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Optimization over a Subspace

Optimization over a Subspace

Consider the problem

min f(x)
subject to x € xg + S,

where f : R” — R is continuously differentiable and S is the
subspace S := Span{vy,..., vk}.
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Optimization over a Subspace

Optimization over a Subspace

Consider the problem

min f(x)
subject to x € xg + S,

where f : R” — R is continuously differentiable and S is the
subspace S := Span{vy,..., vk}.

If V € R™* has columns vy, ..., vk, then this problem is
equivalent

min f(xp + Vz)

subject to z € R¥ .
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Optimization over a Subspace

Subspace Optimality Condition

min f(xp + Vz)
subject to z € R¥ .

Set 7(z) = f(xo + Vz). If Z solves this problem, then

VTVf(x + Vz) = VF(z) = 0.
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Optimization over a Subspace

Subspace Optimality Condition

min f(xp + Vz)
subject to z € R¥ .

Set 7(z) = f(xo + Vz). If Z solves this problem, then

VTVf(x + Vz) = VF(z) = 0.

Set X = xp + V'z, we note that X solves the original problem if and
only if z solves the problem above.
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Optimization over a Subspace

Subspace Optimality Condition

min f(xp + Vz)
subject to z € R¥ .

Set 7(z) = f(xo + Vz). If Z solves this problem, then
VTVf(x + Vz) = VF(z) = 0.
Set X = xp + V'z, we note that X solves the original problem if and

only if z solves the problem above.

Then VTVf(x) =0, or equivalently, v;' Vf(x) = 0 for
i=1,2,... ,k go Vf(x) € Span(vi,..., vi)*.
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Optimization over a Subspace

Subspace Optimality Theorem

Consider the problem

min f(x)

Ps subject to x € xg + S,

where f : R" — R is continuously differentiable and S is the
subspace S := Span{vi,...,v}. If X solves Ps, then Vf(x) L S.
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Optimization over a Subspace

Subspace Optimality Theorem

Consider the problem

min f(x)

Ps subject to x € xg + S,

where f : R" — R is continuously differentiable and S is the
subspace S := Span{vi,...,v}. If X solves Ps, then Vf(x) L S.

If it is further assumed that f is conves, then X solves Ps if and
only if Vf(x) LS.
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Conjugate Direction Methods

Conjugate Direction Algorithm

P minimize f(x)
subject to x € R"

where f : R" — R is C? is given by

f(x):= 1XTQX —b"x

2

with @ is a symmetric positive definite.
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Conjugate Direction Methods

Conjugate Direction Algorithm

DEFINITION [Conjugacy]
Let Q € R"™" be symmetric and positive definite. We say that the

vectors x,y € R™\{0} are Q-conjugate (or Q-orthogonal) if
xTQy =0.
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Conjugate Direction Methods

Conjugate Direction Algorithm

DEFINITION [Conjugacy]

Let Q € R"™" be symmetric and positive definite. We say that the
vectors x,y € R™\{0} are Q-conjugate (or Q-orthogonal) if
xTQy=0.

PRrROPOSITION [Conjugacy implies Linear Independence]

If @ € R™" is positive definite and the set of nonzero vectors dp,
di,...,dy are (pairwise) Q-conjugate, then these vectors are
linearly independent.
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Conjugate Direction Methods

Conjugate Direction Algorithm

[CONJUGATE DIRECTION ALGORITHM]
Let {d,-};-’:_o1 be a set of nonzero Q-conjugate vectors. For any
Xo € R" the sequence {xx} generated according to

Xk+1 = Xk + ody, k>0

with
ay = argmin{f(xx + ady) : « € R}

converges to the unique solution, x* of P after n steps, that is
X, = x*.
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Conjugate Direction Methods

Conjugate Direction Algorithm

[CONJUGATE DIRECTION ALGORITHM]
Let {d,-};-’:_o1 be a set of nonzero Q-conjugate vectors. For any
Xo € R" the sequence {xx} generated according to

Xk+1 = Xk + ody, k>0

with
ay = argmin{f(xx + ady) : « € R}

converges to the unique solution, x* of P after n steps, that is
X, = x*.

We have already shown that o, = —Vf(xx)i T di/di Qdx.
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Conjugate Direction Methods

Expanding Subspace Theorem

Let {d,-};’;ol be a sequence of nonzero Q-conjugate vectors in R”.
Then for any xp € R" the sequence {xx} generated according to

Xkt1 = Xk + apdy
_glde
d] Qdy

(077 =

has the property that f(x) = 3x” Qx — b' x attains its minimum
value on the affine set xo + Span {dp,...,dx} at the point x.
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Conjugate Direction Methods

Expanding Subspace Theorem: Proof

Let x solve
min {f(x) |x € xo + Span {do,...,dk}}.

The Subspace Optimality Theorem tells us that
VF(x)"d;=0,i=0,... k
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Conjugate Direction Methods

Expanding Subspace Theorem: Proof

Let x solve
min {f(x) |x € xo + Span {do,...,dk}}.

The Subspace Optimality Theorem tells us that
Vf(x)Tdi=0,i=0,..., k.
Since X € xg + Span {do, ..., dx}, there exist §; € R such that

X = xg + Bodo + fBoda + - - - + Brdk.
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Conjugate Direction Methods

Expanding Subspace Theorem: Proof

Let X solve
min {f(x) |x € xo + Span {do,...,dk}}.
The Subspace Optimality Theorem tells us that
VF(x)"d;=0,i=0,... k
Since X € xg + Span {do, ..., dx}, there exist §; € R such that
X = xo + Podo + Baca + -+ + Brdk.
Therefore,
0 = VF(x)d
= (Q(x0+ Bodo + Bodh + -+ + Brdk_1) + &) d;
= (@0 +8) d; + body Qd; + B2d) Qd; + -+ - + Brdy Qd;
= Vf(x)"d; + 8id Qd; .
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Conjugate Direction Methods

Expanding Subspace Theorem: Proof

0= Vf(xo) di+ Bid! Qd;, i=0,1,... k.
Hence,
Bi = =Vf(x0)"di/d] Qdj, i=0,... k.
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Conjugate Direction Methods

Expanding Subspace Theorem: Proof

0= Vf(xo) di+ Bid! Qd;, i=0,1,... k.
Hence,
Bi = =Vf(x0)"di/d] Qdj, i=0,... k.

Similarly, the iteration

Xi+1 = Xj + oid
V(x4
Qj - d7 Qd;

gives
Xk+1 = Xo + aodp + aody + - - - + ady.
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Conjugate Direction Methods

Expanding Subspace Theorem: Proof

0= Vf(xo) di+ Bid! Qd;, i=0,1,... k.
Hence,
Bi=—Vf(x0)'di/d Qd;, i=0,... k.
Similarly, the iteration

Xi+1 = Xj + oid
_ Vf(x)Td;
- d” Qd,

«j
gives
Xk+1 = X0 + ogdy + aods + - - - + agdy.
So we need to show
. Vf(Xo)Td,' . Vf(X,‘)Td,'
BETTaTd T dTad

The Conjugate Gradient Algorithm

=B, i=0,... k.



Conjugate Direction Methods

Expanding Subspace Theorem: Proof

VF(x)Tdi = (Q(xo+ aodo+---+ai_1di_1)+g)"d;
= (Quo+g)Tdi+apd) Qdi + -+ aj_1d ;1 Qd;
= Vf(x)Td;
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Conjugate Gradient Algorithm

The Conjugate Gradient Algorithm

Initialization: xp € R”, dy = —go = —Vf(x0) = b — Qxo.

For k=0,1,2,...
(7% = —gl;rdk/dlz—Qdk
Xk+1 = Xk + apdi
8kr1 = Qxxp1— b (STOP if gxy1 =0)
Bk =gl Qde/dy Qdy
dik+1 = —8k+1 + Brdk
k =k+ 1.
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Conjugate Gradient Algorithm

The Conjugate Gradient Theorem

The C-G algorithm is a conjugate direction method. If it does not
terminate at xx (gx # 0), then

1. Span [go,&1,---,8] = span [go, Qgo, - - - , Q%go]
Span [do, d1, ..., dk] = span [go, Qgo, - - - , QX go]
dkTQd,':0fori§k—1

ay = g gx/d Qdx

Br = 8 18k+1/8/ 8k-

AN
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Conjugate Gradient Algorithm

The Conjugate Gradient Theorem: Proof

Prove (1)-(3) by induction. (1)-(3) true for k = 0. Suppose true
up to k and show true for k + 1.

(1) Span [go, &1, - - -, &k] = Span [go, Qgo, - - - , Q% go]
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Conjugate Gradient Algorithm

The Conjugate Gradient Theorem: Proof

Prove (1)-(3) by induction. (1)-(3) true for k = 0. Suppose true
up to k and show true for k + 1.

(1) Span [go,81,-- - &) = Span [go, Qgo, - - -, Qgo]
Since
8k+1 = 8k + au Qdy,

gk+1 € Span[go, ..., Q¥ go] (ind. hyp.).
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Conjugate Gradient Algorithm

The Conjugate Gradient Theorem: Proof

Prove (1)-(3) by induction. (1)-(3) true for k = 0. Suppose true
up to k and show true for k + 1.

(1) Span [go,81,-- - &) = Span [go, Qgo, - - -, Qgo]
Since
8k+1 = 8k + au Qdy,

gk+1 € Span[go, ..., Qg (ind. hyp.).

Also gx+1 ¢ Span [do, ..., dk] otherwise gxr1 = 0 (by The
Subspace Optimality Theorem) since the method is a conjugate
direction method up to step k (ind. hyp.). So

gk+1 ¢ Span [go, ..., @ go] and

Span [go, 81, -, &k+1] = Span [go, ..., @ go] proving (1).

The Conjugate Gradient Algorithm



Conjugate Gradient Algorithm

The Conjugate Gradient Theorem: Proof

(2) Span [do, di, ..., dk] = Span [go, Qgo, - - -, Q¥ go]
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Conjugate Gradient Algorithm

The Conjugate Gradient Theorem: Proof

(2) Span [do, di, ..., dk] = Span [go, Qgo, - - -, Q¥ go]

To prove (2) write

dk+1 = —8k+1 + Brdk

so that (2) follows from (1) and the induction hypothesis on (2).
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Conjugate Gradient Algorithm

The Conjugate Gradient Theorem: Proof

(3) d] Qd; =0 for i < k—1
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Conjugate Gradient Algorithm

The Conjugate Gradient Theorem: Proof

(3) d] Qd; =0 for i < k—1
To see (3) observe that

d/<T+1Qd' = —gk+1Qd; + ﬁkdkTQd,-.

For i = k the right hand side is zero by the definition of Sy.
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Conjugate Gradient Algorithm

The Conjugate Gradient Theorem: Proof

(3) d] Qd; =0 for i < k—1
To see (3) observe that
dl 1 Qdi = —gk+1Qd; + Bid/ Qd:.
For i = k the right hand side is zero by the definition of Sy.

For i < k both terms vanish.

The term ngHQd,- = 0 by the Expanding Subspace Theorem since
Qd; € Span|dy,...,dk] by (1) and (2).

The term d,z—Qd; vanishes by the induction hypothesis on (3).
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Conjugate Gradient Algorithm

The Conjugate Gradient Theorem: Proof

(4) ak = g gk/d/ Qdk
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Conjugate Gradient Algorithm

The Conjugate Gradient Theorem: Proof

(4) ak = g gk/d/ Qdk

gl dv = g ek — Br_18] di_1

where ngdk_l = 0 by the Expanding Subspace Theorem.
So
a = —gy di/dy{ Qdx = g/ gi/dy Qdy .
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Conjugate Gradient Algorithm

The Conjugate Gradient Theorem: Proof

(5) Bk = &8, 18k+1/8/ 8k
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Conjugate Gradient Algorithm

The Conjugate Gradient Theorem: Proof

(5) Bk = &8, 18k+1/8/ 8k

ng+1gk = 0 by the Expanding Subspace Theorem because
gk € Span[do, ..., dx].
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Conjugate Gradient Algorithm

The Conjugate Gradient Theorem: Proof

(5) Bk = &8, 18k+1/8/ 8k

ng+1gk = 0 by the Expanding Subspace Theorem because
gk € Span[do, ..., dx].

Hence

Xk+1 — Xk 1
(——) g

1
ng+1 Qdk = ng+1Q = agk+1[gk+1*gk] = ;kg[+1gk+1~
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The Conjugate Gradient Theorem: Proof

(5) Bk = &8, 18k+1/8/ 8k

ng+1gk = 0 by the Expanding Subspace Theorem because
gk € Span[do, ..., dx].

Hence

Xk+1 — Xk 1
(——)

1
ng+1 Qdk = ng+1Q = ag[+1[gk+1*gk] = ;kg[+1gk+1~

Therefore,

-
8t q Rk
ﬁk _ k+1

_ ingHng _ g( 18K+
dI Qdk  ax df Qdk glak
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Conjugate Gradient Algorithm

Comments on the CG Algorithm

The C—G method decribed above is a descent method since the
values

f(x0), f(x1), ..., f(xn)

form a decreasing sequence. Moreover, note that
Vi(xk) di = —glgx and ax>0.

Thus, the C—G method behaves very much like the descent
methods discussed peviously.
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Conjugate Gradient Algorithm

Comments on the CG Algorithm

Due to the occurrence of round-off error the C-G algorithm is best
implemented as an iterative method. That is, at the end of n
steps, f may not attain its global minimum at x, and the
intervening directions dx may not be Q-conjugate. But it is also
possible for the CG algorithm to terminate early.
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Conjugate Gradient Algorithm

Comments on the CG Algorithm

Due to the occurrence of round-off error the C-G algorithm is best
implemented as an iterative method. That is, at the end of n
steps, f may not attain its global minimum at x, and the
intervening directions dx may not be Q-conjugate. But it is also
possible for the CG algorithm to terminate early.

Consequently, at each step one should check the value ||V f(xk+1)]|
and the size of the step ||xk+1 — xk||. If either is sufficiently small,
then accept xx as the point at which f attains its global minimum
value; otherwise, continue to iterate regardless of the iteration
count (up to a maximum acceptable number of iterations).

Since CG is a descent method, continued progress is assured.
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Non-Quadratic Conjugat

The Non-Quadratic CG Algorithm

Initialization: xp € R", go = Vf(x0), do = —go, 0 < c< B < 1.
Having xj otain xx41 as follows:

Check restart criteria. If a restart condition is satisfied, then reset
X0 = Xn, 80 = VI (x0), do = —go; otherwise, set

U F (i + Adi) — F(xi) < AV F(xi)" di

Xktl = Xk + opdy
gkr1 = VF(xkt1)

. {A ' A >0, VF(x + Ade)7d > BVF(x) dk, and }

8018
SeilB1 - Fletcher-Reeves
Bk = T 8y 8k
max {0, w} Polak-Ribiere
8y 8k
div1 = —8k+1 + Brdk
k =k +1.
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Non-Quadratic Conjugat

The Non-Quadratic CG Algorithm

Restart Conditions
1. k=n

2. |ng+1gk| > 0-2nggk
3. —2g) gk > g dk > —0.2g/ g«
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Non-Quadratic Conjugat

The Non-Quadratic CG Algorithm

The Polak-Ribiere update for 5x has a demonstrated experimental
superiority. One way to see why this might be true is to observe
that

8 1(8kr1 — 8k) ~ gy 1V (xi)di

thereby yielding a better second—order approximation. Indeed, the
formula for By in in the quadratic case is precisely

akngHVZf(xk)dk
g/ &k -
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