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To see how this might be done let us review the underlying philoso-
phy for internal rates of return. We think of the internal rate of return
as an interest rate that describes the investment strategy in terms that
are similar to a classical bank savings account investment. This inter-
est rate is a kind of prevailing interest rate for this kind of investment.
As such it should be considered as ongoing even after the time horizon
for the cash flow stream has past. In the context of our cone flower
example, if we chose the one year harvest plan, we could replant the
following year and reap the same benefits. Indeed, we could think of
this as an onging strategy into the future. Similarly, we could think of
the two year harvesting strategy as a strategy that cycles into the fu-
ture as well. The advantage of this perspective is that now we can give
both harvesting strategies the same time horizon where this horizon is
equal to the least common multiple of their individual horizons.

In our cone flower example, we can consider a 2 year horizon with
cash flow streams

1. (—1,1,2) (2 harvests in two years)
2. (-1,0,2.5) (1 harvest in two years).

In the two harvest scenario the cash flow z; equals the profit due to
the sale of the harvest minus the cost of planting the following years
harvest: 1 = 2 — 1. The resulting present value from these two cash
flow streams is

2
— 4+ ——— =1.562
1w

2.5
Ve Ty =

PV, = —1+

The corresponding internal rates of return are again obtained by solving
the following polynomial equations:

1. —=1+4+c¢+2¢>=0 (2 harvest in two years)
2. —-143c2=0 (one harvest in two years).

The roots are again ¢ = 1/2 and ¢ = 1/+/3 (why?), respectively. These
root yield the corresponding internal rates of return » = 1 and r =
0.7321, respectively. This analysis clearly indicates that an annual
harvesting strategy is prefered. Both methods of evaluation give the
same advice.

It is not clear that simply putting the two investment strategies on
the same time horizon will always resolve the differences between these
to methods of evaluation. For example, what happens when the return
on the 2 year harvesting strategy is 3.5 dollars for every dollar invested?
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The debate on which of these two evaluation methods is prefered
continues. In general though, the initernal rate of return approach
seems prefered if the investment strategy is cyclical. Nonetheless, we
will use the present value approach for most of our study. There are
sound theoretical reasons for this that will become apparent as we
proceed. But the most practical of these is that we wish to consider
general cash flow streams, not just those for which an internal rate of
return exists and can be unambiguously computed.



