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Newton-Like lterations:

X=Xk — Jeg(x¥),  where Ji ~ g'(x¥).
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Newton-Like Iterations:
X=Xk — Jeg(x¥),  where Ji ~ g'(x¥).
3700 years ago the Babylonians used the secant method in 1D:
sk k=1
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Newton-Like Iterations:
X=Xk — Jeg(x¥),  where Ji ~ g'(x¥).
3700 years ago the Babylonians used the secant method in 1D:
k _ k=1
Ji = %
g(x¥) —g(x 1)

This gives the error

g(x* 1) — [g(x¥) + &' (x*)(x* ! — x¥)]
g/ (x*)g(x*=1) — g(x*)]

g/(Xk)71 _ Jk —_
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Newton-Like Iterations:
X=Xk — Jeg(x¥),  where Ji ~ g'(x¥).
3700 years ago the Babylonians used the secant method in 1D:

sk k=1

K= ) e

This gives the error

g(x* 1) — [g(x¥) + &' (x*)(x* ! — x¥)]
g/ (x*)g(x*=1) — g(x*)]

If g’(x*) # 0, then 3 o > 0 such that

L/2 k=1 _ k|2
( ,/ );UX k_lx ” - < K||Xk71 7XkH
allg (A [[Ixkt = x|

by the Quadratic Bound Lemma, so x¥ — X 2-step quadratic rate.

g/(Xk)71 _ Jk —_

llg’ ()™ = il <
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Can we apply the secant method to higher dimentions than 17
sk k-1

g(xk) — g(x<1)

Jk =
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Can we apply the secant method to higher dimentions than 17

Multiply on the rhs by g(x*) — g(x*~1) gives
Je(g(x*) — g(x* 1)) = xF =X,

This is called the matrix secant equation (MSE), or quasi-Newton
equation.
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Can we apply the secant method to higher dimentions than 17

Multiply on the rhs by g(x*) — g(x*~1) gives
Je(g(x*) — g(x* 1)) = xF =X,

This is called the matrix secant equation (MSE), or quasi-Newton
equation.

Here the matrix Ji is unknown (n2 unknowns), and satisfies the n
linear equations of the MSE.
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Can we apply the secant method to higher dimentions than 17

Multiply on the rhs by g(x*) — g(x*~1) gives
Je(g(x*) — g(x* 1)) = xF =X,

This is called the matrix secant equation (MSE), or quasi-Newton
equation.

Here the matrix Ji is unknown (n2 unknowns), and satisfies the n
linear equations of the MSE.

There are not enough equations to nail down all of the entries if
Jk, so further conditions are required. What should they be?
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To better understand what further conditions on Ji are sensible, we
revert to discussing the matrices By = Jk_l, so the MSE becomes

Bi(x* — x*71) = g(x*) — g(x*71).
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To better understand what further conditions on Ji are sensible, we
revert to discussing the matrices By = Jk_l, so the MSE becomes

Bi(x = x*71) = g(x*) — g(x*7).
Key Idea: Think of the Ji's as part of an iteration scheme

{Xk, By} .
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To better understand what further conditions on Ji are sensible, we
revert to discussing the matrices By = Jk_l, so the MSE becomes

Bi(x = x*71) = g(x*) — g(x*7).
Key Idea: Think of the Ji's as part of an iteration scheme

{Xk, By} .

As the iteration proceeds, it is hoped that B, becomes a better
approximation to g’(x). With this in mind, we assume that, in
the long run, By is already close to g/(x¥), so Byy1 should not
differ from By by too much, i.e. By should be “close” to By1.
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What do we mean by ‘“close” in this context?
Should ||Bx — Bk+1]|| be small?
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What do we mean by ‘“close” in this context?
Should ||Bx — Bk+1]|| be small?

We take ‘“close” to mean algebraically close in the sense that By
should be easy to compute from By and yet satisfy the MSE.
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What do we mean by ‘“close” in this context?
Should ||Bx — Bk+1]|| be small?

We take ‘“close” to mean algebraically close in the sense that By
should be easy to compute from By and yet satisfy the MSE.

Let's start by assuming that By, 1 is a rank one update to By.
That is, there exist u, v € R" such that

Bi41 = Bk +uv’
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Set

sho= xkHt — Xk and yk = g(xk+1) — g(xk) )

The MSE becomes By 15X = y.
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Set

sho= xkHt — Xk and yk = g(xk+1) — g(xk) )

The MSE becomes By 15X = y.
Multiplying by s gives

vk = Byjp15K = Besk + uvTsk .
Hence, if v7sX # 0, we obtain

yk—BkSk
u="—r&

and
(yk _ BkSk) vT

Bky1 = Bk + Tk
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k k T
(y — Bys )v
Biy1 = Bk + Tk

This equation determines a whole class of rank one updates that
satisfy the MSE by choosing v € R so that v7s¥ #£ 0.
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(yk _ BkSk) vT

Bik+1 =Bk + Tk

This equation determines a whole class of rank one updates that
satisfy the MSE by choosing v € R so that v7s¥ #£ 0.

One choice is v = si giving

(yk _ Bksk) kT
sk gk

Bky1 = Bk =

This is known as Broyden's update. It turns out that the Broyden
update is also analytically close to By.
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Let A€ R™" s, y € R", s # 0. Then for any matrix norms || - || and
| I]e such that
IAB[ < [[All]Blle
and -
w
1% o<1,

the solution to
min {||B—A|:Bs=y}

BeRnxn
is ( As)sT
y — As)s
A=A+ —>——.
* sTs

In particular, A, solves the given optimization problem when || - || is the
£, matrix norm, and A, is the unique solution when || - || is the Frobenius
norm.
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PROOF: Let B € {B € R"™": Bs =y}, then

(y — As)s’
sTs

ssT
< 18- Al e < 1B~ Al

A=Al =l I=1(B—A)

i”
sTs
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Broyden's Methods

Algorithm: Broyden's Method
Initialization: x° € R", By € R™"

Having (x*, B) compute (x**1, B, 1) as follows:

Solve Bysk = —g(x*) for s¥ and set
kL = xkg sk
v = g — g(x")
k_ B, sk)skT
Biy1: = Bk+(y k)

L
sk’ sk
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Sherman-Morrison-Woodbury Formula for Matrix Inversion

Suppose A € R™" U € R™k, V € R™* are such that both A~!
and (I + VTA71U) ™! exist, then

(A+ UV t=A"1 ATy + vVTATIU) VT AT
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Inverse Broyden Update

If Bk_1 = Jj exists and skTJkyk = skTBk_lyk %0, then

-1

— T ~—
_ Bk—l N (Sk o Bk 1yk)sk Bk 1

skTBk_ly

(yk - Bksk)SkT
sk gk

Jky1 = | Be+

(Sk — Jkyk)SkTJk
SkTJky .
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Inverse Broyden Update

If Bk_1 = Jj exists and skTJkyk = skTBk_lyk %0, then

-1

— T ~—
_ Bk—l N (Sk o Bk 1yk)sk Bk 1

skTBk_ly

(yk - Bksk)SkT
sk gk

Jky1 = | Be+

(Sk — Jkyk)SkTJk
SkTJky .

Under suitable hypotheses x¥ — X superlinearly.
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Broyden Updates

Algorithm: Broyden's Method (Inverse Updating)
Initialization: x% € R", By € R"*"
Having (x*, Bx) compute (x**1, B, 1) as follows:

sk = —Jg(xM)
XL = ko gk
yh o = gt —g(x)
k kykT
S —Jky S Jk
Jk+1 - Jk+( KT ) .
s Iy
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