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LU Factorization: Gaussian Elimination Matrices

Gaussian elimination transforms vectors of the form a
α
b

 ,
where a ∈ Rk , 0 6= α ∈ R, and b ∈ Rn−k−1, to those of the form a

α
0

 .

This is accomplished by left matrix multiplication as follows: Ik×k 0 0
0 1 0
0 −α−1b I(n−k−1)×(n−k−1)

 a
α
b

 =

 a
α
0

 .

The matrix on the left is called a Gaussian elimination matrix.
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Gaussian Elimination Matrices

The matrix  Ik×k 0 0
0 1 0
0 −α−1b I(n−k−1)×(n−k−1)


has ones on the diagonal and so is invertible. Indeed, Ik×k 0 0

0 1 0
0 −α−1b I(n−k−1)×(n−k−1)

−1 =

 Ik×k 0 0
0 1 0
0 α−1b I(n−k−1)×(n−k−1)

 .
Also note that Ik×k 0 0

0 1 0
0 −α−1b I(n−k−1)×(n−k−1)

 x
0
y

 =

 x
0
y

 .
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LU Factorization

Suppose

A =

[
a1 vT

1

u1 Ã1

]
∈ Cn×m,

with 0 6= a1 ∈ C, u1 ∈ Cm−1, v1 ∈ Cn−1, and Ã1 ∈ C(m−1)×(n−1).

Then [
1 0
− u1

a1
I

] [
a1 vT

1

u1 Ã1

]
∈ Cn×m =

[
a1 vT

1

0 A1

]
, (*)

where A1 = Ã1 − u1v
T
1 /a1 .

Repeat m times to get L−1m̃−1 · · · L
−1
2 L−11 A = Um̃−1 = U is upper

triangular, so
A = LU

where L is lower triangular with ones on the diagonal.
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Cholesky Factorization

Suppose M ∈ Rn×n, symmetric and positive definite has LU
factorization

M = LU .

Then
L−1ML−T = UL−T

is an upper triangular symmetric matrix.

That is, UL−T = D, where D is diagonal.

Since M is psd, D has positive diagonal entries, so

M = LDLT = L̂L̂T where L̂ = LD1/2.

This is called the Cholesky Factorization of M.
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The QR Factorization: Householder Reflections

Given w ∈ Rn we can associate the matrix

U = I − 2
wwT

wTw

which reflects Rn across the hyperplane Span{w}⊥. The matrix U
is call the Householder reflection across this hyperplane.

Given a pair of vectors x and y with

‖x‖2 = ‖y‖2, and x 6= y ,

there is a Householder reflection such that y = Ux :

U = I − 2
(x − y)(x − y)T

(x − y)T (x − y)
.

Householder reflections are symmetric unitary tranformations:
U−1 = UT = U.
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The QR Factorization

Given A ∈ Rm×n write

A0 =

[
α0 aT0
b0 A0

]
and ν0 =

∥∥∥∥(α0

b0

)∥∥∥∥
2

.

Set

H0 = I − 2
wwT

wTw
where w =

(
α0

b0

)
− ν0e1 =

(
α0 − ν0

b0

)
.

Then

H0A =

[
ν0 aT1
0 A1

]
.

LU Choleski QR

Important Matrix Factorizations



Outline LU Factorization Choleski Factorization The QR Factorization

The QR Factorization

Given A ∈ Rm×n write

A0 =

[
α0 aT0
b0 A0

]
and ν0 =

∥∥∥∥(α0

b0

)∥∥∥∥
2

.

Set

H0 = I − 2
wwT

wTw
where w =

(
α0

b0

)
− ν0e1 =

(
α0 − ν0

b0

)
.

Then

H0A =

[
ν0 aT1
0 A1

]
.

LU Choleski QR

Important Matrix Factorizations



Outline LU Factorization Choleski Factorization The QR Factorization

The QR Factorization

Given A ∈ Rm×n write

A0 =

[
α0 aT0
b0 A0

]
and ν0 =

∥∥∥∥(α0

b0

)∥∥∥∥
2

.

Set

H0 = I − 2
wwT

wTw
where w =

(
α0

b0

)
− ν0e1 =

(
α0 − ν0

b0

)
.

Then

H0A =

[
ν0 aT1
0 A1

]
.

LU Choleski QR

Important Matrix Factorizations



Outline LU Factorization Choleski Factorization The QR Factorization

QR Factorization

H0A =

[
ν0 aT1
0 A1

]
.

Repeat to get

QTA = Hn−1Hn−2 . . .H0A = R,

where R is upper triangular and Q is unitary.

The A = QR is called the QR factorization of A.
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Orthogonal Projections

Suppose A ∈ Rm×n with m > n, then A =

The QR factorization of A looks like

A = [Q1, Q2]

[
R
0

]
= Q1R

where the columns of Q1 and Q2 for an orthonormal basis for Rm.
The columns of Q1 form and orthonormal basis for the range of A
with

Q1Q
T
1 = the orthogonal projector onto Ran(A)

and

I − Q1Q
T
1 = Q2Q

T
2 = the orthogonal projector onto Ran(A)⊥
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Orthogonal Projections

Similarly, if A ∈ Rm×n with m < n, then AT =

The QR factorization of AT looks like

AT = [Q1, Q2]

[
R
0

]
= Q1R

where the columns of Q1 and Q2 for an orthonormal basis for Rm.
The columns of Q1 form and orthonormal basis for the range of AT with

Q1Q
T
1 = the orthogonal projector onto Ran(AT )

and

I−Q1Q
T
1 = Q2Q

T
2 = the orthogonal projector onto Ran(AT )⊥ = Nul(A)
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