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Lipschitz Continuity

We say that F : Rn → Rm is Lipschitz continuous relative to a
set D ⊂ Rn if there exists a constant K ≥ 0 such that

‖F (x)− F (y)‖ ≤ K‖x − y‖

for all x , y ∈ D.

Fact: Lipschitz continuity implies uniform continuity.

Examples:

1. f (x) = x−1 is continuous on (0, 1), but it is not uniformly
continuous on (0, 1).

2. f (x) =
√

x is uniformly continuous on [0, 1], but it is not
Lipschitz continuous on [0, 1].
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Lipschitz Continuity and the Derivative

Fact:If F ′ exists and is continuous on a compact convex set
D ⊂ Rm, then F is Lipschitz continuous on D.

Proof: By the MVT

‖F (x)− F (y)‖ ≤

(
sup

z∈[x ,y ]
‖F ′(z)‖

)
‖x − y‖.

Lipschitz continuity is almost but not quite a differentiability
hypothesis. The Lipschitz constant provides bounds on rate of
change. For example, every norm is Lipschitz continuous, but not
differentiable at the origin.
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The Quadratic Bound Lemma (QBL)

Let F : Rn → Rm be such that F ′ is Lipschitz continuous on the
convex set D ⊂ Rn. Then

‖F (y)− (F (x) + F ′(x)(y − x))‖ ≤ K

2
‖y − x‖2

for all x , y ∈ D where K is a Lipschitz constant for F ′ on D.
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Lipschitz Continuity and the Quadratic Bound Lemma

Proof:

F (y)− F (x)− F ′(x)(y − x) =
∫ 1

0
F ′(x + t(y − x))(y − x)dt − F ′(x)(y − x)

=
∫ 1

0
[F ′(x + t(y − x))− F ′(x)](y − x)dt

‖F (y)− (F (x) + F ′(x)(y − x))‖ = ‖
∫ 1

0
[F ′(x + t(y − x))− F ′(x)](y − x)dt‖

≤
∫ 1

0
‖(F ′(x + t(y − x)− F ′(x))(y − x)‖dt

≤
∫ 1

0
‖F ′(x + t(y − x))− F ′(x)‖ ‖y − x‖dt

≤
∫ 1

0
Kt‖y − x‖2dt

= K
2 ‖y − x‖2.
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Theorem: Convergence of Backtracking

Let f : Rn → R and x0 ∈ R be such that f is differentiable on Rn with
∇f Lipschitz continuous on an open convex set containing the set
{x : f (x) ≤ f (x0)}. Let {xk} be the sequence satisfying xk+1 = xk

if∇f (xk) = 0; otherwise,

xk+1 = xk + tkdk , where dk satisfies f ′(xk ; dk) < 0,

and tk is chosen by the backtracking stepsize selection method.

Then
one of thefollowing statements must be true:

(i) There is a k0 such that ∇f ′(xk0) = 0.

(ii) f (xk)↘ −∞
(iii) The sequence {‖dk‖} diverges (‖dk‖ → ∞).

(iv) For every subsequence J ⊂ N for which {dk : k ∈ J} is bounded, we
have

lim
k∈J

f ′(xk ; dk) = 0.
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Corollaries

Corollary 1:If the sequences {dk} and {f (xk)} are bounded, then

lim
k→∞

f ′(xk ; dk) = 0.

Corollary 2: If dk = −∇f ′(xk)/‖∇f (xk)‖ is the Cauchy direction
for all k, then every accumulation point, x, of the sequence {xk}
satisfies ∇f (x) = 0.
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Corollaries

Corollary 3: Let us further assume that f is twice continuously
differentiable and that there is a β > 0 such that, for all u ∈ Rn,
β‖u‖2 < uT∇2f (x)u on {x : f (x) ≤ f (x0)}. If the Basic
Backtracking algorithm is implemented using the Newton search
directions,

dk = −∇2f (xk)−1∇f (xk),

then every accumulation point, x, of the sequence {xk} satisfies
∇f (x) = 0.
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