Equation Solving g(x) = 0

メロト メロト メヨト メ

표 문 문

Newton-Like Iterations:

$$x^{k+1} := x^k - J_k g(x^k), \quad ext{where } J_k pprox g'(x^k).$$

<ロト < @ ト < 臣 ト < 臣 ト 三 の < C</p>

Newton-Like Iterations:

$$x^{k+1} := x^k - J_k g(x^k), \quad ext{where } J_k pprox g'(x^k).$$

3700 years ago the Babylonians used the secant method in 1D:

$$J_k = \frac{x^k - x^{k-1}}{g(x^k) - g(x^{k-1})}.$$

Newton-Like Iterations:

$$x^{k+1} := x^k - J_k g(x^k), \quad ext{where } J_k pprox g'(x^k).$$

3700 years ago the Babylonians used the secant method in 1D:

$$J_k = \frac{x^k - x^{k-1}}{g(x^k) - g(x^{k-1})}.$$

This gives the error

$$g'(x^k)^{-1} - J_k = rac{g(x^{k-1}) - [g(x^k) + g'(x^k)(x^{k-1} - x^k)]}{g'(x^k)[g(x^{k-1}) - g(x^k)]}$$

Newton-Like Iterations:

$$x^{k+1} := x^k - J_k g(x^k), \quad ext{where } J_k pprox g'(x^k).$$

3700 years ago the Babylonians used the secant method in 1D:

$$J_k = \frac{x^k - x^{k-1}}{g(x^k) - g(x^{k-1})}.$$

This gives the error

$$g'(x^k)^{-1} - J_k = rac{g(x^{k-1}) - [g(x^k) + g'(x^k)(x^{k-1} - x^k)]}{g'(x^k)[g(x^{k-1}) - g(x^k)]}$$

If $g'(x^*) \neq 0$, then $\exists \ \alpha > 0$ such that

$$\|g'(x^k)^{-1} - J_k\| \le \frac{(L/2)\|x^{k-1} - x^k\|^2}{\alpha \|g'(x^k)\|\|x^{k-1} - x^k\|} \le K \|x^{k-1} - x^k\|$$

by the Quadratic Bound Lemma, so $x^k
ightarrow ar{x}$ 2-step quadratic rate.

Equation Solving g(x) = 0

Matrix Secant Methods

Can we apply the secant method to higher dimentions than 1?

$$J_k = \frac{x^k - x^{k-1}}{g(x^k) - g(x^{k-1})}$$

メロト メポト メヨト メヨト

2

Can we apply the secant method to higher dimentions than 1?

$$J_k = \frac{x^k - x^{k-1}}{g(x^k) - g(x^{k-1})}$$

Multiply on the rhs by $g(x^k) - g(x^{k-1})$ gives

$$J_k(g(x^k) - g(x^{k-1})) = x^k - x^{k-1}.$$

This is called the *matrix secant equation* (MSE), or quasi-Newton equation.

Can we apply the secant method to higher dimentions than 1?

$$J_k = \frac{x^k - x^{k-1}}{g(x^k) - g(x^{k-1})}$$

Multiply on the rhs by $g(x^k) - g(x^{k-1})$ gives

$$J_k(g(x^k) - g(x^{k-1})) = x^k - x^{k-1}.$$

This is called the *matrix secant equation* (MSE), or quasi-Newton equation.

Here the matrix J_k is unknown (n^2 unknowns), and satisfies the n linear equations of the MSE.

Can we apply the secant method to higher dimentions than 1?

$$J_k = \frac{x^k - x^{k-1}}{g(x^k) - g(x^{k-1})}$$

Multiply on the rhs by $g(x^k) - g(x^{k-1})$ gives

$$J_k(g(x^k) - g(x^{k-1})) = x^k - x^{k-1}.$$

This is called the *matrix secant equation* (MSE), or quasi-Newton equation.

Here the matrix J_k is unknown (n^2 unknowns), and satisfies the n linear equations of the MSE.

There are not enough equations to nail down all of the entries if J_k , so further conditions are required. What should they be?

To better understand what further conditions on J_k are sensible, we revert to discussing the matrices $B_k = J_k^{-1}$, so the MSE becomes

$$B_k(x^k - x^{k-1}) = g(x^k) - g(x^{k-1}).$$

To better understand what further conditions on J_k are sensible, we revert to discussing the matrices $B_k = J_k^{-1}$, so the MSE becomes

$$B_k(x^k - x^{k-1}) = g(x^k) - g(x^{k-1}).$$

Key Idea: Think of the J_k 's as part of an iteration scheme

 $\{x^k, B_k\}$.

To better understand what further conditions on J_k are sensible, we revert to discussing the matrices $B_k = J_k^{-1}$, so the MSE becomes

$$B_k(x^k - x^{k-1}) = g(x^k) - g(x^{k-1}).$$

Key Idea: Think of the J_k 's as part of an iteration scheme

 $\{x^k, B_k\}$.

As the iteration proceeds, it is hoped that B_k becomes a better approximation to $g'(x^k)$. With this in mind, we assume that, in the long run, B_k is already close to $g'(x^k)$, so B_{k+1} should not differ from B_k by too much, i.e. B_k should be "close" to B_{k+1} .

イロト イポト イヨト イヨト

What do we mean by "close" in this context? Should $||B_k - B_{k+1}||$ be small?

What do we mean by "close" in this context? Should $||B_k - B_{k+1}||$ be small?

We take "close" to mean algebraically close in the sense that B_{k+1} should be easy to compute from B_k and yet satisfy the MSE.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

3

What do we mean by "close" in this context? Should $||B_k - B_{k+1}||$ be small?

We take "close" to mean algebraically close in the sense that B_{k+1} should be easy to compute from B_k and yet satisfy the MSE.

Let's start by assuming that B_{k+1} is a rank one update to B_k . That is, there exist $u, v \in \mathbb{R}^n$ such that

$$B_{k+1} = B_k + uv^{T}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Set

$$s^k := x^{k+1} - x^k$$
 and $y^k := g(x^{k+1}) - g(x^k)$.

The MSE becomes $B_{k+1}s^k = y^k$.

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ _ 圖 _ 釣�?

Set

$$s^k := x^{k+1} - x^k$$
 and $y^k := g(x^{k+1}) - g(x^k)$.

The MSE becomes $B_{k+1}s^k = y^k$. Multiplying by s^k gives

$$y^k = B_{k+1}s^k = B_ks^k + uv^{\mathsf{T}}s^k \; .$$

Hence, if $v^{\tau}s^{k} \neq 0$, we obtain

$$u=\frac{y^k-B_ks^k}{v^{\tau}s^k}$$

and

$$B_{k+1} = B_k + \frac{\left(y^k - B_k s^k\right) v^{\tau}}{v^{\tau} s^k}$$

.

イロト イ理ト イヨト イヨト 一座

$$B_{k+1} = B_k + \frac{\left(y^k - B_k s^k\right) v^{\mathsf{T}}}{v^{\mathsf{T}} s^k}$$

This equation determines a whole class of rank one updates that satisfy the MSE by choosing $v \in \mathbb{R}^n$ so that $v^T s^k \neq 0$.

$$B_{k+1} = B_k + \frac{\left(y^k - B_k s^k\right) v^{\mathsf{T}}}{v^{\mathsf{T}} s^k}$$

This equation determines a whole class of rank one updates that satisfy the MSE by choosing $v \in \mathbb{R}^n$ so that $v^T s^k \neq 0$.

One choice is $v = s_k$ giving

$$B_{k+1} = B_k = rac{(y^k - B_k s^k) s^{k^T}}{s^{k^T} s^k}.$$

This is known as Broyden's update. It turns out that the Broyden update is also analytically close to B_k .

・ロン ・四 ・ ・ ヨン

Let $A \in \mathbb{R}^{n \times n}$, s, $y \in \mathbb{R}^n$, $s \neq 0$. Then for any matrix norms $\|\cdot\|$ and $\|\cdot\|_e$ such that

 $||AB|| \le ||A|| \, ||B||_e$

and

$$\|\frac{vv^{\tau}}{v^{\tau}v}\|_{e} \leq 1,$$

the solution to

$$\min_{B\in\mathbb{R}^{n\times n}}\{\|B-A\|:Bs=y\}$$

is

$$A_+ = A + \frac{(y - As)s^{\tau}}{s^{\tau}s}.$$

In particular, A_+ solves the given optimization problem when $\|\cdot\|$ is the ℓ_2 matrix norm, and A_+ is the unique solution when $\|\cdot\|$ is the Frobenius norm.

PROOF: Let $B \in \{B \in \mathbb{R}^{n \times n} : Bs = y\}$, then

$$\begin{aligned} \|A_{+} - A\| &= \|\frac{(y - As)s^{\tau}}{s^{\tau}s}\| = \|(B - A)\frac{ss^{\tau}}{s^{\tau}s}\| \\ &\leq \|B - A\| \|\frac{ss^{\tau}}{s^{\tau}s}\|_{e} \le \|B - A\|. \end{aligned}$$

Broyden's Methods

Algorithm: Broyden's Method Initialization: $x^0 \in \mathbb{R}^n$, $B_0 \in \mathbb{R}^{n \times n}$ Having (x^k, B_k) compute (x^{k+1}, B_{x+1}) as follows: Solve $B_k s^k = -g(x^k)$ for s^k and set

$$x^{k+1} := x^{k} + s^{k}$$

$$y^{k} := g(x^{k+1}) - g(x^{k})$$

$$B_{k+1} := B_{k} + \frac{(y^{k} - B_{k}s^{k})s^{k^{T}}}{s^{k^{T}}s^{k}}.$$

▲ロ▶ ▲圖▶ ▲画▶ ▲画▶ 二面 - のへの

Sherman-Morrison-Woodbury Formula for Matrix Inversion

Suppose $A \in \mathbb{R}^{n \times n}$, $U \in \mathbb{R}^{n \times k}$, $V \in \mathbb{R}^{n \times k}$ are such that both A^{-1} and $(I + V^{\tau}A^{-1}U)^{-1}$ exist, then

$$(A + UV^{T})^{-1} = A^{-1} - A^{-1}U(I + V^{T}A^{-1}U)^{-1}V^{T}A^{-1}$$

Inverse Broyden Update

If
$$B_k^{-1} = J_k$$
 exists and $s^{k^T} J_k y^k = s^{k^T} B_k^{-1} y^k \neq 0$, then

$$J_{k+1} = \left[B_k + \frac{(y^k - B_k s^k) s^{k^T}}{s^{k^T} s^k} \right]^{-1} = B_k^{-1} + \frac{(s^k - B_k^{-1} y^k) s^{k^T} B_k^{-1}}{s^{k^T} B_k^{-1} y}$$

$$= J_k + \frac{(s^k - J_k y^k) s^{k^T} J_k}{s^{k^T} J_k y}.$$

・ロト ・ 日 ・ ・ ヨ ト ・

문 문 문

Inverse Broyden Update

If
$$B_k^{-1} = J_k$$
 exists and $s^{k^T} J_k y^k = s^{k^T} B_k^{-1} y^k \neq 0$, then

$$J_{k+1} = \left[B_k + \frac{(y^k - B_k s^k) s^{k^T}}{s^{k^T} s^k} \right]^{-1} = B_k^{-1} + \frac{(s^k - B_k^{-1} y^k) s^{k^T} B_k^{-1}}{s^{k^T} B_k^{-1} y}$$

$$= J_k + \frac{(s^k - J_k y^k) s^{k^T} J_k}{s^{k^T} J_k y}.$$

Under suitable hypotheses $x^k \rightarrow \bar{x}$ superlinearly.

Broyden Updates

Algorithm: Broyden's Method (Inverse Updating) Initialization: $x^0 \in \mathbb{R}^n$, $B_0 \in \mathbb{R}^{n \times n}$ Having (x^k, B_k) compute (x^{k+1}, B_{x+1}) as follows:

$$s^{k} := -J_{k}g(x^{k})$$

$$x^{k+1} := x^{k} + s^{k}$$

$$y^{k} := g(x^{k+1}) - g(x^{k})$$

$$J_{k+1} = J_{k} + \frac{(s^{k} - J_{k}y^{k})s^{k^{T}}J_{k}}{s^{k^{T}}J_{k}y}.$$