Math 408A Convergence of Backtracking Methods

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ─ 臣 ─ ∽ �

Math 408A Convergence of Backtracking Methods

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ 三重 - 釣�?

Math 408A Convergence of Backtracking Methods

We say that $F : \mathbb{R}^n \to \mathbb{R}^m$ is **Lipschitz continuous** relative to a set $D \subset \mathbb{R}^n$ if there exists a constant $K \ge 0$ such that

$$\|F(x)-F(y)\|\leq K\|x-y\|$$

for all $x, y \in D$.

We say that $F : \mathbb{R}^n \to \mathbb{R}^m$ is **Lipschitz continuous** relative to a set $D \subset \mathbb{R}^n$ if there exists a constant $K \ge 0$ such that

$$\|F(x)-F(y)\|\leq K\|x-y\|$$

(日) (同) (三) (三)

for all $x, y \in D$.

Fact: Lipschitz continuity implies uniform continuity.

We say that $F : \mathbb{R}^n \to \mathbb{R}^m$ is **Lipschitz continuous** relative to a set $D \subset \mathbb{R}^n$ if there exists a constant $K \ge 0$ such that

$$\|F(x)-F(y)\|\leq K\|x-y\|$$

(日) (同) (三) (三)

for all $x, y \in D$.

Fact: Lipschitz continuity implies uniform continuity.

Examples:

We say that $F : \mathbb{R}^n \to \mathbb{R}^m$ is **Lipschitz continuous** relative to a set $D \subset \mathbb{R}^n$ if there exists a constant $K \ge 0$ such that

$$\|F(x)-F(y)\|\leq K\|x-y\|$$

for all $x, y \in D$.

Fact: Lipschitz continuity implies uniform continuity.

Examples:

1. $f(x) = x^{-1}$ is continuous on (0, 1), but it is not uniformly continuous on (0, 1).

<ロト <四ト <三ト <三ト = 三

We say that $F : \mathbb{R}^n \to \mathbb{R}^m$ is **Lipschitz continuous** relative to a set $D \subset \mathbb{R}^n$ if there exists a constant $K \ge 0$ such that

$$\|F(x)-F(y)\|\leq K\|x-y\|$$

for all $x, y \in D$.

Fact: Lipschitz continuity implies uniform continuity.

Examples:

- 1. $f(x) = x^{-1}$ is continuous on (0, 1), but it is not uniformly continuous on (0, 1).
- 2. $f(x) = \sqrt{x}$ is uniformly continuous on [0, 1], but it is not Lipschitz continuous on [0, 1].

イロン 不通 と 不良 と 不良 と 一項

Fact: If F' exists and is continuous on a compact convex set $D \subset \mathbb{R}^m$, then F is Lipschitz continuous on D.

Fact: If F' exists and is continuous on a compact convex set $D \subset \mathbb{R}^m$, then F is Lipschitz continuous on D.

Proof: By the MVT $\|F(x) - F(y)\| \le \left(\sup_{z \in [x,y]} \|F'(z)\|\right) \|x - y\|.$

Math 408A Convergence of Backtracking Methods

Fact: If F' exists and is continuous on a compact convex set $D \subset \mathbb{R}^m$, then F is Lipschitz continuous on D.

Proof: By the MVT
$$\|F(x) - F(y)\| \le \left(\sup_{z \in [x,y]} \|F'(z)\|\right) \|x - y\|.$$

Lipschitz continuity is almost but not quite a differentiability hypothesis. The Lipschitz constant provides bounds on rate of change.

Fact: If F' exists and is continuous on a compact convex set $D \subset \mathbb{R}^m$, then F is Lipschitz continuous on D.

Proof: By the MVT
$$\|F(x) - F(y)\| \le \left(\sup_{z \in [x,y]} \|F'(z)\|\right) \|x - y\|.$$

Lipschitz continuity is almost but not quite a differentiability hypothesis. The Lipschitz constant provides bounds on rate of change. For example, every norm is Lipschitz continuous, but not differentiable at the origin.

The Quadratic Bound Lemma (QBL)

Let $F : \mathbb{R}^n \to \mathbb{R}^m$ be such that F' is Lipschitz continuous on the convex set $D \subset \mathbb{R}^n$. Then

$$\|F(y) - (F(x) + F'(x)(y - x))\| \le \frac{K}{2} \|y - x\|^2$$

for all $x, y \in D$ where K is a Lipschitz constant for F' on D.

Lipschitz Continuity and the Quadratic Bound Lemma

Proof:

$$\begin{aligned} F(y) - F(x) - F'(x)(y - x) &= \int_0^1 F'(x + t(y - x))(y - x)dt - F'(x)(y - x) \\ &= \int_0^1 [F'(x + t(y - x)) - F'(x)](y - x)dt \\ \|F(y) - (F(x) + F'(x)(y - x))\| &= \|\int_0^1 [F'(x + t(y - x)) - F'(x)](y - x)dt\| \\ &\leq \int_0^1 \|(F'(x + t(y - x)) - F'(x))(y - x)\|dt \\ &\leq \int_0^1 \|F'(x + t(y - x)) - F'(x)\| \|y - x\|dt \\ &\leq \int_0^1 Kt\|y - x\|^2 dt \\ &= \frac{K}{2} \|y - x\|^2. \end{aligned}$$

A D F A B F A B F A

표 문 문

Theorem: Convergence of Backtracking

Let $f : \mathbb{R}^n \to \mathbb{R}$ and $x_0 \in \mathbb{R}$ be such that f is differentiable on \mathbb{R}^n with ∇f Lipschitz continuous on an open convex set containing the set $\{x : f(x) \le f(x_0)\}$. Let $\{x^k\}$ be the sequence satisfying $x^{k+1} = x^k$ if $\nabla f(x^k) = 0$; otherwise,

 $x^{k+1} = x_k + t_k d^k$, where d^k satisfies $f'(x^k; d^k) < 0$,

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 ● のへの

and t_k is chosen by the backtracking stepsize selection method.

Theorem: Convergence of Backtracking

Let $f : \mathbb{R}^n \to \mathbb{R}$ and $x_0 \in \mathbb{R}$ be such that f is differentiable on \mathbb{R}^n with ∇f Lipschitz continuous on an open convex set containing the set $\{x : f(x) \le f(x_0)\}$. Let $\{x^k\}$ be the sequence satisfying $x^{k+1} = x^k$ if $\nabla f(x^k) = 0$; otherwise,

 $x^{k+1} = x_k + t_k d^k$, where d^k satisfies $f'(x^k; d^k) < 0$,

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 ● のへの

and t_k is chosen by the backtracking stepsize selection method. Then one of the following statements must be true:

Theorem: Convergence of Backtracking

Let $f : \mathbb{R}^n \to \mathbb{R}$ and $x_0 \in \mathbb{R}$ be such that f is differentiable on \mathbb{R}^n with ∇f Lipschitz continuous on an open convex set containing the set $\{x : f(x) \le f(x_0)\}$. Let $\{x^k\}$ be the sequence satisfying $x^{k+1} = x^k$ if $\nabla f(x^k) = 0$; otherwise,

 $x^{k+1} = x_k + t_k d^k$, where d^k satisfies $f'(x^k; d^k) < 0$,

▲ロト ▲圖ト ▲画ト ▲画ト 三回 - のへで

and t_k is chosen by the backtracking stepsize selection method. Then one of the following statements must be true:

(i) There is a k_0 such that $\nabla f'(x^{k_0}) = 0$.

Theorem: Convergence of Backtracking

Let $f : \mathbb{R}^n \to \mathbb{R}$ and $x_0 \in \mathbb{R}$ be such that f is differentiable on \mathbb{R}^n with ∇f Lipschitz continuous on an open convex set containing the set $\{x : f(x) \le f(x_0)\}$. Let $\{x^k\}$ be the sequence satisfying $x^{k+1} = x^k$ if $\nabla f(x^k) = 0$; otherwise,

 $x^{k+1} = x_k + t_k d^k$, where d^k satisfies $f'(x^k; d^k) < 0$,

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 ● のへの

and t_k is chosen by the backtracking stepsize selection method. Then one of the following statements must be true:

(i) There is a
$$k_0$$
 such that $\nabla f'(x^{k_0}) = 0$.
(ii) $f(x^k) \searrow -\infty$

Theorem: Convergence of Backtracking

Let $f : \mathbb{R}^n \to \mathbb{R}$ and $x_0 \in \mathbb{R}$ be such that f is differentiable on \mathbb{R}^n with ∇f Lipschitz continuous on an open convex set containing the set $\{x : f(x) \le f(x_0)\}$. Let $\{x^k\}$ be the sequence satisfying $x^{k+1} = x^k$ if $\nabla f(x^k) = 0$; otherwise,

$$x^{k+1} = x_k + t_k d^k$$
, where d^k satisfies $f'(x^k; d^k) < 0$,

and t_k is chosen by the backtracking stepsize selection method. Then one of the following statements must be true:

(i) There is a
$$k_0$$
 such that $\nabla f'(x^{k_0}) = 0$.

(ii)
$$f(x^k) \searrow -\infty$$

(iii) The sequence $\{ \|d^k\| \}$ diverges $(\|d^k\| \to \infty)$.

Theorem: Convergence of Backtracking

Let $f : \mathbb{R}^n \to \mathbb{R}$ and $x_0 \in \mathbb{R}$ be such that f is differentiable on \mathbb{R}^n with ∇f Lipschitz continuous on an open convex set containing the set $\{x : f(x) \le f(x_0)\}$. Let $\{x^k\}$ be the sequence satisfying $x^{k+1} = x^k$ if $\nabla f(x^k) = 0$; otherwise,

$$x^{k+1} = x_k + t_k d^k$$
, where d^k satisfies $f'(x^k; d^k) < 0$

and t_k is chosen by the backtracking stepsize selection method. Then one of the following statements must be true:

(i) There is a
$$k_0$$
 such that $\nabla f'(x^{k_0}) = 0$.

(ii) $f(x^k) \searrow -\infty$

(iii) The sequence $\{ \|d^k\| \}$ diverges $(\|d^k\| \to \infty)$.

(iv) For every subsequence $J \subset \mathbb{N}$ for which $\{d^k : k \in J\}$ is bounded, we have

$$\lim_{k\in J}f'(x^k;d^k)=0.$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

Corollaries

Corollary 1: If the sequences $\{d^k\}$ and $\{f(x^k)\}$ are bounded, then

$$\lim_{k\to\infty}f'(x^k;d^k)=0.$$

3

メロト メポト メヨト メヨト

Corollaries

Corollary 1: If the sequences $\{d^k\}$ and $\{f(x^k)\}$ are bounded, then

$$\lim_{k\to\infty}f'(x^k;d^k)=0.$$

Corollary 2: If $d^k = -\nabla f'(x^k)/||\nabla f(x^k)||$ is the Cauchy direction for all k, then every accumulation point, \overline{x} , of the sequence $\{x^k\}$ satisfies $\nabla f(\overline{x}) = 0$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

3

Corollaries

Corollary 3: Let us further assume that f is twice continuously differentiable and that there is a $\beta > 0$ such that, for all $u \in \mathbb{R}^n$, $\beta ||u||^2 < u^T \nabla^2 f(x) u$ on $\{x : f(x) \le f(x^0)\}$. If the Basic Backtracking algorithm is implemented using the Newton search directions,

$$d^k = -\nabla^2 f(x^k)^{-1} \nabla f(x^k),$$

< ロ > < 同 > < 回 > < 回 > < 回

then every accumulation point, \overline{x} , of the sequence $\{x^k\}$ satisfies $\nabla f(\overline{x}) = 0$.