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Optimization over a Subspace

Consider the problem

min f (x)
subject to x ∈ x0 + S ,

where f : Rn → R is continuously differentiable and S is the
subspace S := Span{v1, . . . , vk}.

If V ∈ Rn×k has columns v1, . . . , vk , then this problem is
equivalent

min f (x0 + Vz)
subject to z ∈ Rk .

The Conjugate Gradient Algorithm
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Subspace Optimality Condition

min f (x0 + Vz)
subject to z ∈ Rk .

Set f̂ (z) = f (x0 + Vz). If z̄ solves this problem, then

V T∇f (x0 + V z̄) = ∇f̂ (z̄) = 0.

Set x̄ = x0 + V z̄ , we note that x̄ solves the original problem if and
only if z̄ solves the problem above.

Then V T∇f (x̄) = 0, or equivalently, vTi ∇f (x̄) = 0 for
i = 1, 2, . . . , k , go ∇f (x̄) ∈ Span(v1, . . . , vk)⊥.

The Conjugate Gradient Algorithm
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Subspace Optimality Theorem

Consider the problem

PS
min f (x)
subject to x ∈ x0 + S ,

where f : Rn → R is continuously differentiable and S is the
subspace S := Span{v1, . . . , vk}. If x̄ solves PS , then ∇f (x̄) ⊥ S .

If it is further assumed that f is conves, then x̄ solves PS if and
only if ∇f (x̄) ⊥ S .

The Conjugate Gradient Algorithm



Outline Optimization over a Subspace Conjugate Direction Methods Conjugate Gradient Algorithm Non-Quadratic Conjugate Gradient Algorithm

Subspace Optimality Theorem

Consider the problem

PS
min f (x)
subject to x ∈ x0 + S ,

where f : Rn → R is continuously differentiable and S is the
subspace S := Span{v1, . . . , vk}. If x̄ solves PS , then ∇f (x̄) ⊥ S .

If it is further assumed that f is conves, then x̄ solves PS if and
only if ∇f (x̄) ⊥ S .

The Conjugate Gradient Algorithm



Outline Optimization over a Subspace Conjugate Direction Methods Conjugate Gradient Algorithm Non-Quadratic Conjugate Gradient Algorithm

Conjugate Direction Algorithm

P : minimize f (x)
subject to x ∈ Rn

where f : Rn → R is C 2 is given by

f (x) :=
1

2
xTQx − bT x

with Q is a symmetric positive definite.

The Conjugate Gradient Algorithm
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Conjugate Direction Algorithm

Definition [Conjugacy]
Let Q ∈ Rn×n be symmetric and positive definite. We say that the
vectors x , y ∈ Rn\{0} are Q-conjugate (or Q-orthogonal) if
xTQy = 0.

Proposition [Conjugacy implies Linear Independence]
If Q ∈ Rn×n is positive definite and the set of nonzero vectors d0,
d1, . . . , dk are (pairwise) Q-conjugate, then these vectors are
linearly independent.

The Conjugate Gradient Algorithm
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Conjugate Direction Algorithm

[Conjugate Direction Algorithm]
Let {di}n−1i=0 be a set of nonzero Q-conjugate vectors. For any
x0 ∈ Rn the sequence {xk} generated according to

xk+1 := xk + αkdk , k ≥ 0

with
αk := arg min{f (xk + αdk) : α ∈ R}

converges to the unique solution, x∗ of P after n steps, that is
xn = x∗.

We have already shown that αk = −∇f (xk)iTdk/dkQdk .

The Conjugate Gradient Algorithm
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Expanding Subspace Theorem

Let {di}n−1i=0 be a sequence of nonzero Q-conjugate vectors in Rn.
Then for any x0 ∈ Rn the sequence {xk} generated according to

xk+1 = xk + αkdk

αk = − gT
k dk

dT
k Qdk

has the property that f (x) = 1
2x

TQx − bT x attains its minimum
value on the affine set x0 + Span {d0, . . . , dk} at the point xk .

The Conjugate Gradient Algorithm
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Expanding Subspace Theorem: Proof

Let x̄ solve

min {f (x) |x ∈ x0 + Span {d0, . . . , dk}} .
The Subspace Optimality Theorem tells us that
∇f (x̄)Tdi = 0, i = 0, . . . , k .

Since x̄ ∈ x0 + Span {d0, . . . , dk}, there exist βi ∈ R such that

x̄ = x0 + β0d0 + β2d2 + · · ·+ βkdk .

Therefore,

0 = ∇f (x̄)Tdi

= (Q(x0 + β0d0 + β2d2 + · · ·+ βkdk−1) + g)Tdi

= (Qx0 + g)Tdi + β0d
T
0 Qdi + β2d

T
2 Qdi + · · ·+ βkd

T
k Qdi

= ∇f (x0)Tdi + βid
T
i Qdi .

The Conjugate Gradient Algorithm
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Expanding Subspace Theorem: Proof

0 = ∇f (x0)Tdi + βid
T
i Qdi , i = 0, 1, . . . , k .

Hence,
βi = −∇f (x0)Tdi/d

T
i Qdi , i = 0, . . . , k .

Similarly, the iteration

xi+1 = xi + αidi

αi = −∇f (xi )
Tdi

dT
i Qdi

gives
xk+1 = x0 + α0d0 + α2d2 + · · ·+ αkdk .

So we need to show

βi = −∇f (x0)Tdi

dT
i Qdi

= −∇f (xi )
Tdi

dT
i Qdi

= βi , i = 0, . . . , k .
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Expanding Subspace Theorem: Proof

∇f (xi )
Tdi = (Q(x0 + α0d0 + · · ·+ αi−1di−1) + g)Tdi

= (Qx0 + g)Tdi + α0d
T
0 Qdi + · · ·+ αi−1d

T
i−1Qdi

= ∇f (x0)Tdi
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The Conjugate Gradient Algorithm

Initialization: x0 ∈ Rn, d0 = −g0 = −∇f (x0) = b − Qx0.

For k = 0, 1, 2, . . .

αk := −gT
k dk/d

T
k Qdk

xk+1 := xk + αkdk
gk+1 := Qxk+1 − b (STOP if gk+1 = 0)
βk := gT

k+1Qdk/d
T
k Qdk

dk+1 := −gk+1 + βkdk
k := k + 1.

The Conjugate Gradient Algorithm
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The Conjugate Gradient Theorem

The C-G algorithm is a conjugate direction method. If it does not
terminate at xk (gk 6= 0), then

1. Span [g0, g1, . . . , gk ] = span [g0,Qg0, . . . ,Q
kg0]

2. Span [d0, d1, . . . , dk ] = span [g0,Qg0, . . . ,Q
kg0]

3. dT
k Qdi = 0 for i ≤ k − 1

4. αk = gT
k gk/d

T
k Qdk

5. βk = gT
k+1gk+1/g

T
k gk .

The Conjugate Gradient Algorithm



Outline Optimization over a Subspace Conjugate Direction Methods Conjugate Gradient Algorithm Non-Quadratic Conjugate Gradient Algorithm

The Conjugate Gradient Theorem: Proof

Prove (1)-(3) by induction. (1)-(3) true for k = 0. Suppose true
up to k and show true for k + 1.

(1) Span [g0, g1, . . . , gk ] = Span [g0,Qg0, . . . ,Q
kg0]

Since
gk+1 = gk + αkQdk ,

gk+1 ∈ Span[g0, . . . ,Q
k+1g0] (ind. hyp.).

Also gk+1 /∈ Span [d0, . . . , dk ] otherwise gk+1 = 0 (by The
Subspace Optimality Theorem) since the method is a conjugate
direction method up to step k (ind. hyp.). So
gk+1 /∈ Span [g0, . . . ,Q

kg0] and
Span [g0, g1, . . . , gk+1] = Span [g0, . . . ,Q

k+1g0] proving (1).

The Conjugate Gradient Algorithm
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The Conjugate Gradient Theorem: Proof

(2) Span [d0, d1, . . . , dk ] = Span [g0,Qg0, . . . ,Q
kg0]

To prove (2) write

dk+1 = −gk+1 + βkdk

so that (2) follows from (1) and the induction hypothesis on (2).

The Conjugate Gradient Algorithm
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The Conjugate Gradient Theorem: Proof

(3) dT
k Qdi = 0 for i ≤ k − 1

To see (3) observe that

dT
k+1Qdi = −gk+1Qdi + βkd

T
k Qdi .

For i = k the right hand side is zero by the definition of βk .

For i < k both terms vanish.
The term gT

k+1Qdi = 0 by the Expanding Subspace Theorem since
Qdi ∈ Span[d0, . . . , dk ] by (1) and (2).
The term dT

k Qdi vanishes by the induction hypothesis on (3).

The Conjugate Gradient Algorithm
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The Conjugate Gradient Theorem: Proof

(4) αk = gT
k gk/d

T
k Qdk

−gT
k dk = gT

k gk − βk−1gT
k dk−1

where gT
k dk−1 = 0 by the Expanding Subspace Theorem.

So
αk = −gT

k dk/d
T
k Qdk = gT

k gk/d
T
k Qdk .
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The Conjugate Gradient Theorem: Proof

(5) βk = gT
k+1gk+1/g

T
k gk

gT
k+1gk = 0 by the Expanding Subspace Theorem because

gk ∈ Span[d0, . . . , dk ].

Hence

gT
k+1Qdk = gT

k+1Q(
xk+1 − xk

αk
) =

1

αk
gT
k+1[gk+1−gk ] =

1

αk
gT
k+1gk+1.

Therefore,

βk =
gT
k+1Qdk

dT
k Qdk

=
1

αk

gT
k+1gk+1

dT
k Qdk

=
gT
k+1gk+1

gT
k gk

.
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Comments on the CG Algorithm

The C–G method decribed above is a descent method since the
values

f (x0), f (x1), . . . , f (xn)

form a decreasing sequence. Moreover, note that

∇f (xk)Tdk = −gT
k gk and αk > 0 .

Thus, the C–G method behaves very much like the descent
methods discussed peviously.
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Comments on the CG Algorithm

Due to the occurrence of round-off error the C-G algorithm is best
implemented as an iterative method. That is, at the end of n
steps, f may not attain its global minimum at xn and the
intervening directions dk may not be Q-conjugate. But it is also
possible for the CG algorithm to terminate early.

Consequently, at each step one should check the value ‖∇f (xk+1)‖
and the size of the step ‖xk+1 − xk‖. If either is sufficiently small,
then accept xk as the point at which f attains its global minimum
value; otherwise, continue to iterate regardless of the iteration
count (up to a maximum acceptable number of iterations).
Since CG is a descent method, continued progress is assured.

The Conjugate Gradient Algorithm
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The Non-Quadratic CG Algorithm

Initialization: x0 ∈ Rn, g0 = ∇f (x0), d0 = −g0, 0 < c < β < 1.
Having xk otain xk+1 as follows:
Check restart criteria. If a restart condition is satisfied, then reset
x0 = xn, g0 = ∇f (x0), d0 = −g0; otherwise, set

αk ∈
{
λ

∣∣∣∣ λ > 0,∇f (xk + λdk)Td ≥ β∇f (xk)Tdk , and
f (xk + λdk)− f (xk) ≤ cλ∇f (xk)Tdk

}
xk+1 := xk + αkdk
gk+1 := ∇f (xk+1)

βk :=


gT
k+1gk+1

gT
k gk

Fletcher-Reeves

max
{

0,
gT
k+1(gk+1−gk )

gT
k gk

}
Polak-Ribiere

dk+1 := −gk+1 + βkdk
k := k + 1.
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The Non-Quadratic CG Algorithm

Restart Conditions

1. k = n

2. |gT
k+1gk | ≥ 0.2gT

k gk

3. −2gT
k gk ≥ gT

k dk ≥ −0.2gT
k gk
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The Non-Quadratic CG Algorithm

The Polak-Ribiere update for βk has a demonstrated experimental
superiority. One way to see why this might be true is to observe
that

gT
k+1(gk+1 − gk) ≈ αkg

T
k+1∇2f (xk)dk

thereby yielding a better second–order approximation. Indeed, the
formula for βk in in the quadratic case is precisely

αkg
T
k+1∇2f (xk)dk

gT
k gk .
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