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Nonlinear Programming

minimize f0(x)

subject to fj(x) ≤ 0, j = 1, 2, . . . , s

fj(x) = 0, j = s = 1, . . . ,m .
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f0 : Rn → R and Ω ⊂ Rn

I x ∈ Ω is said to be a global solution to the problem

min{f0(x) : x ∈ Ω}

if f0(x) ≤ f0(x) for all x ∈ Ω.
I If in fact f0(x) < f0(x) for all x ∈ Ω, then x is said to be a

strict global solution.
I x ∈ Ω is said to be a local solution to the problem

min{f0(x) : x ∈ Ω} if there is an ε > 0 such that

f0(x) ≤ f0(x) for all x ∈ Ω satisfying ‖x − x‖ ≤ ε.
I If f0(x) < f0(x) for all x ∈ Ω with ‖x − x‖ ≤ ε, then x is

called a strict local solution.
I The solution x is said to be isolated if x is the only local

solution in the set {x ∈ Ω : ‖x − x‖ ≤ ε}.
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Optimality Conditions

These definitions, although sensible, are not practical since they
require one to check infinitely many points to determine either
local or global optimality.

An optimality condition is a simple practical test for optimality.

Theorem: If f0 is differentiable at x and x is a local solution to the
problem min{f0(x) : x ∈ Rn}, then ∇f0(x) = 0.

The condition ∇f0(x̄) = 0 is necessary, but clearly not sufficient for
optimality.

Optimality Conditions
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Optimality Conditions

Optimality conditions play a key role in both the design of our
algorithms and our tests for termination.

We design our algorithms to locate points that satisfy some
testable, or constructive, optimality conditions and then terminate
when the procedure “nearly” solves these conditions.

We begin by reviewing the optimality conditions for unconstrained
optimization problems.

Optimality Conditions
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Unconstrained Optimization

P min
x∈Rn

f (x)

Given an initial guess x0 at a solution to P, we wish to develop
strategies for updating x0 to a new point x1 such that

f (x1) < f (x0).

In this way we can generate a sequence {xν} of approximate
solutions satisfying

f (xν+1) < f (xν) ν = 1, 2, . . . .

Such methods are called descent methods.
But before developing these methods, we revisit the question of
the existence of solutions and how to identify them.

Optimality Conditions
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Existence

P min
x∈Rn

f (x),

where f : Rn → R where f is continuous on Rn.

f may have no minimum value, or if it does, it may not be attained.

Weierstrass Extreme Value Theorem
Every continuous function on a compact set attains its extreme
values on that set.

Optimality Conditions

Math 408A Unconstrained Optimization



Outline Unconstrained Optimization Coercivity The Directional Derivative First-Order Optimality Conditions Second-Order Optimality Conditions

Existence

P min
x∈Rn

f (x),

where f : Rn → R where f is continuous on Rn.

f may have no minimum value, or if it does, it may not be attained.

Weierstrass Extreme Value Theorem
Every continuous function on a compact set attains its extreme
values on that set.

Optimality Conditions

Math 408A Unconstrained Optimization



Outline Unconstrained Optimization Coercivity The Directional Derivative First-Order Optimality Conditions Second-Order Optimality Conditions

Existence

P min
x∈Rn

f (x),

where f : Rn → R where f is continuous on Rn.

f may have no minimum value, or if it does, it may not be attained.

Weierstrass Extreme Value Theorem
Every continuous function on a compact set attains its extreme
values on that set.

Optimality Conditions

Math 408A Unconstrained Optimization



Outline Unconstrained Optimization Coercivity The Directional Derivative First-Order Optimality Conditions Second-Order Optimality Conditions

Coercivity and Existence

Definition: A function f : Rn → R is said to be coercive if for
every sequence {xν} ⊂ Rn for which ‖xν‖ → ∞ it must be the
case that f (xν)→∞ as well.

Theorem: Let f : Rn → R be continuous on all of Rn. The
function f is coercive if and only if for every α ∈ R the set
{x |f (x) ≤ α} is compact.

Theorem: Let f : Rn → R be continuous on all of Rn. If f is
coercive, then f has at least one global minimizer.

Optimality Conditions
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Back to Optimality Conditions

The Directional Derivative:
Let f : Rn → R. Define

f ′(x ; d) = lim
t↓0

f (x + td)− f (x)

t
.

When this limit exists, we say that f is directionally differentiable
at x in the direction d with directional derivative f ′(x ; d).

If f ′(x ; d) < 0, then there must be a t̄ > 0 such that

f (x + td)− f (x)

t
< 0 whenever 0 < t < t̄ .

Any direction d for which f ′(x ; d) < 0 is called a direction of strict
descent for f at x .

Optimality Conditions
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First-Order Optimality Conditions

If there is a direction d such that f ′(x ; d) exists with f ′(x ; d) < 0,
then x cannot be a local solution to the problem minx∈Rn f (x).

Equivalently, if x is a local to the problem minx∈Rn f (x), then
f ′(x ; d) ≥ 0 whenever f ′(x ; d) exists.

Lemma:[Basic First-Order Optimality Result]
Let f : Rn → R and let x̄ ∈ Rn be a local solution to the problem
minx∈Rn f (x). Then

f ′(x ; d) ≥ 0

for every direction d ∈ Rn for which f ′(x ; d) exists.

Theorem: Let f : Rn → R be differentiable at a point x ∈ Rn. If x
is a local minimum of f , then ∇f (x) = 0.

Optimality Conditions
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First-order Optimality Conditions

Theorem: Let f : Rn → R be differentiable at a point x ∈ Rn. If x
is a local minimum of f , then ∇f (x) = 0.

Proof: By the basic lemma we have

0 ≤ f ′(x̄ ; d) = ∇f (x̄)Td for all d ∈ Rn .

Taking d = −∇f (x̄) we get

0 ≤ −∇f (x̄)T∇f (x̄) = −‖∇f (x̄)‖2 ≤ 0.

Therefore, ∇f (x̄) = 0.
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Stationary and Critical Points

When f : Rn → R is differentiable, any point x ∈ Rn satisfying
∇f (x) = 0 is said to be a stationary (critical point) of f .
These are candidate points for optimality (minima or maxima).

Theorem: Let f : Rn → R be differentiable on all of Rn. If f is
coercive, then f has at least one global minimizer. These global
minimizers can be found from among the critical points of f .

Optimality Conditions
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Second-Order Optimality Conditions

Theorem: Let f : Rn → R be twice continuously differentiable at
the point x ∈ Rn.

1. (Necessity) If x is a local minimum of f , then ∇f (x) = 0 and
∇2f (x) is positive semi-definite.

2. (Sufficiency) If ∇f (x) = 0 and ∇2f (x) is positive definite,
then there is an α > 0 such that f (x) ≥ f (x) + α‖x − x‖2 for
all x near x .

Optimality Conditions
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Theorem: Let f : Rn → R be twice continuously differentiable at
the point x ∈ Rn.

1. (Necessity) If x is a local minimum of f , then ∇f (x) = 0 and
∇2f (x) is positive semi-definite.
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Second-Order Optimality Conditions

Since ∇2f (x) is symmetric, it has an orthonormal basis of eigenvectors of
∇2f (x) , v1, v2, . . . , vn such that

∇2f (x) = V T


λ1 0 0 . . . 0
0 λ2 0 . . . 0
...

. . .
...

0 0 . . . . . . λn

V

where λ1, λ2, . . . , λn are the eigenvalues of ∇2f (x) and the columns of V
are the corresponding orthonormal eigenvectors vectors.

∇2f (x) is positive semi-definite if and only if

λi ≥ 0, i = 1, 2, . . . , n,

and it is positive definite if and only if

λi > 0, i = 1, 2, . . . , n.
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Second-Order Optimality Conditions

In particular, if ∇2f (x) is positive definite, then

dT∇2f (x)d ≥ λmin‖d‖2 for all d ∈ Rn,

where λmin is the smallest eigenvalue of ∇2f (x).
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Second-Order Optimality Conditions

(Necessity) If x is a local minimum of f , then ∇f (x) = 0 and ∇2f (x) is
positive semi-definite.

Proof: Use of the second-order Taylor expansion

f (x) = f (x) +∇f (x)T (x − x) +
1

2
(x − x)T∇2f (x)(x − x) + o(‖x − x‖2).

Given d ∈ Rn and t > 0 plug in x := x + td to get

0 ≤ f (x̄ + td)− f (x̄)

t2
=

1

2
dT∇2f (x)d +

o(t2)

t2

since ∇f (x) = 0. Taking the limit as t → 0 gives

0 ≤ dT∇2f (x)d .

Since d was chosen arbitrarily, ∇2f (x) is positive semi-definite.
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Second-Order Optimality Conditions

(Sufficiency) If ∇f (x) = 0 and ∇2f (x) is positive definite, then there is
an α > 0 such that f (x) ≥ f (x) + α‖x − x‖2 for all x near x .

Proof: Use the fact that ∇f (x̄) = 0 to write the 2nd-order Taylor
expansion of f at x̄ as

f (x) = f (x) +
1

2
(x − x)T∇2f (x)(x − x) + o(‖x − x‖2).

Then divide through by ‖x − x̄‖2 to get

f (x)− f (x)

‖x − x‖2
=

1

2

(x − x)T

‖x − x‖
∇2f (x)

(x − x)

‖x − x‖
+

o(‖x − x‖2)

‖x − x‖2
.
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Second-Order Optimality Conditions

f (x)− f (x)

‖x − x‖2
=

1

2

(x − x)T

‖x − x‖
∇2f (x)

(x − x)

‖x − x‖
+

o(‖x − x‖2)

‖x − x‖2
.

If λmin > 0 is the smallest eigenvalue of ∇2f (x), choose ε > 0 so that∣∣∣∣o(‖x − x‖2)

‖x − x‖2

∣∣∣∣ ≤ λmin

4

whenever ‖x − x‖ < ε.
Then whenever ‖x − x‖ < ε we have

f (x)−f (x)
‖x−x‖2 ≥ 1

2λmin + o(‖x−x‖2)
‖x−x‖2

≥ 1
4λmin.
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2nd-Order Optimality Conditions

Then whenever ‖x − x‖ < ε we have

f (x)−f (x)
‖x−x‖2 ≥ 1

2λmin + o(‖x−x‖2)
‖x−x‖2

≥ 1
4λmin.

Consequently, if we set α = 1
4λmin, then

f (x) ≥ f (x) + α‖x − x‖2

whenever ‖x − x‖ < ε.
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