
CHAPTER 3

Optimization of Quadratic Functions

In this chapter we study the problem

(31) minimize
x2Rn

1
2x

THx+ gTx+ �,

where H 2 Rn⇥n is symmetric, g 2 Rn, and � 2 R. It has already been observed that we may as well assume that
H is symmetric since

xTHx = 1
2x

THx+ 1
2 (x

THx)T = xT

⇥
1
2 (H +HT )

⇤
x,

where 1
2 (H +HT ) is called the symmetric part of H. Therefore, in this chapter we assume that H is symmetric. In

addition, we have also noted that an objective function can always be shifted by a constant value without changing
the solution set to the optimization problem. Therefore, we assume that � = 0 for most of our discussion. However,
just as in the case of integration theory where it is often helpful to choose a particular constant of integration, in
many applications there is a “natural” choice for � that helps one interpret the problem as well as its solution.

The class of problems (31) is important for many reasons. Perhaps the most common instance of this problem
is the linear least squares problem:

(32) minimize
x2Rn

1
2 kAx� bk22 ,

where A 2 Rm⇥n, and b 2 Rm. By expanding the objective function in (32), we see that

(33) 1
2 kAx� bk22 = 1

2x
T (ATA)x� (AT b)Tx+ 1

2 kbk
2
2 = 1

2x
THx+ gTx+ �,

where H = ATA, g = �AT b, and � = 1
2 kbk

2
2. This connection to the linear least squares problem will be explored

in detail later in this chapter. For the moment, we continue to exam the general problem (31). As in the case of
the linear least squares problem, we begin by discussing characterizations of the solutions as well as their existence
and uniqueness. In this discussion we try to follow the approach taken for the the linear least squares problem.
However, in the case of (32), the matrix H := ATA and the vector g = �AT b possess special features that allowed
us to establish very strong results on optimality conditions as well as on the existence and uniqueness of solutions.
In the case of a general symmetric matrix H and vector g it is possible to obtain similar results, but there are
some twists. Symmetric matrices have many special properties that can be exploited to help us achieve our goal.
Therefore, we begin by recalling a few of these properties, specifically those related to eigenvalue decomposition.

1. Optimality Properties of Quadratic Functions

Recall that for the linear least squares problem, we were able to establish a necessary and su�cient condition
for optimality, namely the normal equations, by working backward from a known solution. We now try to apply
this same approach to quadratic functions, in particular, we try to extend the derivation in (19) to the objective
function in (34). Suppose x is a local solution to the quadratic optimization problem

(34) minimize
x2Rn

1
2x

THx+ gTx,

where H 2 Rn⇥n is symmetric and g 2 Rn, i.e., there is an ✏ > 0 such that

(35) 1
2x

THx+ gTx  1
2x

THx+ gTx 8x 2 x+ ✏B2,
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26 3. OPTIMIZATION OF QUADRATIC FUNCTIONS

where x+ ✏B2 := {x+ ✏u |u 2 B2 } and B2 := {u | kuk2  1} (hence, x+ ✏B2 = {x | kx� xk2  ✏}). Note that, for
all x 2 Rn,

(36)

xTHx = (x+ (x� x))TH(x+ (x� x))

= xTHx+ 2xTH(x� x) + (x� x)TH(x� x)

= xTHx+ 2(x+ (x� x))TH(x� x) + (x� x)TH(x� x)

= xTHx+ 2xTH(x� x) + 2(x� x)TH(x� x) + (x� x)TH(x� x)

= xTHx+ 2xTH(x� x)� (x� x)TH(x� x).

Therefore, for all x 2 x+ ✏B2,

1
2x

THx+ gTx = ( 12x
THx+ gTx) + (Hx+ g)T (x� x)� 1

2 (x� x)TH(x� x)

� ( 12x
THx+ gTx) + (Hx+ g)T (x� x)� 1

2 (x� x)TH(x� x) , (since x is a local solution)

and so

(37) 1
2 (x� x)TH(x� x) � (Hx+ g)T (x� x) 8x 2 x+ ✏B2.

Let 0  t  ✏ and v 2 B2 and define x = x+ tv 2 x+ ✏B2. If we plug x = x+ tv into (37), then

(38)
t2

2
vTHv � �t(Hx+ g)T v.

Dividing this expression by t > 0 and taking the limit as t # 0 tells us that

0  (Hx+ g)T v 8 v 2 B2 ,

which implies that Hx+ g = 0. Plugging this information back into (38) gives

t2

2
vTHv � 0 8 v 2 B2 .

Dividing by t2/2 for t 6= 0 tells us that

vTHv � 0 8 v 2 B2

or equivalently, that vTHv � 0 8 v 2 Rn. This latter condition on the matrix H plays an important role in
optimization theory and practice. We codify this property in the following definition.

Definition 1.1. Let H 2 Rn⇥n.

(1) H is said to be positive definite if xTHx > 0 for all x 2 Rn \ {0}.
(2) H is said to be positive semi-definite if xTHx � 0 for all x 2 Rn.
(3) H is said to be negative definite if xTHx < 0 for all x 2 Rn \ {0}.
(4) H is said to be positive semi-definite if xTHx  0 for all x 2 Rn.
(5) H is said to be indefinite if H is none of the above.

In addition, if Sn is the linear space of real n⇥ n symmetric matrices, we denote the set of real symmetric positive
semi-definite and positive definite matrices by Sn

+ and Sn

++, respectively. Similarly, we denote by Sn

� and Sn

��, the
sets of real symmetric negative semi-definite and negative definite matrices, respectively.

These observations motivate the following theorem.

Theorem 1.1. [Existence and Uniqueness in Quadratic Optimization] Let H 2 Rn⇥n and g 2 Rn be as in (34).

(1) A local solution to the problem (34) exists if and only if H 2 Sn

+ and there exists a solution x to the
equation Hx+ g = 0 in which case x is a local solution to (34).

(2) If x is a local solution to (34), then it is a global solution to (34).
(3) The problem (34) has a unique global solution if and only if H is positive definite in which case this solution

is given by x = �H�1g.
(4) If either H is not positive semi-definite or there is no solution to the equation Hx+ g = 0 (or both), then

�1 = inf
x2Rn

1
2x

THx+ gTx .
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Proof. (1) We have already shown that if a local solution x to (34) exists, then Hx+ g = 0 and H is positive
semi-definite. On the other hand, suppose that H is positive semi-definite and x is a solution to Hx+ g = 0. Then,
for all x 2 Rn, we can interchange the roles of x and x in the second line of (36) to obtain

(39) xTHx = xTHx+ 2xTH(x� x) + (x� x)TH(x� x).

Hence, for all x 2 Rn,

1
2x

THx+ gTx = 1
2x

THx+ gTx+ (Hx+ g)T (x� x) + 1
2 (x� x)TH(x� x) � 1

2x
THx+ gTx ,

since Hx+ g = 0 and H is positive semi-definite. That is, x is a global solution to (34) and hence a local solution.

(2) The proof of part (1) shows that if H is positive semi-definite and Hx + g = 0, then x is a global solution to
(34). Hence the result follows from part (1).

(3) If (34) has a unique global solution x, then x must be the unique solution to the equation Hx+ g = 0. This can
only happen if H is invertible. Hence, H is invertible and positive semi-definite which implies that H is positive
definite. On the other hand, if H is positive definite, then, in particular, it is positive semi-definite and there is a
unique solution to the equation Hx+ g = 0, i.e., (36) has a unique global solution.

(4) The result follows if we can show that f(x) := 1
2x

THx+ gTx is unbounded below when either H is not positive
semi-definite or there is no solution to the equation Hx+g = 0 (or both). Let us first suppose that H is not positive

semi-definite, or equivalently, there is a x̂ 2 Rn such that x̂THx̂ < 0. Then, for every t 2 R, f(tx̂) = t

2

2 x̂
THx̂+tgtx̂.

Therefore, f(tx̂) # �1 as t " +1, and so f is unbounded below.
Next assume that H is positive semi-definite but g /2 Ran (H), i.e. there is no solution to Hx+g = 0. Let P be

the orthogonal projection onto Ran (H) so that I � P is the orthogonal projection onto Ran (H)? = Nul
�
HT

�
=

Nul (H). Set g1 := Pg and g2 := (I �P )g so that g = g1 + g2. Then, for every t 2 R, f(tg2) = t

2

2 g
T

2 Hg2 + tgtg)2 =

t kg2k22. Therefore, f(tg2) # �1 as t # �1, and so again f is unbounded below. ⇤

The identity (39) is a very powerful tool in the analysis of quadratic functions. It was the key tool in showing
that every local solution to (34) is necessarily a global solution. We now show how these results can be extended
to problems with linear equality constraints.

2. Minimization of a Quadratic Function on an A�ne Set

In this section we consider the problem

(40)
minimize 1

2x
THx+ gTx

subject to Ax = b,

where H 2 Rn⇥n is symmetric, g 2 Rn, A 2 Rm⇥n, and b 2 Rm. We assume that the system Ax = b is consistent.
That is, there exists x̂ 2 Rn such that Ax̂ = b in which case

{x |Ax = b} = x̂+Null(A).

Consequently, the problem (40) is of the form

(41) minimize
x2x̂+S

1
2x

THx+ gTx ,

where S is a subspace of Rn. This representation of the problem shows that the problem (40) is trivial if Null(A) =
{0} since then the unique solution x̂ to Ax = b is the unique solution to (40). Hence, when considering the problem
(40) it is always assumed that Null(A) 6= {0}, and furthermore, that m < n.

Definition 2.1. [A�ne Sets] A subset K of Rn is said to be an a�ne set if there exists a point x̂ 2 Rn and a
subspace S ⇢ Rn such that K = x̂+ S = {x̂+ u |u 2 S }.

We now develop necessary and su�cient optimality conditions for the problem (41), that is, for the minimization
of a quadratic function over an a�ne set. For this we assume that we have a basis v1, v2, . . . , vk for S so that
dim(S) = k. Let V 2 Rn⇥k be the matrix whose columns are the vectors v1, v2, . . . , vk so that S = Ran(V ). Then
x̂+ S =

�
x̂+ V z

�� z 2 Rk

 
. This allows us to rewrite the problem (41) as

(42) minimize
z2Rk

1
2 (x̂+ V z)TH(x̂+ V z) + gT (x̂+ V z) .
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Proposition 2.1. Consider the two problems (41) and (42), where the columns of the matrix V form a basis
for the subspace S. The set of optimal solution to these problems are related as follows:

{x |x solves (41)} = {x̂+ V z | z solves (42)} .

By expanding the objective function in (42), we obtain

1
2 (x̂+ V z)TH(x̂+ V z) + gT (x̂+ V z) = 1

2z
TV THV z + (V T (Hx̂+ g))T v + f(x̂),

where f(x) := 1
2x

THx+ gTx. If we now set bH := V THV , ĝ := V T (Hx̂+ g), and � := f(x̂), then problem (42) has
the form of (31):

(43) minimize
z2Rk

1
2z

T bHz + ĝT z ,

where, as usual, we have dropped the constant term � = f(x̂). Since we have already developed necessary and
su�cient conditions for optimality in this problem, we can use them to state similar conditions for the problem
(41).

Theorem 2.1. [Optimization of Quadratics on A�ne Sets]
Consider the problem (41).

(1) A local solution to the problem (41) exists if and only if uTHu � 0 for all u 2 S and there exists a vector
x 2 x̂+ S such that Hx+ g 2 S?, in which case x is a local solution to (41).

(2) If x is a local solution to (41), then it is a global solution.
(3) The problem (41) has a unique global solution if and only if uTHu > 0 for all u 2 S \ {0}. Moreover, if

V 2 Rn⇥k is any matrix such that Ran(V ) = S where k = dim(S), then a unique solution to (41) exists
if and only if the matrix V THV is positive definite in which case the unique solution x is given by

x = [I � V (V THV )�1V TH]x̂� V (V THV )�1V T g .

(4) If either there exists u 2 S such that uTHu < 0 or there does not exist x 2 x̂+ S such that Hx+ g 2 S?

(or both), then

�1 = inf
x2x̂+S

1
2x

THx+ gTx .

Proof. (1) By Proposition 2.1, a solution to (41) exists if and only if a solution to (42) exists. By Theorem
1.1, a solution to (42) exists if and only if V THV is positive semi-definite and there is a solution z to the equation
V T (H(x̂ + V z) + g) = 0 in which case z solves (42), or equivalently, by Proposition 2.1, x = x̂ + V z solves
(41). The condition that V THV is positive semi-definite is equivalent to the statement that zTV THV z � 0 for
all z 2 Rk, or equivalently, uTHu � 0 for all u 2 S. The condition, V T (H(x̂ + V z) + g) = 0 is equivalent to
Hx+ g 2 Null(V T ) = Ran(V )? = S?.

(2) This is an immediate consequence of Proposition 2.1 and Part (2) of Theorem 1.1.

(3) By Theorem 1.1, the problem (42) has a unique solution if and only if V THV is positive definite in which case
the solution is given by z = (V THV )�1V T (Hx̂+ g). Note that V THV is positive definite if and only if uTHu > 0
for all u 2 S \ {0} which proves that this condition is necessary and su�cient. In addition, by Proposition 2.1,
x = x̂+ V z = [I � V (V THV )�1V TH]x̂� V (V THV )�1V T g is the unique solution to (41).

(4) This follows the same pattern of proof using Part (4) of Theorem 1.1. ⇤

Theorem 2.2. [Optimization of Quadratics Subject to Linear Equality Constraints]
Consider the problem (40).

(1) A local solution to the problem (40) exists if and only if uTHu � 0 for all u 2 Null(A) and there exists a
vector pair (x, y) 2 Rn ⇥ Rm such that Hx+AT y + g = 0, in which case x is a local solution to (41).

(2) If x is a local solution to (41), then it is a global solution.
(3) The problem (41) has a unique global solution if and only if uTHu > 0 for all u 2 Null(A) \ {0}.
(4) If uTHu > 0 for all u 2 Null(A) \ {0} and rank (A) = m, the matrix

M :=


H AT

A 0

�
is invertible, and the vector


x
y

�
= M�1


�g
b

�

has x as the unique global solution to (41).



3. THE PRINCIPAL MINOR TEST FOR POSITIVE DEFINITENESS 29

(5) If either there exists u 2 Null(A) such that uTHu < 0 or there does not exist a vector pair (x, y) 2 Rn⇥Rm

such that Hx+AT y + g = 0 (or both), then

�1 = inf
x2x̂+S

1
2x

THx+ gTx .

Remark 2.1. The condition that rank (A) = m in Part (4) of the theorem can always be satisfied by replacing
A by first row reducing A to echelon form.

Proof. (1) Recall that Null(A)? = Ran(AT ). Hence, w 2 Null(A) if and only if there exists y 2 Rm such that
w = AT y. By setting w = Hx+ g the result follows from Part (1) of Theorem 2.1.

(2) Again, this is an immediate consequence of Proposition 2.1 and Part (2) of Theorem 1.1.

(3) This is just Part (3) of Theorem 2.1.

(4) Suppose M


x
y

�
=


0
0

�
, then Hx+AT y = 0 and Ax = 0. If we multiply Hx+AT y on the left by xT , we obtain

0 = xTHx+ xTAT y = xTHx which implies that x = 0 since x 2 Null(A). But then AT y = 0, so that y = 0 since
rank (A) = m. Consequently, Null(M) = {0}, i.e., M is invertible. The result now follows from Part (1).

(5) By Part (1), this is just a restatement of Theorem 2.1 Part (4). ⇤

The vector y appearing in this Theorem is call a Lagrange multiplier vector. Lagrange multiplier vectors play
an essential role in constrained optimization and lie at the heart of what is called duality theory. This theory is
more fully developed in Chapter ??.

We now study how one might check when H is positive semi-definite as well as solving the equation Hx+g = 0
when H is positive semi-definite.

3. The Principal Minor Test for Positive Definiteness

Let H 2 Sn. We wish to obtain a test of when H is positive definite. First note that H
ii

= eT
i

He
i

, so that H
can be positive definite only if H

ii

> 0, i = 1, . . . , n. This is only a “sanity check” for whether a matrix is positive
definite. That is, if any diagonal element of H is not positive, then H cannot be positive definite. In this section
we develop a necessary and su�cient condition for H to be positive definite based on the determinant. We begin
with the following lemma.

Lemma 3.1. Let H 2 Sn, u 2 Rn, and ↵ 2 R, and consider the block matrix

Ĥ :=


H u
uT ↵

�
2 S(n+1) .

(1) The matrix Ĥ is positive semi-definite if and only if H is positive semi-definite and there exists a vector
z 2 Rn such that u = Hz and ↵ � zTHz.

(2) The matrix Ĥ is positive definite if and only if H is positive definite and ↵ > uTH�1u.

Proof. (1) Suppose H is positive semi-definite, and there exists z such that u = Hz and ↵ � zTHz. Then for

any x̂ =


x
x
n

�
where x

n

2 R and x 2 Rn, we have

x̂T Ĥx̂ = xTHx+ 2xTHx
n

z + x2
n

↵
= (x+ x

n

z)TH(x+ x
n

z) + x2
n

(↵� zTHz) � 0.

Hence, Ĥ is positive semi-definite.
Conversely, suppose that Ĥ is positive semi-definite. Write u = u1 + u2 where u1 2 Ran(H) and u2 2

Ran(H)? = Null(H), so that there is a z 2 Rn such that u1 = Hz. Then, for all x̂ =

✓
x
x
n

◆
2 R(n+1),

0  x̂T Ĥx̂ = xTHx+ 2x
n

uTx+ ↵x2
n

= xTHx+ 2x
n

(u1 + u2)
Tx+ ↵x2

n

= xTHx+ 2x
n

zTHx+ x2
n

zTHz + x2
n

(↵� zTHz) + 2x
n

uT

2 x

= (x+ x
n

z)TH(x+ x
n

z) + x2
n

(↵� zTHz) + 2x
n

uT

2 x.
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Taking x
n

= 0 tells us that H is positive semi-definite, and taking x̂ =

✓
�tu2

1

◆
for t 2 R gives

↵� 2t ku2k22 � 0 for all t 2 R,

which implies that u2 = 0. Finally, taking x̂ =

✓
�z
1

◆
, tells us that zTHz  ↵ which proves the result.

(2) The proof follows the pattern of Part (1) but now we can take z = H�1u. ⇤

If the matrix H is invertible, we can apply a block Gaussian elimination to the matrix Ĥ in the lemma to
obtain a matrix with block upper triangular structure:


I 0

(�H�1u)T 1

� 
H u
uT ↵

�
=


H u
0 (↵� uTH�1u)

�
.

This factorization tells us that

(44)

det


H u
uT ↵

�
= det


I 0

(�H�1u)T 1

�
det


H u
uT ↵

�

= det

✓
I 0

(�H�1u)T 1

� 
H u
uT ↵

�◆

= det


H u
0 (↵� uTH�1u)

�

= det(H)(↵� uTH�1u).

We use this determinant identity in conjunction with the previous lemma to establish a test for whether a matrix
is positive definite based on determinants. The test requires us to introduce the following elementary definition.

Definition 3.1. [Principal Minors] The kth principal minor of a matrix B 2 Rn⇥n is the determinant of the
upper left–hand corner k⇥k–submatrix of B for 1  k  n.

Proposition 3.1. [The Principal Minor Test] Let H 2 Sn. Then H is positive definite if and only if each of
its principal minors is positive.

Proof. The proof proceeds by induction on the dimension n of H. The result is clearly true for n = 1. We
now assume the result is true for 1  k  n and show it is true for dimension n+ 1. Write

H :=


Ĥ u
uT ↵

�
.

Then Lemma 3.1 tells us that H is positive definite if and only if Ĥ is positive definite and ↵ > uT Ĥ�1u. By the
induction hypothesis, Ĥ is positive definite if and only if all of its principal minors are positive. If we now combine
this with the expression (44), we get that H is positive definite if and only if all principal minors of Ĥ are positive
and, by (44), det(H) = det(Ĥ)(↵� uT Ĥ�1u) > 0, or equivalently, all principal minors of H are positive. ⇤

This result only applies to positive definite matrices, and does not provide insight into how to solve linear
equations involving H such as Hx+ g = 0. These two issues can be addressed through the Cholesky factorization.

4. The Cholesky Factorizations

We now consider how one might solve a quadratic optimization problem. Recall that a solution only exists
when H is positive semi-definite and there is a solution to the equation Hx + g = 0. Let us first consider solving
the equation when H is positive definite. We use a procedure similar to the LU factorization but which also takes
advantage of symmetry.

Suppose

H =


↵1 hT

1

h1
eH1

�
, where eH1 2 Sn.
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Note that ↵1 = eT1 He1 > 0 since H is positive definite (if ↵1  0, then H cannot be positive definite), so there is
no need to apply a permutation. Multiply H on the left by the Gaussian elimination matrix for the first column,
we obtain

L�1
1 H =


1 0

� h1
↵1

I

� 
↵1 hT

1

h1
eH1

�
=


↵1 hT

1

0 eH1 � ↵�1
1 h1h

T

1

�
.

By symmetry, we have

L�1
1 HL�T

1 =


↵1 hT

1

0 eH1 � ↵�1
1 h1h

T

1

� "
1 �h

T

1
↵1

0 I

#
=


↵1 0

0 eH1 � ↵�1
1 h1h

T

1

�
.

Set H1 = eH1 � ↵�1h1h
T

1 . Observe that for every non-zero vector v 2 R(n�1),

vTH1v =

✓
0
v

◆
T


↵1 0
0 H1

�✓
0
v

◆
=

✓
L�T

1

✓
0
v

◆◆
T

H

✓
L�T

1

✓
0
v

◆◆
> 0,

which shows that H1 is positive definite. Decomposing H1 as we did H gives

H1 =


↵2 hT

2

h2
eH2

�
, where eH2 2 S(n�1).

Again, ↵2 > 0 since H1 is positive definite (if ↵2  0, then H cannot be positive definite). Hence, we can repeat
the reduction process for H1. Continuing in this way, if at any stage we discover and ↵

i

 0, then we terminate,
since H cannot be positive definite.

If we can continue this process n times, we will have constructed a lower triangular matrix

L := L1L2 · · ·Ln

such that L�1HL�T = D, where D := diag(↵1,↵2, . . . ,↵n

)

is a diagonal matrix with strictly positive diagonal entries. On the other hand, if at some point in the process we
discover an ↵

i

that is not positive, then H cannot be positive definite and the process terminates. That is, this
computational procedure simultaneously tests whether H is positive definite as it tries to diagonalize H. We will
call this process the Cholesky diagonalization procedure. It is used to establish the following factorization theorem.

Theorem 4.1. [The Cholesky Factorization] Let H 2 Sn

+ have rank k. Then there is a lower triangular matrix
L 2 Rn⇥k such that H = LLT . Moreover, if the rank of H is n, then there is a positive diagonal matrix D and a
lower triangular matrix eL with ones on its diagonal such that H = eLDeLT .

Proof. Let the columns of the matrix V1 2 Rn⇥k be an orthonormal basis for Ran(H) and the columns of
V2 2 Rn⇥(n�k) be an orthonormal basis for Null(H) and set V = [V1 V2] 2 Rn⇥n. Then

V THV =


V T

1

V T

2

�
H[V1 V2]

=


V T

1 HV1 V T

1 HV2

V T

2 HV1 V T

2 HV2

�

=


V T

1 HV1 0
0 0

�
.

Since Ran(H) = Null(HT )? = Null(H)?, V1HV T

1 2 Rk⇥k is symmetric and positive definite. By applying the
procedure described prior to the statement of the theorem, we construct a nonsingular lower triangular matrix
eL 2 Rk⇥k and a diagonal matrix D = diag(↵1,↵2, . . . ,↵k

), with ↵
i

> 0, i = 1, . . . , k, such that V1HV T

1 = eLDeLT .
Set bL = eLD1/2 so that V1HV T

1 = bLbLT . If k = n, taking V = I proves the theorem by setting L = bL. If k < n,

H = [V1 V2]

bLbLT 0
0 0

� 
V T

1

V T

2

�
= (V1

bL)(V1
bL)T .

Let (V1
bL)T 2 Rk⇥n have reduced QR factorization (V1

bL)T = QR (see Theorem 5.1). Since bLT has rank k, Q 2 Rk⇥k

is unitary and R = [R1 R2] with R1 2 Rk⇥k nonsingular and R2 2 Rk⇥(n�k). Therefore,

H = (V1
bL)(V1

bL)T = RTQTQR = RTR.

The theorem follows by setting L = RT . ⇤
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When H is positive definite, the factorization H = LLT is called the Cholesky factorization of H, and when
rank (H) < n it is called the generalized Cholesky factorization of H. In the positive definite case, the Cholesky
diagonalization procedure computes the Cholesky factorization of H. On the other hand, when H is only positive
semi-definite, the proof of the theorem provides a guide for obtaining the generalized Cholesky factorization.

4.1. Computing the Generalized Cholesky Factorization.

Step1: Initiate the Cholesky diagonalization procedure. If the procedure successfully completes n iterations, the
Cholesky factorization has been obtained. Otherwise the procedure terminates at some iteration k+1 < n.
If ↵

k+1 < 0, proceed no further since the matrix H is not positive semi-definite. If ↵
k+1 = 0, proceed to

Step 2.
Step 2: In Step 1, the factorization

bL�1H bL�T =

"
bD 0

0 bH

#
,

where

bL =

"
bL1 0
bL2 I(n�k)

#

with bL1 2 Rk⇥k lower triangular with ones on the diagonal, bD = diag(↵1,↵2, . . . ,↵k

) 2 Rk⇥k with
↵
i

> 0 i = 1, . . . , k, and bH 2 R(n�k)⇥(n�k) with bH symmetric has a nontrivial null space. Let the full QR
factorization of bH be given by

bH = [U1 U2]


R1 R2

0 0

�
= U


R
0

�
,

where
- U = [U1 U2] 2 Rk⇥k is unitary,

- the columns of U1 2 Rk⇥k1 form an orthonormal basis for Ran( bH) with k1 = rank
⇣
bH
⌘
< k,

- the columns of U2 2 Rk⇥(k�k1) for an orthonormal basis for Null( bH),
- R1 2 Rk1⇥k1 is upper triangular and nonsingular,
- R2 2 Rk1⇥(k�k1), and
- R = [R1 R2] 2 Rk1⇥k.

Consequently,

UT

1
bHU1 0
0 0

�
=

"
UT

1
bHU1 UT

1
bHU2

UT

2
bHU1 UT

2
bHU2

#

= UT bHU

=


R
0

�
[U1 U2]

=


RU1 RU2

0 0

�
,

and so RU2 = 0 and UT

1
bHU1 = RU1 2 Rk1⇥k1 is a nonsingular symmetric matrix.

Note that only the reduced QR factorization of H = U1R is required since UT

1
bHU1 = RU1.

Step 4: Initiate the Cholesky diagonalization procedure on UT

1
bHU1. If the procedure successfully completes k1

iterations, the Cholesky factorization

UT

1
bHU1 = bL3

bLT

3

has been obtained. If this does not occur, the procedure terminates at some iteration j < k1 with ↵
j

< 0

since UT

1
bHU1 is nonsingular. In this case, terminate the process since H cannot be positive semi-definfite.

Otherwise proceed to Step 5.
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Step 5: We now have

H =

"
bL1 0
bL2 I(n�k)

#"
bD 0

0 bH

# bLT

1
bLT

2

0 I(n�k)

�

=

"
bL1 0
bL2 I(n�k)

# 
I 0
0 U

� " bD 0

0 UT bHU

# 
I 0
0 UT

� bLT

1
bLT

2

0 I(n�k)

�

=

"
bL1 0 0
bL2 U1 U2

#2

4
bD 0 0

0 bL3
bLT

3 0
0 0 0

3

5

2

4
bLT

1
bLT

2

0 UT

1

0 UT

2

3

5

=

"
eL1

bD1/2 0 0
bL2

bD1/2 U1
bL3 0

#2

4
bD1/2eLT

1
bD1/2bLT

2

0 bLT

3 U
T

1

0 0

3

5

=


L1 0

L2 U1
bL3

� 
LT

1 LT

2

0 bLT

3 U
T

1

�
,

where L1 = eL1
bD1/2 2 Rk⇥k is lower triangular, L2 = bL2

bD1/2 2 R(n�k)⇥k, and U1
bL3 2 R(n�k)⇥k1 . In

particular, k+k1 = rank (H) since L1 has rank k and U1
bL3 has rank k1. Let bLT

3 U
T

1 have QR factorization
bLT

3 U
T

1 = V LT

3 , where V 2 Rk1⇥k1 is unitary and L3 2 Rk1⇥(n�k) is lower triangular. Then

H =


L1 0

L2 U1
bL3

� 
LT

1 LT

2

0 bLT

3 U
T

1

�
=


L1 0
L2 L3V

T

� 
LT

1 LT

2

0 V LT

3

�
=


L1 0
L2 L3

� 
LT

1 LT

2

0 LT

3

�
,

since V TV = I
k1 . This is the generalized Cholesky factorization of H.

4.2. Computing Solutions to the Quadratic Optimization Problem via Cholesky Factorizations.

Step 1: Apply the procedure described in the previous section for computing the generalized Cholesky factorization
of H. If it is determined that H is not positive definite, then proceed no further since the problem (31)
has no solution and the optimal value is �1.

Step 2: Step 1 provides us with the generalized Cholesky factorization for H = LLT with LT = [LT

1 LT

2 ], where
L1 2 Rk⇥k and L2 2 R(n�k)⇥k with k = rank (H). Write

g =

✓
g1
g2

◆
,

where g1 2 Rk and g2 2 R(n�k). Since Ran(H) = Ran(L), the system Hx+ g = 0 is solvable if and only
if �g 2 Ran(L). That is, there exists w 2 Rk such that Lw = �g, or equivalently,

L1w = �g1 and L2w = �g2.

Since L1 is invertible, the system L1w = �g1 has as its unique solution w = L�1
1 g1. Note that w is easy

to compute by forward substitution since L1 is lower triangular. Having w check to see if L2w = �g2.
If this is not the case, then proceed no further, since the system Hx + g = 0 has no solution and so the
optimal value in (31) is �1. Otherwise, proceed to Step 3.

Step 3: Use back substitution to solve the equation LT

1 y = w for y := L�T

1 w and set

x =

✓
y
0

◆
.

Then

Hx = LLTx =


L1

L2

�
[LT

1 LT

2 ]

✓
y
0

◆
=


L1

L2

�
w = �g .

Hence, x solves the equation Hx + g = 0 and so is an optimal solution to the quadratic optimization
problem (31).
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5. Linear Least Squares Revisited

We have already seen that the least squares problem is a special case of the problem of minimizing a quadratic
function. But what about the reverse? Part (4) of Theorem 1.1 tells us that, in general, the reverse cannot be
true since the linear least squares problem always has a solution. But what about the case when the quadratic
optimization problem has a solution? In this case the matrix H is necessarily positive semi-definite and a solution
to the system Hx+g = 0 exists. By Theorem 4.1, there is a lower triangular matrix L 2 Rn⇥k, where k = rank (H),
such that H = LLT . Set A := LT . In particular, this implies that Ran(H) = Ran(L) = Ran(AT ). Since Hx+g = 0,
we know that �g 2 Ran(H) = Ran(AT ), and so there is a vector b 2 Rk such that �g = AT b. Consider the linear
least squares problem

min
x2Rn

1
2 kAx� bk22 .

As in (33), expand the objective in this problem to obtain

1
2 kAx� bk22 = 1

2x
T (ATA)x� (AT b)Tx+ 1

2 kbk
2
2

= 1
2x

TLLTx+ gTx+ �

= 1
2x

THx+ gTx+ �,

where � = 1
2 kbk

2
2. We have just proved the following result.

Proposition 5.1. A quadratic optimization problem of the form (31) has an optimal solution if and only if it
is equivalent to a linear least squares problem.

6. The Conjugate Gradient Algorithm

The Cholesky factorization is an important and useful tool for computing solutions to the quadratic optimization
problem, but it is too costly to be employed in many very large scale applications. In some applications, the matrix
H is too large to be stored or it is not available as a data structure. However, in these problems it is often the
case that the matrix vector product Hx can be obtained for a given vector x 2 Rn. This occurs, for example,
in signal processing applications. In this section, we develop an algorithm for solving the quadratic optimization
problem (34) that only requires access to the matrix vector products Hx. Such an algorithm is called a matrix free
method since knowledge the whole matrix H is not required. In such cases the Cholesky factorization is ine�cient
to compute. The focus of this section is the study of the matrix free method known as the conjugate gradient
algorithm. Throughout this section we assume that the matrix H is positive definite.

6.1. Conjugate Direction Methods. Consider the problem (34) where it is known that H is symmetric and
positive definite. In this case it is possible to define a notion of orthogonality or congugacy with respect to H.

Definition 6.1 (Conjugacy). Let H 2 Sn

++. We say that the vectors x, y 2 Rn\{0} are H-conjugate (or
H-orthogonal) if xTHy = 0.

Proposition 6.1. [Conjugacy implies Linear Independence]
If H 2 Sn

++ and the set of nonzero vectors d0, d1, . . . , dk are (pairwise) H-conjugate, then these vectors are linearly
independent.

Proof. If 0 =
kP

i=0
µ
i

di, then for ī 2 {0, 1, . . . , k}

0 = (dī)TH[
kX

i=0

µ
i

di] = µ
ī

(dī)THdī,

Hence µ
i

= 0 for each i = 0, . . . , k. ⇤

Let x0 2 Rn and suppose that the vectors d0, d1, . . . , dk�1 2 Rn areH-conjugate. Set S = Span(d0, d1, . . . , dk�1).
Theorem 2.1 tells us that there is a unique optimal solution x to the problem min

�
1
2x

THx+ gTx
��x 2 x0 + S

 
, and

that x is uniquely identified by the condition Hx+ g 2 S?, or equivalently, 0 = (dj)T (Hx+ g), j = 0, 1, . . . , k� 1.
Since x 2 x0 + S, there are scalars µ0, . . ., µn�1 such that

(45) x = x0 + µ0d
0 + . . .+ µ

k�1d
k�1,
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and so, for each j = 0, 1, . . . , k � 1,

0 = (dj)T (Hx+ g)

= (dj)T
�
H(x0 + µ0d

0 + . . .+ µ
k�1d

k�1) + g
�

= (dj)T (Hx0 + g) + µ0(d
j)THd0 + . . .+ µ

k�1(d
j)THdk�1

= (dj)T (Hx0 + g) + µ
j

(dj)THdj .

Therefore,

(46) µ
j

=
�(Hx0 + g)T (dj)

(dj)THdj
j = 0, 1 . . . , k � 1 .

This observation motivates the following theorem.

Theorem 6.1. [Expanding Subspace Theorem]
Consider the problem (34) with H 2 Sn

++, and set f(x) = 1
2x

THx + gTx. Let {di}n�1
i=0 be a sequence of nonzero

H-conjugate vectors in Rn. Then, for any x0 2 Rn the sequence {xk} generated according to

xk+1 := xk + t
k

dk,

with
t
k

:= argmin{f(xk + tdk) : t 2 R},
has the property that f(x) = 1

2x
THx+ gTx attains its minimum value on the a�ne set x0 + Span {d0, . . . , dk�1}

at the point xk. In particular, if k = n, then xn is the unique global solution to the problem (34).

Proof. Let us first compute the value of the t
k

’s. For j = 0, . . . , k � 1, define '
j

: R ! R by

'
j

(t) = f(xj + tdj)

= t

2

2 (d
j)THdj + t(gj)T dj + f(xj),

where gj = Hxj + g. Then, for j = 0, . . . , k � 1, '0
j

(t) = t(dj)THdj + (gj)T dj and '00
j

(t) = (dj)THdj > 0. Since
'00
j

(t) > 0, our one dimensional calculus tells us that '
j

attains its global minmimum value at the unique solution
t
j

to the equation '0
j

(t) = 0, i.e.,

t
j

= � (gj)T dj

(dj)THdj
.

Therefore,
xk = x0 + t0d

0 + t1d
1 + · · ·+ t

k

dk

with

t
j

= � (gj)T dj

(dj)THdj
, j = 0, 1, . . . , k.

In the discussion preceding the theorem it was shown that if x is the solution to the problem

min
�
f(x)

��x 2 x0 + Span(d0, d1, . . . , dk)
 

,

then x is given by (45) and (46). Therefore, if we can now show that µ
j

= t
j

, j = 0, 1, . . . , k, then x = x
k

proving
the result. For each j 2 {0, 1, . . . , k} we have

(gj)T dj = (Hxj + g)T dj

=
�
H(x0 + t0d

0 + t1d
1 + · · ·+ t

j�1d
j�1) + g

�
T

dj

= (Hx0 + g)T dj + t0(d
0)THdj + t1(d

1)THdj + · · ·+ t
j�1(d

j�1)THdj

= (Hx0 + g)T dj

= (g0)T dj .

Therefore, for each j 2 {0, 1, . . . , k},

t
j

=
�(gj)T dj

(dj)THdj
=

�(g0)T dj

(dj)THdj
= µ

j

,

which proves the result. ⇤
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6.2. The Conjugate Gradient Algorithm. The major drawback of the Conjugate Direction Algorithm of
the previous section is that it seems to require that a set of H-conjugate directions must be obtained before the
algorithm can be implemented. This is in opposition to our working assumption that H is so large that it cannot
be kept in storage since any set of H-conjugate directions requires the same amount of storage as H. However, it
is possible to generate the directions dj one at a time and then discard them after each iteration of the algorithm.
One example of such an algorithm is the Conjugate Gradient Algorithm.

The C-G Algorithm:

Initialization: x0 2 Rn, d0 = �g0 = �(Hx0 + g).

For k = 0, 1, 2, . . .
t
k

:= �(gk)T dk/(dk)THdk

xk+1 := xk + t
k

dk

gk+1 := Hxk+1 + g (STOP if gk+1 = 0)
�
k

:= (gk+1)THdk/(dk)THdk

dk+1 := �gk+1 + �
k

dk

k := k + 1.

Theorem 6.2. [Conjugate Gradient Theorem]
The C-G algorithm is a conjugate direction method. If it does not terminate at xk (i.e. gk 6= 0), then

(1) Span [g0, g1, . . . , gk] = span [g0, Hg0, . . . , Hkg0]
(2) Span [d0, d1, . . . , dk] = span [g0, Hg0, . . . , Hkg0]
(3) (dk)THdi = 0 for i  k � 1
(4) t

k

= (gk)T gk/(dk)THdk

(5) �
k

= (gk+1)T gk+1/(gk)T gk.

Proof. We first prove (1)-(3) by induction. The results are clearly true for k = 0. Now suppose they are true
for k, we show they are true for k + 1. First observe that

gk+1 = gk + t
k

Hdk

so that gk+1 2 Span[g0, . . . , Hk+1g0] by the induction hypothesis on (1) and (2). Also gk+1 /2 Span [d0, . . . , dk],
otherwise, by Theorem 2.1 Part (1), gk+1 = Hxk+1 + g = 0 since the method is a conjugate direction method
up to step k by the induction hypothesis. Hence gk+1 /2 Span [g0, . . . , Hkg0] and so Span [g0, g1, . . . , gk+1] =
Span [g0, . . . , Hk+1g0], which proves (1).

To prove (2) write

dk+1 = �gk+1 + �
k

dk

so that (2) follows from (1) and the induction hypothesis on (2).
To see (3) observe that

(dk+1)THdi = �(gk+1)THdi + �
k

(dk)THdi.

For i = k the right hand side is zero by the definition of �
k

. For i < k both terms vanish. The term (gk+1)THdi = 0
by Theorem 6.1 since Hdi 2 Span[d0, . . . , dk] by (1) and (2). The term (dk)THdi vanishes by the induction
hypothesis on (3).

To prove (4) write

�(gk)T dk = (gk)T gk � �
k�1(g

k)T dk�1

where (gk)T dk�1 = 0 by Theorem 6.1.
To prove (5) note that (gk+1)T gk = 0 by Theorem 6.1 because gk 2 Span[d0, . . . , dk]. Hence

(gk+1)THdk =
1

t
k

(gk+1)T [gk+1 � gk] =
1

t
k

(gk+1)T gk+1.

Therefore,

�
k

=
1

t
k

(gk+1)T gk+1

(dk)THdk
=

(gk+1)T gk+1

(gk)T gk
.

⇤

Remarks:
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(1) The C–G method is an example of a descent method since the values

f(x0), f(x1), . . . , f(xn)

form a decreasing sequence.
(2) It should be observed that due to the occurrence of round-o↵ error the C-G algorithm is best implemented

as an iterative method. That is, at the end of n steps, xn may not be the global optimal solution and the
intervening directions dk may not be H-conjugate. Consequently, the algorithm is usually iterated until��gk

��
2
is su�ciently small. Due to the observations in the previous remark, this approach is guarenteed

to continue to reduce the function value if possible since the overall method is a descent method. In this
sense the C–G algorithm is self correcting.


