A Bisection Method for the Weak Wolfe Conditions

Weak Wolf Decsent Algorithm

$$f(x^k + t_k d^k) \approx \min_{t \in \mathbb{R}} f(x^k + t d^k)$$
.

$$f(x^k + t_k d^k) \approx \min_{t \in \mathbb{R}} f(x^k + t d^k)$$
.
 $\nabla f(x^k + t_k d^k)^T d^k \approx 0$

$$f(x^k + t_k d^k) \approx \min_{t \in \mathbb{R}} f(x^k + t d^k)$$
.

$$\nabla f(x^k + t_k d^k)^T d^k \approx 0$$

Choose $0 < c_1 < c_2 < 1$.

Outline

$$f(x^k + t_k d^k) \approx \min_{t \in \mathbb{R}} f(x^k + t d^k)$$
.

$$\nabla f(x^k + t_k d^k)^T d^k \approx 0$$

Choose $0 < c_1 < c_2 < 1$.

Strong Wolfe Conditions:

$$f(x^k + t_k d^k) \le f(x^k) + c_1 t_k f'(x^k; d^k)$$

 $|f'(x^k + t_k d^k; d^k)| \le c_2 |f'(x^k; d^k)|$.

Weak Wolfe Conditions:

$$f(x^k + t_k d^k) \le f(x^k) + c_1 t_k f'(x^k; d^k)$$

 $c_2 f'(x^k; d^k) \le f'(x^k + t_k d^k; d^k)$.

Lemma: Let $f: \mathbb{R}^n \to \mathbb{R}$ be continuously differentiable and suppose that $x, d \in \mathbb{R}^n$ are such that the set $\{f(x+td): t \geq 0\}$ is bounded below and f'(x;d) < 0, then for each $0 < c_1 < c_2 < 1$ the set

$$\left\{ t \mid \begin{array}{l} t > 0, f'(x + td; d) \geq c_2 f'(x; d), \text{ and} \\ f(x + td) \leq f(x) + c_1 t f'(x; d) \end{array} \right\}$$

has non-empty interior.

Set
$$\phi(t) = f(x + td) - (f(x) + c_1 t f'(x; d))$$
. Then $\phi(0) = 0$ and $\phi'(0) = (1 - c_1) f'(x; d) < 0$.

Set
$$\phi(t) = f(x + td) - (f(x) + c_1 t f'(x; d))$$
. Then $\phi(0) = 0$ and $\phi'(0) = (1 - c_1) f'(x; d) < 0$.

So $\exists \ \overline{t} > 0$ such that $\phi(t) < 0$ for $t \in (0, \overline{t})$.

Set
$$\phi(t) = f(x + td) - (f(x) + c_1 t f'(x; d))$$
. Then $\phi(0) = 0$ and $\phi'(0) = (1 - c_1) f'(x; d) < 0$.

So $\exists \ \overline{t} > 0$ such that $\phi(t) < 0$ for $t \in (0, \overline{t})$. Since f'(x; d) < 0 and $\{f(x + td) : t \ge 0\}$ is bounded below, we have $\phi(t) \to +\infty$ as $t \uparrow \infty$.

Set
$$\phi(t) = f(x+td) - (f(x) + c_1tf'(x;d))$$
. Then $\phi(0) = 0$ and $\phi'(0) = (1-c_1)f'(x;d) < 0$.

So $\exists \ \overline{t} > 0$ such that $\phi(t) < 0$ for $t \in (0, \overline{t})$.

Since f'(x;d) < 0 and $\{f(x+td) : t \ge 0\}$ is bounded below, we have $\phi(t) \to +\infty$ as $t \uparrow \infty$.

Continuity $\implies \exists \hat{t} > 0 \text{ such that } \phi(\hat{t}) = 0$:

Set
$$\phi(t) = f(x + td) - (f(x) + c_1 t f'(x; d))$$
. Then $\phi(0) = 0$ and $\phi'(0) = (1 - c_1) f'(x; d) < 0$.

So $\exists \ \overline{t} > 0$ such that $\phi(t) < 0$ for $t \in (0, \overline{t})$.

Since f'(x;d) < 0 and $\{f(x+td) : t \ge 0\}$ is bounded below, we have $\phi(t) \to +\infty$ as $t \uparrow \infty$.

Continuity $\implies \exists \hat{t} > 0 \text{ such that } \phi(\hat{t}) = 0$:

$$t^* = \inf \left\{ \hat{t} \mid 0 < t, \ \phi(\hat{t}) = 0 \right\}.$$

Since $\phi(t) < 0$ for $t \in (0, \overline{t})$, $t^* > 0$ and by continuity $\phi(t^*) = 0$.

Set
$$\phi(t) = f(x+td) - (f(x) + c_1 t f'(x;d))$$
. Then $\phi(0) = 0$ and $\phi'(0) = (1-c_1)f'(x;d) < 0$.

So $\exists \ \overline{t} > 0$ such that $\phi(t) < 0$ for $t \in (0, \overline{t})$.

Since f'(x;d) < 0 and $\{f(x+td) : t \ge 0\}$ is bounded below, we have $\phi(t) \to +\infty$ as $t \uparrow \infty$.

Continuity $\implies \exists \hat{t} > 0 \text{ such that } \phi(\hat{t}) = 0$:

$$t^* = \inf \left\{ \hat{t} \mid 0 < t, \ \phi(\hat{t}) = 0 \right\}.$$

Since $\phi(t) < 0$ for $t \in (0, \overline{t})$, $t^* > 0$ and by continuity $\phi(t^*) = 0$.

 $\mathsf{MVT} \implies \exists \ \tilde{t} \in (0,t^*) \ \mathsf{with} \ \phi'(\tilde{t}) = 0. \ \mathsf{That} \ \mathsf{is},$

$$\nabla f(x + \tilde{t}d)^T d = c_1 \nabla f(x)^T d$$

Set
$$\phi(t) = f(x+td) - (f(x) + c_1 t f'(x;d))$$
. Then $\phi(0) = 0$ and $\phi'(0) = (1-c_1)f'(x;d) < 0$.

So $\exists \ \overline{t} > 0$ such that $\phi(t) < 0$ for $t \in (0, \overline{t})$.

Since f'(x;d) < 0 and $\{f(x+td) : t \ge 0\}$ is bounded below, we have $\phi(t) \to +\infty$ as $t \uparrow \infty$.

Continuity $\implies \exists \hat{t} > 0 \text{ such that } \phi(\hat{t}) = 0$:

$$t^* = \inf \{\hat{t} \mid 0 < t, \ \phi(\hat{t}) = 0 \}.$$

Since $\phi(t) < 0$ for $t \in (0, \overline{t})$, $t^* > 0$ and by continuity $\phi(t^*) = 0$.

 $\mathsf{MVT} \implies \exists \ \tilde{t} \in (0,t^*) \ \mathsf{with} \ \phi'(\tilde{t}) = 0. \ \mathsf{That} \ \mathsf{is},$

$$\nabla f(x+\tilde{t}d)^Td=c_1\nabla f(x)^Td>c_2\nabla f(x)^Td.$$

We also have

$$f(x+td)-(f(x)+c_1\tilde{t}\nabla f(x)^Td)<0$$
.

INITIALIZATION: Choose $0 < c_1 < c_2 < 1$, and set $\alpha = 0$, t = 1, and $\beta = +\infty$.

Repeat

Wolfe Conditions

If
$$f(x+td) > f(x) + c_1 t f'(x;d)$$
,
set $\beta = t$ and reset $t = \frac{1}{2}(\alpha + \beta)$.
Else if $f'(x+td;d) < c_2 f'(x;d)$,
set $\alpha = t$ and reset
$$t = \begin{cases} 2\alpha, & \text{if } \beta = +\infty \\ \frac{1}{2}(\alpha + \beta), & \text{otherwise.} \end{cases}$$

Else, STOP.

END REPEAT

Let $\{x^{\nu}\}$ be a sequence initiated at x^{0} and generated by the following algorithm:

Let $\{x^{\nu}\}$ be a sequence initiated at x^{0} and generated by the following algorithm:

Step 0: Set k = 0.

Let $\{x^{\nu}\}$ be a sequence initiated at x^{0} and generated by the following algorithm:

Step 0: Set k = 0.

Step 1: Choose $d^k \in \mathbb{R}^n$ such that $f'(x^k; d^k) < 0$.

Let $\{x^{\nu}\}$ be a sequence initiated at x^{0} and generated by the following algorithm:

```
Step 0: Set k = 0.

Step 1: Choose d^k \in \mathbb{R}^n such that f'(x^k; d^k) < 0.

If no such d^k exists, then STOP.

(First-order necessary conditions satisfied at x^k.)
```

Let $\{x^{\nu}\}$ be a sequence initiated at x^{0} and generated by the following algorithm:

Step 0: Set k = 0.

Wolfe Conditions

Step 1: Choose $d^k \in \mathbb{R}^n$ such that $f'(x^k; d^k) < 0$. If no such d^k exists, then STOP. (First-order necessary conditions satisfied at x^k .)

Step 2: Let t^k be a stepsize satisfying the Weak Wolfe conditions.

Let $\{x^{\nu}\}$ be a sequence initiated at x^{0} and generated by the following algorithm:

- Step 0: Set k = 0.
- Step 1: Choose $d^k \in \mathbb{R}^n$ such that $f'(x^k; d^k) < 0$. If no such d^k exists, then STOP. (First-order necessary conditions satisfied at x^k .)
- Step 2: Let t^k be a stepsize satisfying the Weak Wolfe conditions. If no such t^k exists, then STOP.

(The function f is unbounded below.)

Let $\{x^{\nu}\}$ be a sequence initiated at x^{0} and generated by the following algorithm:

- Step 0: Set k = 0.
- Step 1: Choose $d^k \in \mathbb{R}^n$ such that $f'(x^k; d^k) < 0$. If no such d^k exists, then STOP. (First-order necessary conditions satisfied at x^k .)
- Step 2: Let t^k be a stepsize satisfying the Weak Wolfe conditions. If no such t^k exists, then STOP. (The function f is unbounded below.)
- Step 3: Set $x^{k+1} = x^k + t_k d^k$ and reset k = k + 1. Return to Step 1.

Let $f : \mathbb{R}^n \to \mathbb{R}$, $x^0 \in \mathbb{R}^n$, and $0 < c_1 < c_2 < 1$.

Let $f: \mathbb{R}^n \to \mathbb{R}$, $x^0 \in \mathbb{R}^n$, and $0 < c_1 < c_2 < 1$. Assume $\nabla f(x)$ exists and is Lipschitz continuous on an open set containing the set $\{x \mid f(x) \leq f(x^0)\}$.

Let $f : \mathbb{R}^n \to \mathbb{R}$, $x^0 \in \mathbb{R}^n$, and $0 < c_1 < c_2 < 1$.

Assume $\nabla f(x)$ exists and is Lipschitz continuous on an open set containing the set $\{x \mid f(x) \leq f(x^0)\}$.

Let $f : \mathbb{R}^n \to \mathbb{R}$, $x^0 \in \mathbb{R}^n$, and $0 < c_1 < c_2 < 1$.

Assume $\nabla f(x)$ exists and is Lipschitz continuous on an open set containing the set $\{x \mid f(x) \leq f(x^0)\}$.

If $\{x^{\nu}\}$ be a sequence initiated at x^0 and generated by the Weak Wolfe Descent Algorithm, then one of the following must occur:

(i) The algorithm terminates finitely at a 1^{st} -order stationary point for f.

Let $f : \mathbb{R}^n \to \mathbb{R}$, $x^0 \in \mathbb{R}^n$, and $0 < c_1 < c_2 < 1$.

Assume $\nabla f(x)$ exists and is Lipschitz continuous on an open set containing the set $\{x \mid f(x) \leq f(x^0)\}$.

- (i) The algorithm terminates finitely at a 1^{st} -order stationary point for f.
- (ii) For some k the stepsize selection procedure generates a sequence of trial stepsizes $t_{k\nu} \uparrow +\infty$ such that $f(x^k + t_{k\nu}d^k) \to -\infty$.

Let $f : \mathbb{R}^n \to \mathbb{R}$, $x^0 \in \mathbb{R}^n$, and $0 < c_1 < c_2 < 1$.

Assume $\nabla f(x)$ exists and is Lipschitz continuous on an open set containing the set $\{x \mid f(x) \leq f(x^0)\}$.

- (i) The algorithm terminates finitely at a 1^{st} -order stationary point for f.
- (ii) For some k the stepsize selection procedure generates a sequence of trial stepsizes $t_{k\nu} \uparrow +\infty$ such that $f(x^k + t_{k\nu} d^k) \to -\infty$.
- (iii) $f(x^k) \downarrow -\infty$.

Let $f : \mathbb{R}^n \to \mathbb{R}$, $x^0 \in \mathbb{R}^n$, and $0 < c_1 < c_2 < 1$.

Assume $\nabla f(x)$ exists and is Lipschitz continuous on an open set containing the set $\{x \mid f(x) \leq f(x^0)\}$.

- (i) The algorithm terminates finitely at a 1^{st} -order stationary point for f.
- (ii) For some k the stepsize selection procedure generates a sequence of trial stepsizes $t_{k\nu} \uparrow +\infty$ such that $f(x^k + t_{k\nu}d^k) \to -\infty$.
- (iii) $f(x^k) \downarrow -\infty$.
- (iv) $\sum_{k=0}^{\infty} \|\nabla f(x^k)\|^2 \cos^2 \theta_k < +\infty, \text{ where } \cos \theta_k = \frac{\nabla f(x^k)^T d^k}{\|\nabla f(x^k)\| \|d^k\|}$ for all $k=1,2,\ldots$

Weak Wolf Convergence: Corollary

Let f and $\{x^k\}$ be as in the Theorem, and let $\{H_k\}$ be a sequence of symmetric positive definite matrices for which there exists $\overline{\lambda} > \underline{\lambda} > 0$ such that

$$\underline{\lambda} \|u\|^2 \leq u^T H_k u \leq \overline{\lambda} \|u\|^2 \ \forall \ u \in \mathbb{R}^n \ \text{and} \ k = 1, 2, \dots.$$

Weak Wolf Convergence: Corollary

Let f and $\{x^k\}$ be as in the Theorem, and let $\{H_k\}$ be a sequence of symmetric positive definite matrices for which there exists $\overline{\lambda} > \underline{\lambda} > 0$ such that

$$\underline{\lambda} \|u\|^2 \leq u^T H_k u \leq \overline{\lambda} \|u\|^2 \ \forall \ u \in \mathbb{R}^n \ \text{and} \ k = 1, 2, \dots.$$

Let us further assume that f is bounded below.

Weak Wolf Convergence: Corollary

Let f and $\{x^k\}$ be as in the Theorem, and let $\{H_k\}$ be a sequence of symmetric positive definite matrices for which there exists $\overline{\lambda} > \underline{\lambda} > 0$ such that

$$\underline{\lambda} \|u\|^2 \le u^T H_k u \le \overline{\lambda} \|u\|^2 \ \forall \ u \in \mathbb{R}^n \ \text{and} \ k = 1, 2, \dots.$$

Let us further assume that f is bounded below. If the search directions d^k are given by

$$d^k = -H_k \nabla f(x^k) \ \forall \ k = 1, 2, \dots ,$$

then $\nabla f(x^k) \to 0$.

