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Broyden Updates

Given g : Rn → Rn solve g(x) = 0.

Algorithm: Broyden’s Method

Initialization: x0 ∈ Rn, B0 ∈ Rn×n

Having (xk ,Bk) compute (xk+1,Bx+1) as follows:

Solve Bks
k = −g(xk) for sk and set

xk+1 : = xk + sk

yk : = g(xk)− g(xk+1)

Bk+1 : = Bk +
(yk − Bks

k)sk
T

sk
T
sk

.
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Broyden Updates

Algorithm: Broyden’s Method (Inverse Updating)

Initialization: x0 ∈ Rn, B0 ∈ Rn×n

Having (xk ,Bk) compute (xk+1,Bx+1) as follows:

Solve sk = −Jkg(xk) for sk and set

xk+1 : = xk + sk

yk : = g(xk)− g(xk+1)

Jk+1i = Jk +
(sk − Jky

k)sk
T
Jk

sk
T
Jky

.
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MSE for Optimization

P : minimize
x∈Rn

f (x) ,

where f : Rn → R is twice continuously differentiable.

Solve ∇f (x) = 0 using the Newton-Like iteration

xk+1 = xk −M−1k ∇f (xk) .

The MSE becomes
Mk+1s

k = yk ,

where

sk := xk+1 − xk and yk := ∇f (xk+1)−∇f (xk).
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MSE for Optimization

The Broyden update gives

Mk+1 = Mk +
(yk −Mks

k)sk
T

sk
T
sk

.

This is unsatisfactory for two reasons:

1. Since Mk approximates ∇2f (xk) it must be symmetric.

2. Since we are minimizing, then Mk must be positive definite to
insure that sk = −M−1k ∇f (xk) is a direction of descent for f
at xk .
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SR1 Update

The Broyden class of updates is

Mk+1 = Mk +
(yk −Mks

k)vT

vT sk
.

The only symmetric member of this class is obtained by taking

v = (yk −Mks
k)

giving

Mk+1 = Mk +
(yk −Mks

k)(yk −Mks
k)

T

(yk −Mksk)
T
sk

.

The corresponding inverse update (by SMW) is

Hk+1 = Hk +
(sk − Hky

k)(sk − Hky
k)T

(sk − Hkyk)T yk
.

But this update may not be positive definite.
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Positive Definite Updating

Basic Problem:
Let M ∈ Rn×n be a given symmetric positive definite (spd) matrix.
Given s, y ∈ Rn find an spd matrix M+ such that M+s = y and
M+ is “close” to M.

We know that “close” cannot mean a rank one modification since
the SR1 may not preserve positive definiteness.

Let’s try another approach that combines the Broyden update with
yet another important property of symmetric matrices.
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Positive Definite Updating

Every spd matrix M can be written in the form M = LLT for some
non-singular matrix L.

Indeed, the LU factorization can be used to give the so called
Cholesky factorization M = LLT where L is lower triangular.

Similarly, if M+ exists, then there must be a nonsingular matrix J
such that M+ = JJT .
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Positive Definite Updating

So M = LLT and M+ = JJT with M+s = y .

Therefore, if we set v = JT s, then Jv = y .

We apply the Broyden update to Jv = y and L to get

J = L +
(y − Lv)vT

vTv
.

Using v = JT s, we get

v = JT s = LT s +
v(y − Lv)T s

vTv
.

But then v = αLT s for some α ∈ R.
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Positive Definite Updating

Hence

v = JT s = LT s +
v(y − Lv)T s

vTv

with v = αLT s.

Plugging in we get

αLT s = LT s +
αLT s(y − αLLT s)T s

α2sTLLT s
.

Hence

α2 =

[
sTy

sTMs

]
.
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Broyden-Fletcher-Goldfarb-Shanno (BFGS) Updating

Therefore, this update only exists if sTy > 0 in which case

J = L +
(y − αMs)sTL

αsTMs
,

with

α =

[
sTy

sTMs

]1/2
,

yielding

M+ = M +
yyT

yT s
− MssTM

sTMs
.

This is called the BFGS update. It is currently viewed as the best
MSE update available for optimization due to its outstanding
performace in practise.
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BFGS Updating

In addition, we note that the M+ can be obtained directly from the
matrices J.

If the QR factorization of JT is JT = QR, we can set L+ = R
yielding

M+ = JJT = RTQTQR = L+L
T
+.
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Inverse BFGS Updating

Sherman-Morrison-Woodbury formula again gives the inverse
update

H+ = H +
(s + Hy)T yssT

(sT y)2
− HysT + syTH

sT y
,

where H = M−1.
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How to insure sTy > 0

The BFGS update preserves both symmetry and positive

definiteness when sk
T
yk > 0. But is this condition reasonable or

even implementable?

Recall that
y = yk = ∇f (xk+1)−∇f (xk)

and
sk = xk+1 − xk = tkd

k ,

where
dk = −tkHk∇f (xk)

is the search direction and tk > 0 is the stepsize.
Hence

yk
T
sk = ∇f (xk+1)T sk −∇f (xk)T sk

= tk(∇f (xk + tkdk)Tdk −∇f (xk)Tdk) ,
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How to insure sTy > 0

yk
T
sk = ∇f (xk+1)T sk −∇f (xk)T sk

= tk(∇f (xk + tkdk)Tdk −∇f (xk)Tdk) ,

Since Hk is sdp, ∇f (xk)Tdk < 0 so tk > 0.
Therefore, to get sk

T
yk > 0 we must show tk > 0 can be choosen

so that
∇f (xk + tkd

k)Tdk ≥ β∇f (xk)Tdk

for some β ∈ (0, 1) since in this case

∇f (xk + tkdk)Tdk −∇f (xk)Tdk ≥ (β − 1)∇f (xk)Tdk > 0.

But this precisely the second condition in the weak Wolfe
conditions with β = c2. Hence a successful BFGS update can
always be obtained.
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