Math 408A
Convexity
Convexity

Convexity and optimality
 Directional Derivatives and Convexity

The Subdifferential Inequality

Convexity and Optimality Conditions

Sublinear Functionals

Examples of Convex Functions
Convexity

Definition: A set $C \subset \mathbb{R}^n$ is said to be convex if for every $x, y \in C$ and $\lambda \in [0, 1]$ one has

$$(1 - \lambda)x + \lambda y \in C.$$
Convexity

Definition: A set $C \subset \mathbb{R}^n$ is said to be convex if for every $x, y \in C$ and $\lambda \in [0, 1]$ one has

$$(1 - \lambda)x + \lambda y \in C.$$

Definition: A function $f : \mathbb{R}^n \to \mathbb{R}$ is said to be convex if for every two points $x_1, x_2 \in \mathbb{R}^n$ and $\lambda \in [0, 1]$ we have

$$f(\lambda x_1 + (1 - \lambda)x_2) \leq \lambda f(x_1) + (1 - \lambda)f(x_2).$$
Convexity

Definition: A set $C \subset \mathbb{R}^n$ is said to be convex if for every $x, y \in C$ and $\lambda \in [0, 1]$ one has

$$(1 - \lambda)x + \lambda y \in C.$$

Definition: A function $f : \mathbb{R}^n \rightarrow \mathbb{R}$ is said to be convex if for every two points $x_1, x_2 \in \mathbb{R}^n$ and $\lambda \in [0, 1]$ we have

$$f(\lambda x_1 + (1 - \lambda)x_2) \leq \lambda f(x_1) + (1 - \lambda)f(x_2).$$

The function f is said to be strictly convex if for every two distinct points $x_1, x_2 \in \mathbb{R}^n$ and $\lambda \in [0, 1]$ we have

$$f(\lambda x_1 + (1 - \lambda)x_2) < \lambda f(x_1) + (1 - \lambda)f(x_2).$$
Convexity

The secant line connecting \((x_1, f(x_1))\) and \((x_2, f(x_2))\) lies above the graph of \(f\).
Convexity

The secant line connecting \((x_1, f(x_1))\) and \((x_2, f(x_2))\) lies above the graph of \(f\).
Convexity

The secant line connecting \((x_1, f(x_1))\) and \((x_2, f(x_2))\) lies above the graph of \(f\).

That is, the set

\[
\text{epi}(f) = \{(x, \mu) : f(x) \leq \mu\},
\]

called the *epi-graph* of \(f\), is a convex set.
Convexity

Definition: A function \(f : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\} = \bar{\mathbb{R}} \) is said to be convex if the set \(\text{epi}(f) = \{(x, \mu) : f(x) \leq \mu\} \) is a convex set. We also define the essential domain of \(f \) to be the set

\[
\text{dom}(f) = \{x : f(x) < +\infty\}.
\]
Convexity

Definition: A function $f : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\} = \bar{\mathbb{R}}$ is said to be convex if the set $\text{epi}(f) = \{(x, \mu) : f(x) \leq \mu\}$ is a convex set. We also define the essential domain of f to be the set

$$\text{dom}(f) = \{x : f(x) < +\infty\}.$$

Examples of convex functions are

$$c^T x, \quad \|x\|, \quad x^T H x \quad \text{when } H \text{ is psd.}$$
Convexity and Optimality

Theorem: Let $f : \mathbb{R}^n \to \bar{\mathbb{R}}$ be convex. If $\bar{x} \in \mathbb{R}^n$ is a local minimum for f, then \bar{x} is a global minimum for f. If, in addition, f is strictly convex, then \bar{x} is the unique global minimizer.
Convexity and Optimality

Proof: Suppose \(f(\hat{x}) < f(\bar{x}) \). Let \(\epsilon > 0 \) be such that

\[
f(\bar{x}) \leq f(x) \quad \text{whenever} \quad \|x - \bar{x}\| \leq \epsilon \quad \text{and} \quad \epsilon < 2\|\bar{x} - \hat{x}\|.
\]
Proof: Suppose \(f(\hat{x}) < f(\overline{x}) \). Let \(\epsilon > 0 \) be such that

\[
f(\overline{x}) \leq f(x) \quad \text{whenever} \quad \|x - \overline{x}\| \leq \epsilon \quad \text{and} \quad \epsilon < 2\|\overline{x} - \hat{x}\|.
\]

Set \(\lambda := \epsilon (2\|\overline{x} - \hat{x}\|)^{-1} < 1 \) and \(x_\lambda := \overline{x} + \lambda (\hat{x} - \overline{x}) \).
Convexity and Optimality

Proof: Suppose $f(\hat{x}) < f(\bar{x})$. Let $\epsilon > 0$ be such that

$$f(\bar{x}) \leq f(x) \quad \text{whenever} \quad \|x - \bar{x}\| \leq \epsilon \quad \text{and} \quad \epsilon < 2\|\bar{x} - \hat{x}\|.$$

Set $\lambda := \epsilon(2\|\bar{x} - \hat{x}\|)^{-1} < 1$ and $x_\lambda := \bar{x} + \lambda(\hat{x} - \bar{x})$. Then $\|x_\lambda - \bar{x}\| \leq \epsilon/2$ and

$$f(x_\lambda) \leq (1 - \lambda)f(\bar{x}) + \lambda f(\hat{x}) < f(\bar{x}).$$
Proof: Suppose $f(\hat{x}) < f(\overline{x})$. Let $\epsilon > 0$ be such that

$$f(\overline{x}) \leq f(x) \quad \text{whenever} \quad \|x - \overline{x}\| \leq \epsilon \quad \text{and} \quad \epsilon < 2\|\overline{x} - \hat{x}\|.$$

Set $\lambda := \epsilon(2\|\overline{x} - \hat{x}\|)^{-1} < 1$ and $x_\lambda := \overline{x} + \lambda(\hat{x} - \overline{x})$. Then $\|x_\lambda - \overline{x}\| \leq \epsilon/2$ and

$$f(x_\lambda) \leq (1 - \lambda)f(\overline{x}) + \lambda f(\hat{x}) < f(\overline{x}).$$

This contradicts the choice of ϵ and so no such \hat{x} exists.
Lemma: \(f : \mathbb{R}^n \rightarrow \overline{\mathbb{R}} \) be convex (not necessarily differentiable).
Lemma: Let \(f : \mathbb{R}^n \to \bar{\mathbb{R}} \) be convex (not necessarily differentiable).

1. Given \(x, d \in \mathbb{R}^n \) the difference quotient

\[
\frac{f(x + td) - f(x)}{t}
\]

is a non-decreasing function of \(t \) on \((0, +\infty)\).
Lemma: Let $f : \mathbb{R}^n \rightarrow \overline{\mathbb{R}}$ be convex (not necessarily differentiable).

1. Given $x, d \in \mathbb{R}^n$ the difference quotient

$$\frac{f(x + td) - f(x)}{t}$$

is a non-decreasing function of t on $(0, +\infty)$.

2. For every $x, d \in \mathbb{R}^n$ the directional derivative $f'(x; d)$ always exists and is given by

$$f'(x; d) := \inf_{t > 0} \frac{f(x + td) - f(x)}{t}.$$
We first assume (1) is true and show (2).
We first assume (1) is true and show (2).
Recall that
\[f'(x; d) := \lim_{t \downarrow 0} \frac{f(x + td) - f(x)}{t}. \]

Now if the difference quotient on the right is non-decreasing in \(t \) on \((0, +\infty)\), then the limit is necessarily given by the infimum of these ratios.
We first assume (1) is true and show (2).
Recall that

\[f'(x; d) := \lim_{t \downarrow 0} \frac{f(x + td) - f(x)}{t}. \]

Now if the difference quotient on the right is non-decreasing in \(t \) on \((0, +\infty)\), then the limit is necessarily given by the infimum of these ratios.
This infimum always exists and so \(f'(x; d) \) always exists and is given by the infimum.
We now show that \(\frac{f(x+td) - f(x)}{t} \) is non-decreasing for \(t > 0 \).
Directional Derivatives and Convexity

We now show that \(\frac{f(x+td)-f(x)}{t} \) is non-decreasing for \(t > 0 \).

Let \(x, d \in \mathbb{R}^n \) and let \(0 < t_1 < t_2 \). Then
We now show that \(\frac{f(x+td)-f(x)}{t} \) is non-decreasing for \(t > 0 \).

Let \(x, d \in \mathbb{R}^n \) and let \(0 < t_1 < t_2 \). Then

\[
f(x + t_1 d) = f \left(x + \left(\frac{t_1}{t_2} \right) t_2 d \right)
\]
We now show that \(\frac{f(x+td)-f(x)}{t} \) is non-decreasing for \(t > 0 \).

Let \(x, d \in \mathbb{R}^n \) and let \(0 < t_1 < t_2 \). Then

\[
\begin{align*}
f(x + t_1 d) &= f \left(x + \left(\frac{t_1}{t_2} \right) t_2 d \right) \\
&= f \left[\left(1 - \left(\frac{t_1}{t_2} \right) \right) x + \left(\frac{t_1}{t_2} \right) (x + t_2 d) \right]
\end{align*}
\]
We now show that $\frac{f(x+td)-f(x)}{t}$ is non-decreasing for $t > 0$.

Let $x, d \in \mathbb{R}^n$ and let $0 < t_1 < t_2$. Then

$$f(x + t_1 d) = f \left(x + \left(\frac{t_1}{t_2} \right) t_2 d \right)$$

$$= f \left[\left(1 - \left(\frac{t_1}{t_2} \right) \right) x + \left(\frac{t_1}{t_2} \right) (x + t_2 d) \right]$$

$$\leq \left(1 - \frac{t_1}{t_2} \right) f(x) + \left(\frac{t_1}{t_2} \right) f(x + t_2 d).$$
We now show that \(\frac{f(x+td)-f(x)}{t} \) is non-decreasing for \(t > 0 \).

Let \(x, d \in \mathbb{R}^n \) and let \(0 < t_1 < t_2 \). Then

\[
\begin{align*}
 f(x + t_1 d) &= f \left(x + \left(\frac{t_1}{t_2} \right) t_2 d \right) \\
 &= f \left[\left(1 - \left(\frac{t_1}{t_2} \right) \right) x + \left(\frac{t_1}{t_2} \right) (x + t_2 d) \right] \\
 &\leq \left(1 - \frac{t_1}{t_2} \right) f(x) + \left(\frac{t_1}{t_2} \right) f(x + t_2 d).
\end{align*}
\]

Hence

\[
\frac{f(x + t_1 d) - f(x)}{t_1} \leq \frac{f(x + t_2 d) - f(x)}{t_2}.
\]
The Subdifferential Inequality

If $f : \mathbb{R}^n \to \mathbb{R}$ is convex, then for all $x \in \text{dom}(f)$ and $y \in \mathbb{R}^n$,

$$f'(x; (y - x)) = \inf_{t > 0} \frac{f(x + t(y - x)) - f(x)}{t}.$$
The Subdifferential Inequality

If \(f : \mathbb{R}^n \to \mathbb{R} \) is convex, then for all \(x \in \text{dom}(f) \) and \(y \in \mathbb{R}^n \),

\[
f'(x; (y - x)) = \inf_{t > 0} \frac{f(x + t(y - x)) - f(x)}{t}.
\]

Plug in \(t = 1 \) on the right hand side to get

\[
f(y) \geq f(x) + f'(x; (y - x)) \quad \forall \ y \in \mathbb{R}^n.
\]
The Subdifferential Inequality

If $f : \mathbb{R}^n \rightarrow \mathbb{R}$ is convex, then for all $x \in \text{dom}(f)$ and $y \in \mathbb{R}^n$,

$$f'(x; (y - x)) = \inf_{t > 0} \frac{f(x + t(y - x)) - f(x)}{t}.$$

Plug in $t = 1$ on the right hand side to get

$$f(y) \geq f(x) + f'(x; (y - x)) \quad \forall \ y \in \mathbb{R}^n.$$

We will call this inequality the \textit{subdifferential inequality}.
The Subdifferential Inequality

If \(f : \mathbb{R}^n \to \mathbb{R} \) is convex, then for all \(x \in \text{dom} \,(f) \) and \(y \in \mathbb{R}^n \),

\[
f'(x; (y - x)) = \inf_{t > 0} \frac{f(x + t(y - x)) - f(x)}{t}.
\]

Plug in \(t = 1 \) on the right hand side to get

\[
f(y) \geq f(x) + f'(x; (y - x)) \quad \forall \ y \in \mathbb{R}^n.
\]

When \(f \) is differentiable at \(x \), this inequality becomes

\[
f(y) \geq f(x) + \nabla f(x)^T (y - x) \quad \forall \ y \in \mathbb{R}^n.
\]
The Subdifferential Inequality

If \(f : \mathbb{R}^n \to \mathbb{R} \) is convex, then for all \(x \in \text{dom}(f) \) and \(y \in \mathbb{R}^n \),

\[
f'(x; (y - x)) = \inf_{t > 0} \frac{f(x + t(y - x)) - f(x)}{t}.
\]

Plug in \(t = 1 \) on the right hand side to get

\[
f(y) \geq f(x) + f'(x; (y - x)) \quad \forall \ y \in \mathbb{R}^n.
\]

When \(f \) is differentiable at \(x \), this inequality becomes

\[
f(y) \geq f(x) + \nabla f(x)^T (y - x) \quad \forall \ y \in \mathbb{R}^n.
\]

This inequality states that the tangent plane to the graph of \(f \) lies entirely below the graph of \(f \).
Convexity and Optimality Conditions

Theorem: Let $f : \mathbb{R}^n \to \bar{\mathbb{R}}$ be convex (not necessarily differentiable) and let $\bar{x} \in \text{dom}(f)$. Then the following three statements are equivalent.

(i) \bar{x} is a local solution to $\min_{x \in \mathbb{R}^n} f(x)$.

(ii) $f'(\bar{x}; d) \geq 0$ for all $d \in \mathbb{R}^n$.

(iii) \bar{x} is a global solution to $\min_{x \in \mathbb{R}^n} f(x)$.

Proof: (i) \Rightarrow (ii): Done.

(ii) \Rightarrow (iii): Follows from the subdifferential inequality; $f(y) \geq f(\bar{x}) + f'(\bar{x}; (y - x)) \geq f(\bar{x}) \forall y \in \mathbb{R}^n$.

(iii) \Rightarrow (i): Obvious.
Convexity and Optimality Conditions

Theorem: Let $f : \mathbb{R}^n \to \mathbb{R}$ be convex (not necessarily differentiable) and let $\bar{x} \in \text{dom}(f)$. Then the following three statements are equivalent.

(i) \bar{x} is a local solution to $\min_{x \in \mathbb{R}^n} f(x)$.

(ii) $f'(\bar{x}; d) \geq 0$ for all $d \in \mathbb{R}^n$.

(iii) \bar{x} is a global solution to $\min_{x \in \mathbb{R}^n} f(x)$.

Proof: (i) \Rightarrow (ii): Done.

(ii) \Rightarrow (iii): Follows from the subdifferential inequality; $f(y) \geq f(\bar{x}) + f'(\bar{x}; (y-x)) \geq f(\bar{x}) \forall y \in \mathbb{R}^n$.

(iii) \Rightarrow (i): Obvious.
Theorem: Let $f : \mathbb{R}^n \rightarrow \bar{\mathbb{R}}$ be convex (not necessarily differentiable) and let $\bar{x} \in \text{dom}(f)$. Then the following three statements are equivalent.

(i) \bar{x} is a local solution to $\min_{x \in \mathbb{R}^n} f(x)$.
(ii) $f'(\bar{x}; d) \geq 0$ for all $d \in \mathbb{R}^n$.
Convexity and Optimality Conditions

Theorem: Let $f : \mathbb{R}^n \rightarrow \mathbb{R}$ be convex (not necessarily differentiable) and let $\bar{x} \in \text{dom}(f)$. Then the following three statements are equivalent.

(i) \bar{x} is a local solution to $\min_{x \in \mathbb{R}^n} f(x)$.
(ii) $f'(\bar{x}; d) \geq 0$ for all $d \in \mathbb{R}^n$.
(iii) \bar{x} is a global solution to $\min_{x \in \mathbb{R}^n} f(x)$.

Proof: (i) \Rightarrow (ii): Done.
(ii) \Rightarrow (iii): Follows from the subdifferential inequality; $f(y) \geq f(\bar{x}) + f'(\bar{x}; (y-x)) \geq f(\bar{x}) \forall y \in \mathbb{R}^n$.
(iii) \Rightarrow (i): Obvious.
Convexity and Optimality Conditions

Theorem: Let $f : \mathbb{R}^n \rightarrow \bar{\mathbb{R}}$ be convex (not necessarily differentiable) and let $\bar{x} \in \text{dom}(f)$. Then the following three statements are equivalent.

(i) \bar{x} is a local solution to $\min_{x \in \mathbb{R}^n} f(x)$.
(ii) $f'(\bar{x}; d) \geq 0$ for all $d \in \mathbb{R}^n$.
(iii) \bar{x} is a global solution to $\min_{x \in \mathbb{R}^n} f(x)$.

Proof: (i)\Rightarrow(ii): Done.

(ii)\Rightarrow(iii): Follows from the subdifferential inequality; $f(y) \geq f(\bar{x}) + f'(\bar{x}; (y-x)) \geq f(\bar{x}) \forall y \in \mathbb{R}^n$.

(iii)\Rightarrow(i): Obvious.
Convexity and Optimality Conditions

Theorem: Let $f : \mathbb{R}^n \to \bar{\mathbb{R}}$ be convex (not necessarily differentiable) and let $\bar{x} \in \text{dom}(f)$. Then the following three statements are equivalent.

(i) \bar{x} is a local solution to $\min_{x \in \mathbb{R}^n} f(x)$.

(ii) $f'(\bar{x}; d) \geq 0$ for all $d \in \mathbb{R}^n$.

(iii) \bar{x} is a global solution to $\min_{x \in \mathbb{R}^n} f(x)$.

Proof: (i)\Rightarrow(ii): Done.

(ii)\Rightarrow(iii): Follows from the subdifferential inequality;

$$f(y) \geq f(\bar{x}) + f'(\bar{x}; (y - \bar{x})) \geq f(\bar{x}) \quad \forall \, y \in \mathbb{R}^n.$$
Convexity and Optimality Conditions

Theorem: Let $f : \mathbb{R}^n \to \tilde{\mathbb{R}}$ be convex (not necessarily differentiable) and let $\bar{x} \in \text{dom}(f)$. Then the following three statements are equivalent.

(i) \bar{x} is a local solution to $\min_{x \in \mathbb{R}^n} f(x)$.

(ii) $f'(\bar{x}; d) \geq 0$ for all $d \in \mathbb{R}^n$.

(iii) \bar{x} is a global solution to $\min_{x \in \mathbb{R}^n} f(x)$.

Proof: (i)⇒(ii): Done.

(ii)⇒(iii): Follows from the subdifferential inequality;

$$f(y) \geq f(\bar{x}) + f'(\bar{x}; (y - x)) \geq f(\bar{x}) \quad \forall \ y \in \mathbb{R}^n.$$

(iii)⇒(i): Obvious.
Theorem: Let \(f : \mathbb{R}^n \to \mathbb{R} \) be convex and suppose that \(\overline{x} \in \mathbb{R}^n \) is a point at which \(f \) is differentiable. Then \(\overline{x} \) is a global minimum of \(f \) if and only if \(\nabla f(\overline{x}) = 0 \).
Checking Convexity

Theorem: Let $f : \mathbb{R}^n \to \bar{\mathbb{R}}$.

If f is differentiable on \mathbb{R}^n, then the following statements are equivalent.

If f is twice differentiable then f is convex if and only if $\nabla^2 f(x)$ is positive semi-definite for all $x \in \mathbb{R}^n$.
Checking Convexity

Theorem: Let $f : \mathbb{R}^n \rightarrow \bar{\mathbb{R}}$.

If f is differentiable on \mathbb{R}^n, then the following statements are equivalent.

(1) f is convex,

If f is twice differentiable then f is convex if and only if $\nabla^2 f(x)$ is positive semi-definite for all $x \in \mathbb{R}^n$.

Math 408A Convexity
Theorem: Let $f: \mathbb{R}^n \rightarrow \bar{\mathbb{R}}$.

If f *is differentiable on* \mathbb{R}^n, *then the following statements are equivalent.*

1. f *is convex,*
2. $f(y) \geq f(x) + \nabla f(x)^T (y - x)$ for all $x, y \in \mathbb{R}^n$
Checking Convexity

Theorem: Let $f : \mathbb{R}^n \rightarrow \tilde{\mathbb{R}}$.

If f is differentiable on \mathbb{R}^n, then the following statements are equivalent.

1. f is convex,
2. $f(y) \geq f(x) + \nabla f(x)^T (y - x)$ for all $x, y \in \mathbb{R}^n$
3. $(\nabla f(x) - \nabla f(y))^T (x - y) \geq 0$ for all $x, y \in \mathbb{R}^n$.

Theorem: Let $f : \mathbb{R}^n \to \bar{\mathbb{R}}$.

If f is differentiable on \mathbb{R}^n, then the following statements are equivalent.

1. f is convex,
2. $f(y) \geq f(x) + \nabla f(x)^T (y - x)$ for all $x, y \in \mathbb{R}^n$
3. $(\nabla f(x) - \nabla f(y))^T (x - y) \geq 0$ for all $x, y \in \mathbb{R}^n$.

If f is twice differentiable then f is convex if and only if $\nabla^2 f(x)$ is positive semi-definite for all $x \in \mathbb{R}^n$.
\[f(y) \geq f(x) + \nabla f(x)^T(y - x) \quad \forall x, y \in \mathbb{R}^n \Rightarrow \]
\[(\nabla f(x) - \nabla f(y))^T(x - y) \geq 0 \quad \forall x, y \in \mathbb{R}^n \]

For all \(x, y \in \mathbb{R}^n \), the subdifferential inequality gives

\[
\begin{align*}
 f(y) & \geq f(x) + \nabla f(x)^T(y - x) \\
 f(x) & \geq f(y) + \nabla f(y)^T(x - y)
\end{align*}
\]

Adding these two inequalities and canceling like terms from each side gives

\[
0 \geq \nabla f(x)^T(y - x) + \nabla f(y)^T(x - y)
\]

or equivalently

\[
0 \leq (\nabla f(x) - \nabla f(y))^T(x - y) .
\]
(\nabla f(x) - \nabla f(y))^T (x - y) \geq 0 \ \forall \ x, y \in \mathbb{R}^n \ \Rightarrow \\
f(y) \geq f(x) + \nabla f(x)^T (y - x) \ \forall \ x, y \in \mathbb{R}^n

Let \ x, y \in \mathbb{R}^n. \ By \ the \ MVT \ there \ exists \ 0 < \lambda < 1 \ such \ that \\
\hspace{1cm} f(y) - f(x) = \nabla f(x_{\lambda})^T (y - x) \\
where \ x_{\lambda} := \lambda y + (1 - \lambda)x. \ Then \\
\hspace{1cm} 0 \leq [\nabla f(x_{\lambda}) - \nabla f(x)]^T (x_{\lambda} - x) \\
\hspace{1cm} = \lambda [\nabla f(x_{\lambda}) - \nabla f(x)]^T (y - x) \\
\hspace{1cm} = \lambda [f(y) - f(x) - \nabla f(x)^T (y - x)]. \\
Hence \ f(y) \geq f(x) + \nabla f(x)^T (y - x).
\[f(y) \geq f(x) + \nabla f(x)^T (y - x) \quad \forall x, y \in \mathbb{R}^n \Rightarrow f \text{ is convex} \]

Let \(x, y \in \mathbb{R}^n \) and set

\[\alpha := \max_{\lambda \in [0,1]} \varphi(\lambda) := [f(\lambda y + (1 - \lambda)x) - (\lambda f(y) + (1 - \lambda)f(x))]. \]
\[f(y) \geq f(x) + \nabla f(x)^T(y - x) \quad \forall x, y \in \mathbb{R}^n \implies f \text{ is convex} \]

Let \(x, y \in \mathbb{R}^n \) and set

\[\alpha := \max_{\lambda \in [0,1]} \varphi(\lambda) := [f(\lambda y + (1 - \lambda)x) - (\lambda f(y) + (1 - \lambda)f(x))]. \]

Show \(\alpha \leq 0. \)
Let $x, y \in \mathbb{R}^n$ and set
\[
\alpha := \max_{\lambda \in [0,1]} \varphi(\lambda) := [f(\lambda y + (1 - \lambda)x) - (\lambda f(y) + (1 - \lambda)f(x))].
\]
Show $\alpha \leq 0$.

$[0, 1]$ is compact and φ continuous, so $\exists \lambda \in [0, 1]$ such that $\varphi(\lambda) = \alpha$.

\[f(y) \geq f(x) + \nabla f(x)^T (y - x) \quad \forall x, y \in \mathbb{R}^n \Rightarrow f \text{ is convex}\]
Let $x, y \in \mathbb{R}^n$ and set

$$\alpha := \max_{\lambda \in [0,1]} \varphi(\lambda) := [f(\lambda y + (1 - \lambda)x) - (\lambda f(y) + (1 - \lambda)f(x))].$$

Show $\alpha \leq 0$.

$[0, 1]$ is compact and φ continuous, so $\exists \lambda \in [0, 1]$ such that $\varphi(\lambda) = \alpha$.

If λ equals 0 or 1, we are done, so assume $0 < \lambda < 1$.

$$f(y) \geq f(x) + \nabla f(x)^T (y - x) \quad \forall x, y \in \mathbb{R}^n \implies f \text{ is convex}$$
$f(y) \geq f(x) + \nabla f(x)^T(y - x) \ \forall x, y \in \mathbb{R}^n \ \Rightarrow \ f \text{ is convex}$

Let $x, y \in \mathbb{R}^n$ and set

$$\alpha := \max_{\lambda \in [0,1]} \varphi(\lambda) := [f(\lambda y + (1 - \lambda)x) - (\lambda f(y) + (1 - \lambda)f(x))].$$

Show $\alpha \leq 0$.

$[0, 1]$ is compact and φ continuous, so $\exists \lambda \in [0, 1]$ such that $\varphi(\lambda) = \alpha$.

If λ equals 0 or 1, we are done, so assume $0 < \lambda < 1$. Then

$$0 = \varphi'(\lambda) = \nabla f(x_\lambda)^T(y - x) + f(x) - f(y)$$

where $x_\lambda = x + \lambda(y - x)$, or equivalently

$$\lambda(f(y) - f(x)) = -\nabla f(x_\lambda)^T(x - x_\lambda).$$
Let \(x, y \in \mathbb{R}^n \) and set
\[
\alpha := \max_{\lambda \in [0, 1]} \varphi(\lambda) := [f(\lambda y + (1 - \lambda)x) - (\lambda f(y) + (1 - \lambda)f(x))].
\]
Show \(\alpha \leq 0 \).

\([0, 1]\) is compact and \(\varphi \) continuous, so \(\exists \lambda \in [0, 1] \) such that \(\varphi(\lambda) = \alpha \).
If \(\lambda \) equals 0 or 1, we are done, so assume \(0 < \lambda < 1 \). Then
\[
0 = \varphi'(\lambda) = \nabla f(x_\lambda)^T(y - x) + f(x) - f(y)
\]
where \(x_\lambda = x + \lambda(y - x) \), or equivalently
\[
\lambda(f(y) - f(x)) = -\nabla f(x_\lambda)^T(x - x_\lambda).
\]
Hence, by the subdifferential inequality,
\[
\alpha = f(x_\lambda) - (f(x) + \lambda(f(y) - f(x))) = f(x_\lambda) + \nabla f(x_\lambda)^T(x - x_\lambda) - f(x) \leq 0
\]
If f is convex,

$$f(x + td) \geq f(x) + t \nabla f(x)^T d \quad \forall \ t \in \mathbb{R}, \ x, d \in \mathbb{R}^n.$$
If f is convex,

$$f(x + td) \geq f(x) + t
\nabla f(x)^T d \quad \forall \ t \in \mathbb{R}, \ x, d \in \mathbb{R}^n.$$

So

$$f(x) + t\nabla f(x)^T d + \frac{t^2}{2}d^T\nabla^2 f(x)d + o(t^2) \geq f(x) + t\nabla f(x)^T d$$
If f is convex,

$$f(x + td) \geq f(x) + t\nabla f(x)^T d \quad \forall \ t \in \mathbb{R}, \ x, d \in \mathbb{R}^n.$$

So

$$f(x) + t\nabla f(x)^T d + \frac{t^2}{2} d^T \nabla^2 f(x)d + o(t^2) \geq f(x) + t\nabla f(x)^T d$$

or equivalently

$$\frac{1}{2}d^T \nabla^2 f(x)d + \frac{o(t^2)}{t^2} \geq 0.$$
\(f \) convex \(\Rightarrow \nabla^2 f(x) \) PSD on \(\mathbb{R}^n \)

If \(f \) is convex,
\[
f(x + td) \geq f(x) + t \nabla f(x)^T d \quad \forall \ t \in \mathbb{R}, \ x, d \in \mathbb{R}^n.
\]

So
\[
f(x) + t \nabla f(x)^T d + \frac{t^2}{2} d^T \nabla^2 f(x) d + o(t^2) \geq f(x) + t \nabla f(x)^T d
\]

or equivalently
\[
\frac{1}{2} d^T \nabla^2 f(x) d + \frac{o(t^2)}{t^2} \geq 0.
\]

Letting \(t \to 0 \) yields the inequality
\[
d^T \nabla^2 f(x) d \geq 0.
\]
f convex $\iff \nabla^2 f(x)$ PSD on \mathbb{R}^n

For $x, y \in \mathbb{R}^n$, the MVT implies there exists $\lambda \in (0, 1)$ such that

$$f(y) = f(x) + \nabla f(x)^T (y - x) + \frac{1}{2} (y - x)^T \nabla^2 f(x_\lambda) (y - x)$$

where $x_\lambda = \lambda y + (1 - \lambda)x$.
f convex $\iff \nabla^2 f(x)$ PSD on \mathbb{R}^n

For $x, y \in \mathbb{R}^n$, the MVT implies there exists $\lambda \in (0, 1)$ such that

$$f(y) = f(x) + \nabla f(x)^T (y - x) + \frac{1}{2} (y - x)^T \nabla^2 f(x_\lambda) (y - x)$$

where $x_\lambda = \lambda y + (1 - \lambda)x$.

Hence

$$f(y) \geq f(x) + \nabla f(x)^T (y - x)$$

since $\nabla^2 f(x_\lambda)$ is positive semi-definite.
\(f \) convex \iff \(\nabla^2 f(x) \) PSD on \(\mathbb{R}^n \)

For \(x, y \in \mathbb{R}^n \), the MVT implies there exists \(\lambda \in (0, 1) \) such that

\[
 f(y) = f(x) + \nabla f(x)^T (y - x) + \frac{1}{2} (y - x)^T \nabla^2 f(x_\lambda)(y - x)
\]

where \(x_\lambda = \lambda y + (1 - \lambda)x \).

Hence

\[
 f(y) \geq f(x) + \nabla f(x)^T (y - x)
\]

since \(\nabla^2 f(x_\lambda) \) is positive semi-definite.

Therefore, \(f \) is convex.
Theorem: Let $H \in \mathbb{R}^{n \times n}$ be symmetric. We define the kth principal minor of H, denoted $\Delta_k(H)$, to be the determinant of the upper left-hand $k \times k$ submatrix of H. Then H is positive definite if and only if $\Delta_k(H) > 0$ for $k = 1, 2, \ldots, n$.
Checking for Positive Definiteness

Example:

\[H = \begin{bmatrix} 1 & 1 & -1 \\ 1 & 5 & 1 \\ -1 & 1 & 4 \end{bmatrix}. \]

We have

\[\Delta_1(H) = 1, \quad \Delta_2(H) = \begin{vmatrix} 1 & 1 \\ 1 & 5 \end{vmatrix} = 4, \quad \Delta_3(H) = \det(H) = 8. \]

Therefore, \(H \) is positive definite.
Sublinear Functionals

Definition: Let $h : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$. We say that h is positively homogeneous if

$$h(\lambda x) = \lambda h(x) \quad \text{for all } x \in \mathbb{R} \text{ and } \lambda > 0.$$

We say that h is subadditive if

$$h(x + y) \leq h(x) + h(y) \quad \text{for all } x, y \in \mathbb{R}.$$

Finally, we say that h is sublinear if it is both subadditive and positively homogeneous.
Sublinear Functionals

Definition: Let \(h : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\} \). We say that \(h \) is positively homogeneous if

\[
h(\lambda x) = \lambda h(x) \quad \text{for all } x \in \mathbb{R} \text{ and } \lambda > 0.
\]

We say that \(h \) is subadditive if

\[
h(x + y) \leq h(x) + h(y) \quad \text{for all } x, y \in \mathbb{R}.
\]

Finally, we say that \(h \) is sublinear if it is both subadditive and positively homogeneous.

Note: Sublinear functionals can be thought of as a generalization of the notion of a norm. In particular, every norm is a sublinear functional.
Sublinear Functionals

Sublinear functionals form a very rich and important class of functionals with a surprisingly beautiful structure.
Sublinear Functionals

Sublinear functionals form a very rich and important class of functionals with a surprisingly beautiful structure.

Lemma: *Every sublinear functional is a convex function.*
Sublinear Functionals

Sublinear functionals form a very rich and important class of functionals with a surprisingly beautiful structure.

Lemma: *Every sublinear functional is a convex function.*

Proof:

\[h(\lambda x + (1 - \lambda)y) \leq h(\lambda x) + h(1 - \lambda)y \]
\[= \lambda h(x) + (1 - \lambda)h(y). \]
Sublinear Functionals

Sublinear functionals form a very rich and important class of functionals with a surprisingly beautiful structure.

Lemma: Every sublinear functional is a convex function.

Proof:

\[
 h(\lambda x + (1 - \lambda)y) \leq h(\lambda x) + h(1 - \lambda)y \\
 = \lambda h(x) + (1 - \lambda)h(y).
\]

Lemma: A function is sublinear if and only if its epigraph is a convex cone.
Theorem: Let $f : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ be a convex function.
Directional Derivatives of Convex Functions are Sublinear

Theorem: Let $f : \mathbb{R}^n \rightarrow \mathbb{R} \cup \{ +\infty \}$ be a convex function. Then at every point $x \in \text{dom } (f)$ the directional derivative $f'(x; d)$ is a sublinear function of the d argument.
Theorem: Let \(f : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\} \) be a convex function.

Then at every point \(x \in \text{dom}(f) \) the directional derivative \(f'(x; d) \) is a sublinear function of the \(d \) argument.

That is, the function \(f'(x; \cdot) : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\} \) is sublinear.
Directional Derivatives of Convex Functions are Sublinear

Theorem: Let $f : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ be a convex function.

Then at every point $x \in \text{dom}(f)$ the directional derivative $f'(x; d)$ is a sublinear function of the d argument.

That is, the function $f'(x; \cdot) : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ is sublinear.

Thus, in particular, the function $f'(x; \cdot)$ is a convex function.
Directional Derivatives of Convex Functions are Sublinear

Proof: (Positive Homogeneity) Let \(x \in \text{dom}(f) \), \(d \in \mathbb{R}^n \), and \(\lambda > 0 \). Then

\[
f'(x; \lambda d) = \lim_{t \downarrow 0} \frac{f(x + t\lambda d) - f(x)}{t}
\]
Directional Derivatives of Convex Functions are Sublinear

Proof: (Positive Homogeneity) Let \(x \in \text{dom}(f) \), \(d \in \mathbb{R}^n \), and \(\lambda > 0 \). Then

\[
f'(x; \lambda d) = \lim_{t \downarrow 0} \frac{f(x + t\lambda d) - f(x)}{t} = \lim_{t \downarrow 0} \lambda \frac{f(x + t\lambda d) - f(x)}{\lambda t}
\]
Directional Derivatives of Convex Functions are Sublinear

Proof: (Positive Homogeneity) Let $x \in \text{dom}(f)$, $d \in \mathbb{R}^n$, and $\lambda > 0$. Then

$$f'(x; \lambda d) = \lim_{t \downarrow 0} \frac{f(x + t\lambda d) - f(x)}{t}$$

$$= \lim_{t \downarrow 0} \lambda \frac{f(x + t\lambda d) - f(x)}{\lambda t}$$

$$= \lambda \lim_{(\lambda t) \downarrow 0} \frac{f(x + (t\lambda)d) - f(x)}{(\lambda t)}$$
Directional Derivatives of Convex Functions are Sublinear

Proof: (Positive Homogeneity) Let $x \in \text{dom}(f)$, $d \in \mathbb{R}^n$, and $\lambda > 0$. Then

$$f'(x; \lambda d) = \lim_{t \downarrow 0} \frac{f(x + t\lambda d) - f(x)}{t}$$

$$= \lim_{t \downarrow 0} \lambda \frac{f(x + t\lambda d) - f(x)}{\lambda t}$$

$$= \lambda \lim_{(\lambda t) \downarrow 0} \frac{f(x + (t\lambda)d) - f(x)}{(\lambda t)}$$

$$= \lambda f'(x; d).$$
Directional Derivatives of Convex Functions are Sublinear

(Subadditivity) let \(d_1, d_2 \in \mathbb{R}^n \), Then

\[
f'(x; d_1 + d_2) = \lim_{t \downarrow 0} \frac{f(x + t(d_1 + d_2)) - f(x)}{t}
\]
Directional Derivatives of Convex Functions are Sublinear

(Subadditivity) let $d_1, d_2 \in \mathbb{R}^n$, Then

$$f'(x; d_1 + d_2) = \lim_{t \downarrow 0} \frac{f(x + t(d_1 + d_2)) - f(x)}{t}$$

$$= \lim_{t \downarrow 0} \frac{f\left(\frac{1}{2}(x + 2td_1) + \frac{1}{2}(x + 2td_2)\right) - f(x)}{t}$$
Directional Derivatives of Convex Functions are Sublinear

(Subadditivity) let \(d_1, d_2 \in \mathbb{R}^n \), Then

\[
f'(x; d_1 + d_2) = \lim_{t \downarrow 0} \frac{f(x + t(d_1 + d_2)) - f(x)}{t}
= \lim_{t \downarrow 0} \frac{f\left(\frac{1}{2}(x + 2td_1) + \frac{1}{2}(x + 2td_2)\right) - f(x)}{t}
\leq \lim_{t \downarrow 0} \frac{\frac{1}{2}f(x + 2td_1) + \frac{1}{2}f(x + 2td_2) - f(x)}{t}
= f'(x; d_1) + f'(x; d_2).
\]
Directional Derivatives of Convex Functions are Sublinear

(Subadditivity) let $d_1, d_2 \in \mathbb{R}^n$, Then

$$f'(x; d_1 + d_2) = \lim_{t \downarrow 0} \frac{f(x + t(d_1 + d_2)) - f(x)}{t}$$

$$= \lim_{t \downarrow 0} \frac{f(\frac{1}{2}(x + 2td_1) + \frac{1}{2}(x + 2td_2)) - f(x)}{t}$$

$$\leq \lim_{t \downarrow 0} \frac{\frac{1}{2}f(x + 2td_1) + \frac{1}{2}f(x + 2td_2) - f(x)}{t}$$

$$\leq \lim_{t \downarrow 0} \frac{\frac{1}{2}(f(x + 2td_1) - f(x)) + \frac{1}{2}(f(x + 2td_2) - f(x))}{t}$$
Directional Derivatives of Convex Functions are Sublinear

(Subadditivity) let \(d_1, d_2 \in \mathbb{R}^n \), Then

\[
f'(x; d_1 + d_2) = \lim_{t \downarrow 0} \frac{f(x + t(d_1 + d_2)) - f(x)}{t}
\]
\[
= \lim_{t \downarrow 0} \frac{f\left(\frac{1}{2}(x + 2td_1) + \frac{1}{2}(x + 2td_2)\right) - f(x)}{t}
\]
\[
\leq \lim_{t \downarrow 0} \frac{\frac{1}{2} f(x + 2td_1) + \frac{1}{2} f(x + 2td_2) - f(x)}{t}
\]
\[
\leq \lim_{t \downarrow 0} \frac{\frac{1}{2} (f(x + 2td_1) - f(x)) + \frac{1}{2} (f(x + 2td_2) - f(x))}{t}
\]
\[
= \lim_{t \downarrow 0} \frac{f(x + 2td_1) - f(x)}{2t} + \lim_{t \downarrow 0} \frac{f(x + 2td_2) - f(x)}{2t}
\]
Directional Derivatives of Convex Functions are Sublinear

(Subadditivity) let \(d_1, d_2 \in \mathbb{R}^n \), Then

\[
\begin{align*}
\frac{d}{dx}f(x; d_1 + d_2) &= \lim_{t \downarrow 0} \frac{f(x + t(d_1 + d_2)) - f(x)}{t} \\
&= \lim_{t \downarrow 0} \frac{f\left(\frac{1}{2}(x + 2td_1) + \frac{1}{2}(x + 2td_2)\right) - f(x)}{t} \\
&\leq \lim_{t \downarrow 0} \frac{\frac{1}{2}f(x + 2td_1) + \frac{1}{2}f(x + 2td_2) - f(x)}{t} \\
&\leq \lim_{t \downarrow 0} \frac{\frac{1}{2}(f(x + 2td_1) - f(x)) + \frac{1}{2}(f(x + 2td_2) - f(x))}{t} \\
&= \lim_{t \downarrow 0} \frac{f(x + 2td_1) - f(x)}{2t} + \lim_{t \downarrow 0} \frac{f(x + 2td_2) - f(x)}{2t} \\
&= \frac{d}{dx}f(x; d_1) + \frac{d}{dx}f(x; d_2).
\end{align*}
\]
Examples of Convex Functions

Set $\mathbb{R}^n_{++} = \{ x \in \mathbb{R}^n | 0 < x_i, \ i = 1, \ldots, n \}$ and S^n_{++} equal to the set on $n \times n$ symmetric positive definite matrices.
Examples of Convex Functions

Set $\mathbb{R}^{n+} = \{ x \in \mathbb{R}^n | 0 < x_i, \ i = 1, \ldots, n \}$ and \mathbb{S}^{n+} equal to the set on $n \times n$ symmetric positive definite matrices.

$$f(x) = \|x\|$$
Examples of Convex Functions

Set $\mathbb{R}^n_+ = \{x \in \mathbb{R}^n \mid 0 < x_i, \ i = 1, \ldots, n\}$ and \mathcal{S}^n_+ equal to the set on $n \times n$ symmetric positive definite matrices.

\[
\begin{align*}
 f(x) &= \|x\| \\
 f(x) &= \max\{x_1, x_2, \ldots, x_n\}
\end{align*}
\]
Examples of Convex Functions

Set $\mathbb{R}^n_+ = \{x \in \mathbb{R}^n \mid 0 < x_i, \ i = 1, \ldots, n\}$ and S^n_+ equal to the set on $n \times n$ symmetric positive definite matrices.

\[
f(x) = \|x\| \\
f(x) = \max\{x_1, x_2, \ldots, x_n\} \\
f(x) = \frac{1}{2}x^T H x + g^T x + \alpha \quad H \in S^n_+
\]
Examples of Convex Functions

Set $\mathbb{R}^n_{++} = \{ x \in \mathbb{R}^n \mid 0 < x_i, \ i = 1, \ldots, n \}$ and \mathbb{S}^n_{++} equal to the set on $n \times n$ symmetric positive definite matrices.

\[
\begin{align*}
 f(x) &= \|x\| \\
 f(x) &= \max\{x_1, x_2, \ldots, x_n\} \\
 f(x) &= \frac{1}{2} x^T H x + g^T x + \alpha \quad H \in \mathbb{S}^n_{++} \\
 f(x) &= \log(e^{x_1} + e^{x_2} + \cdots + e^{x_n})
\end{align*}
\]
Examples of Convex Functions

Set $\mathbb{R}^n_{++} = \{x \in \mathbb{R}^n \mid 0 < x_i, \ i = 1, \ldots, n\}$ and \mathbb{S}^n_{++} equal to the set on $n \times n$ symmetric positive definite matrices.

\[
\begin{align*}
 f(x) &= \|x\| \\
 f(x) &= \max\{x_1, x_2, \ldots, x_n\} \\
 f(x) &= \frac{1}{2} x^T H x + g^T x + \alpha \quad H \in \mathbb{S}^n_{++} \\
 f(x) &= \log(e^{x_1} + e^{x_2} + \cdots + e^{x_n}) \\
 f(x) &= -\left(\prod_{j=1}^{n} x_j\right)^{1/n} \quad x \in \mathbb{R}^n_{++}
\end{align*}
\]
Examples of Convex Functions

Set $\mathbb{R}^n_+ = \{x \in \mathbb{R}^n | 0 < x_i, \ i = 1, \ldots, n\}$ and S^n_+ equal to the set on $n \times n$ symmetric positive definite matrices.

\[
\begin{align*}
 f(x) &= \|x\| \\
 f(x) &= \max\{x_1, x_2, \ldots, x_n\} \\
 f(x) &= \frac{1}{2} x^T H x + g^T x + \alpha \quad H \in S^n_+ \\
 f(x) &= \log(e^{x_1} + e^{x_2} + \cdots + e^{x_n}) \\
 f(x) &= -\left(\prod_{j=1}^{n} x_i\right)^{1/n} \quad x \in \mathbb{R}^n_+ \\
 f(x) &= -\log(x_1 x_2 \ldots x_n) \quad x \in \mathbb{R}^n_+
\end{align*}
\]
Examples of Convex Functions

Set $\mathbb{R}^n_+ = \{x \in \mathbb{R}^n \mid 0 < x_i, \ i = 1, \ldots, n\}$ and \mathbb{S}^n_+ equal to the set on $n \times n$ symmetric positive definite matrices.

$$f(x) = \|x\|$$
$$f(x) = \max\{x_1, x_2, \ldots, x_n\}$$
$$f(x) = \frac{1}{2} x^T H x + g^T x + \alpha \quad H \in \mathbb{S}^n_+$$
$$f(x) = \log(e^{x_1} + e^{x_2} + \cdots + e^{x_n})$$
$$f(x) = -\left(\prod_{j=1}^{n} x_i\right)^{1/n} \quad x \in \mathbb{R}^n_+$$
$$f(x) = -\log(x_1 x_2 \ldots x_n) \quad x \in \mathbb{R}^n_+$$
$$f(x) = -\log \det(H) \quad H \in \mathbb{S}^n_+$$